Search for EFT in associated top production

Sergio Sánchez Cruz for the CMS Collaboration 57th Rencontres de Moriond (electroweak sesion) 24/03/2023 <u>sergio.sanchez.cruz@cern.ch</u>

EFT introduction

- Lack of clear evidence of new physics at the LHC
- New physics may lie above the experimental energy scale
 - Indirect searches may provide hints!
- SMEFT extends the SM Lagrangian

The central role of the top quark

EFT in top physics

- EFT operators can contribute to many top quark production modes
- They affect differently each process
- The nature of the true UV theory is unknown
 - − Need to be comprehensive → consider all operators simultaneously

CMS top measurements

Exploring the top from all angles - associated top production

Experimental signatures

The multilepton final state

EFT parametrization

- SM and BSM contribution to the total yield is estimated with simulations
 - Observed events depend quadratically on the Wilson coefficients (WCs)
- The effect of all operators is taken into account for all processes simultaneously

EFT operators of interest

We consider a total of 26 independent operators

Page 10

W

4-heavy-quark operators 4 independent operators

Observables considered

- We consider the number of observed events in a set of signal regions
- Regions are defined based on lepton/jet multiplicity and event kinematics to separate different processes

Charge

multiplicity

multiplicity

2h

3b

1b

on Z

off Z

multiplicity

2lss

Observables considered

Stepts 400

300

200

100

0.5

2l ss 2b(+)

/ pred. 1.5

Obs.

2-heavy-2-light quarks op.

Page 13

EFT kinematic dependence

- Sensitivity is enhanced by exploiting the kinematic dependence of EFT vertices
- Different variable used in each category depending on the targeted operators

Background estimation

- Background dominated by WZ production → estimated with simulations and validated in control regions
- Nonprompt leptons have also a sizable contribution → estimated using data driven methods

Results

- No significant deviations from SM observed
- Setting constraints on Wilson coefficients
 - Measuring a single coefficient at a time
 - Measuring all of them simultaneously

Others profiled (2σ)

Others profiled (1σ)

2-top-2-

lepton

 $c_t^{T(\ell)}$ $c_t^{S(\ell)}$

 $c_{\mathrm{te}}^{\,(\ell\,)}$

 $c_{t\ell}^{(\ell)} \\ c_{Qe}^{(\ell)}$

 $c_{\mathrm{Q}\ell}^{-(\ell)}$

Others fixed to SM (2σ)

Others fixed to SM (1σ)

138 fb⁻¹ (13 TeV)

CMS Preliminary

Results

- Limits on WC are obtained assuming $\Lambda = 1$ TeV
- Assuming WCs~1, we can set limits on the scale of the UV theory
 - 2-top-2-lepton operators: $\Lambda > O(800 \text{ GeV}) O(1 \text{ TeV})$
 - top+boson operators: $\Lambda > O(300 \text{ GeV}) O(1 \text{ TeV})$
 - 4-heavy-quark-operators: $\Lambda > O(700 \text{ GeV}) O(1 \text{ TeV})$
 - 2-light-2-heavy operators: $\Lambda > O(1 3 \text{ TeV})$

Summary and outlook

- CMS is developing a comprehensive program of measurements and searches involving top production
- We have searched for new physics in selections enriched in tt+X, t+X and tttt production
 - Interesting set of processes, sensitive to interactions of the top with other particles
 - We have set limits on 26 different operators
- Long (and interesting) future ahead for EFT searches:
 - Considering more top quark-related processes and more operators
 - Improving EFT modeling
 - More data will allow us to probe rarer processes

Fitted variable

Operators considered

Operators involving two quarks and one or more bosons								
Operator	Definition	WC	Lead processes affected					
$O_{u\varphi}^{(ij)}$	$\overline{\mathbf{q}}_{i}\mathbf{u}_{i}\tilde{\varphi}\left(\varphi^{\dagger}\varphi\right)$	$c_{\mathrm{t}\varphi} + i c_{\mathrm{t}\varphi}^{I}$	tīH, tHq					
$O_{\varphi q}^{1(ij)}$	$(\varphi^{\dagger}i\overrightarrow{D}_{\mu}\varphi)(\overline{\mathbf{q}}_{i}\gamma^{\mu}\mathbf{q}_{j})$	$c_{\varphi Q}^- + c_{\varphi Q}^3$	tīH, tīlv, tīll, tHq, tllq					
$O_{\varphi q}^{3(ij)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\overline{\mathbf{q}}_{i}\gamma^{\mu}\tau^{I}\mathbf{q}_{j})$	$c_{\varphi Q}^3$	tīH, tīlv, tīll, tHq, tllq					
$O_{\varphi \mathbf{u}}^{(ij)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{\mathbf{u}}_{i}\gamma^{\mu}\mathbf{u}_{j})$	C _{\varphit}	$t\bar{t}H, t\bar{t}l\nu, t\bar{t}l\bar{l}, tl\bar{l}q$					
${}^{\ddagger}O_{\varphi ud}^{(ij)}$	$(\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\overline{\mathbf{u}}_{i}\gamma^{\mu}\mathbf{d}_{j})$	$c_{\varphi tb} + i c^{I}_{\varphi tb}$	tīH, tllq, tHq					
$O_{uW}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \tau^I \mathbf{u}_j) \tilde{\varphi} \mathbf{W}^I_{\mu\nu}$	$c_{tW} + ic_{tW}^I$	tīH, tīlv, tīllī, tHq, tllq					
$O_{dW}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \tau^I \mathbf{d}_j) \varphi \mathbf{W}^I_{\mu\nu}$	$c_{\rm bW} + i c_{\rm bW}^I$	tīH, tīllī, tHq, tllīq					
$O_{uB}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \mathbf{u}_j) \tilde{\varphi} \mathbf{B}_{\mu\nu}$	$(c_W c_{tW} - c_{tZ})/s_W +$	tīH, tīlv, tīllī, tHq, tllq					
		$i(c_{\rm W}c_{\rm tW}^I - c_{\rm tZ}^I)/s_{\rm W}$						
$O_{uG}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu\nu} T^A \mathbf{u}_j) \tilde{\varphi} G^A_{\mu\nu}$	$\mathbf{g}_{\mathbf{s}}(c_{\mathbf{t}G}+ic_{\mathbf{t}G}^{I})$	tīH, tīlv, tīll, tHq, tllq					

Operators involving two quarks and two leptons

Operator	Definition	WC	Lead processes affected
$O_{\ell q}^{1(ijkl)}$	$(\overline{\ell}_i \gamma^{\mu} \ell_j) (\overline{\mathbf{q}}_k \gamma^{\mu} \mathbf{q}_\ell)$	$c_{Q\ell}^{-(\ell)} + c_{Q\ell}^{3(\ell)}$	$t\bar{t}l\nu, t\bar{t}l\bar{l}, tl\bar{l}q$
$O_{\ell q}^{3(ijkl)}$	$(\overline{\ell}_i \gamma^\mu \tau^I \ell_j) (\overline{\mathbf{q}}_k \gamma^\mu \tau^I \mathbf{q}_\ell)$	$c_{Q\ell}^{3(\ell)}$	tīlv, tīlī, tlīq
$O_{\ell \mathrm{u}}^{(ijkl)}$	$(\overline{\ell}_i \gamma^{\mu} \ell_j) (\overline{\mathbf{u}}_k \gamma^{\mu} \mathbf{u}_\ell)$	$c_{\mathrm{t}\ell}^{(\ell)}$	tīll
$O_{e\overline{q}}^{(ijkl)}$	$(\overline{\mathbf{e}}_i \gamma^{\mu} \mathbf{e}_j) (\overline{\mathbf{q}}_k \gamma^{\mu} \mathbf{q}_\ell)$	$c_{\mathrm{Qe}}^{(\ell)}$	tīllī, tllīq
$O_{\rm eu}^{(ijkl)}$	$(\overline{\mathbf{e}}_i \gamma^{\mu} \mathbf{e}_j) (\overline{\mathbf{u}}_k \gamma^{\mu} \mathbf{u}_\ell)$	$c_{ ext{te}}^{(\ell)}$	tīll
$O_{\ell equ}^{1(ijkl)}$	$(\overline{\ell}_i \mathbf{e}_j) \varepsilon (\overline{\mathbf{q}}_k \mathbf{u}_\ell)$	$c_{\mathrm{t}}^{S(\ell)} + i c_{\mathrm{t}}^{SI(\ell)}$	tīll, tllq
${}^{\ddagger}O^{3(ijkl)}_{\ell equ}$	$(\overline{\ell}_i \sigma^{\mu\nu} \mathbf{e}_j) \varepsilon (\overline{\mathbf{q}}_k \sigma_{\mu\nu} \mathbf{u}_\ell)$	$c_{\mathrm{t}}^{T(\ell)} + i c_{\mathrm{t}}^{TI(\ell)}$	tīlv, tīllī, tllq

Operator category	WCs
Two heavy quarks	$c_{t\varphi}, c_{\varphi Q}^{-}, c_{\varphi Q}^{3}, c_{\varphi t}, c_{\varphi tb}, c_{tW}, c_{tZ}, c_{bW}, c_{tG}$
Two heavy quarks two leptons	$c_{Q\ell}^{3(\ell)}, c_{Q\ell}^{-(\ell)}, c_{Qe}^{(\ell)}, c_{t\ell}^{(\ell)}, c_{te}^{(\ell)}, c_{t}^{S(\ell)}, c_{t}^{T(\ell)}$
Two light quarks two heavy quarks	$c_{ m Qq}^{ m 31}, c_{ m Qq}^{ m 38}, c_{ m Qq}^{ m 11}, c_{ m Qq}^{ m 18}, c_{ m tq}^{ m 1}, c_{ m tq}^{ m 8}$
Four heavy quarks	$c_{\mathrm{QQ}}^1, c_{\mathrm{Qt}}^1, c_{\mathrm{Qt}}^8, c_{\mathrm{tt}}^1$

Results per operator (I)

Results per operator (II)

Results per operator (III)

Results per operator (IV)

Results per operator (V)

Results per pairs (I)

Results per pairs (II)

ttW modeling

- ttW is modeled using LO samples with an extra parton
- We assume a cross section of
- We have observed a good agreement between LO and NLO samples
- LO ttW+1jet samples include
- ttW receives contribution from
 - Two-light-two-heavy-quark operators
 - Top+lepton operators inducing charged currents
 - Top+boson operators

Detailed event selection

Event category	Leptons	$m_{\ell\ell}$	b-tags	Lepton charge sum	Jets	Differential variable
2ℓss 2b	2	No requirement	2	> 0, <0	4,5,6,≥7	$p_{\mathrm{T}}(\ell \mathrm{j}0)$
$2\ell ss 3b$	2	No requirement	\geq 3	> 0, <0	4,5,6,≥7	$p_{\rm T}(\ell j0)$
3ℓ off-Z 1b	3	$ m_Z - m_{\ell\ell} > 10 \mathrm{GeV}$	1	> 0, <0	2,3,4,≥5	$p_{\rm T}(\ell j0)$
3ℓ off-Z 2b	3	$ m_{\rm Z}-m_{\ell\ell} >10{ m GeV}$	≥ 2	> 0, <0	2,3,4,≥5	$p_{\rm T}(\ell { m j}0)$
3ℓ on-Z 1b	3	$ m_{\rm Z}-m_{\ell\ell} \le 10{ m GeV}$	1	No requirement	2,3,4,≥5	$p_{\mathrm{T}}(\mathrm{Z})$
3ℓ on-Z 2b	3	$ m_{\rm Z} - m_{\ell\ell} \le 10{ m GeV}$	≥ 2	No requirement	2,3,4,≥5	$p_{\rm T}({\rm Z})$ or $p_{\rm T}(\ell j 0)$
4ℓ	≥ 4	No requirement	≥ 2	No requirement	2,3,≥4	$p_{\mathrm{T}}(\ell \mathrm{j}0)$

Flavor assumptions

- Using flavor assumptions from arXiv:1802.07237
- Lepton sector: $[SU(3)]^3$
 - Further restricted: top+lepton couplings assumed to be the same in three generations
- Quark sector: $U(2)_q x U(2)_u x U(2)_d$ among the first and second generations