Precise SMEFT predictions

Eleni Vryonidou University of Manchester

LHC: the story so far

Rediscovering the SM

Searching for the unknown

Good agreement with the SM predictions
No evidence of new light particles

Where is New Physics?

There is a good chance that New Physics is Heavy
Not enough energy to produce it

Indirect searches are needed new directions

Effective Field Theory

Energy

Standard Model $\mathcal{L}_{S M}(\phi)$

Effective Field Theory reveals high energy physics through precise measurements at low energy.

EFT pathway to New Physics

$\Delta \mathrm{Obs}_{n}=\mathrm{Obs}_{n}^{\mathrm{EXP}}-\mathrm{Obs}_{n}^{\mathrm{SM}}=\frac{1}{\Lambda^{2}} \sum_{i} c_{i}^{6}(\mu) a_{n, i}^{6}(\mu)+\mathcal{O}\left(\frac{1}{\Lambda^{4}}\right)$
 Precise experimental measurements

EFT pathway to New Physics

Constraints $\frac{1}{\Lambda^{2}} c_{i}^{6}(\mu)$

EFT pathway to New Physics

Constraints $\frac{1}{\Lambda^{2}} c_{i}^{6}(\mu) \longrightarrow$ UV

EFT pathway to New Physics

$$
\text { Constraints } \frac{1}{\Lambda^{2}} c_{i}^{6}(\mu) \longrightarrow \mathrm{UV}
$$

Huge effort to improve each one of these steps!

Global nature of EFT

SMEFT correlates different sectors \rightarrow Global fits

Global fit Setup

Theory

Accurate predictions for the SM and the EFT

Data

> Top data, Higgs data, EW data, EWPO Inclusive and differential

Global SMEFT fit

Faithful uncertainty estimate Avoid under- and over-fitting Validated on pseudo-data (closure test)

Methodology

Constraints on New Physics scale Fit results can be used to bound specific UV complete models

Output

Operator examples

currents $\quad i\left(\varphi^{\dagger} \overleftrightarrow{D}^{\mu} \varphi\right)\left(\bar{Q} \gamma^{\mu} Q\right)$

- Shift SM $f \bar{f} V$ couplings
- $f \bar{f} V h$ contact interactions
dipole
$\left(\bar{q} \sigma_{\mu \nu} t \tilde{\varphi}\right) V^{\mu \nu}$

- Chirality flipping $f \bar{f} V$ couplings
- $f \bar{f} V(V) h$ contact interactions
- $W, B \& G$ fields

Yukawa $\quad(\bar{q} t \tilde{\varphi})\left(\varphi^{\dagger} \varphi\right)$

- Decouple $m_{t} \& y_{t}$
- $t \bar{t} h h(h)$ contact interactions

4 fermion $\left(\bar{q} \gamma_{\mu} q\right)\left(\bar{Q} \gamma^{\mu} Q\right)$

$\int f t$

- Contact interactions
- 2-heavy-2-light or 4-heavy
- Numerous (~O(20) w/ top)
+Purely bosonic operators

Global fit observables

	Category	Processes	$n_{\text {dat }}$
Top	Top quark production	```t\overline{t}\mathrm{ (inclusive)} t\overline{t}Z,t\overline{t}W single top (inclusive) tZ,tW t\overline{t}t\overline{t},t\overline{t}b\overline{b} Total```	$\begin{gathered} 94 \\ 14 \\ 27 \\ 9 \\ 6 \\ \mathbf{1 5 0} \end{gathered}$
Higgs	Higgs production and decay	Run I signal strengths Run II signal strengths Run II, differential distributions \& STXS Total	$\begin{aligned} & 22 \\ & 40 \\ & 35 \\ & \mathbf{9 7} \end{aligned}$
$\text { Е } W$	Diboson production	LEP-2 LHC Total	$\begin{aligned} & 40 \\ & 30 \\ & 70 \end{aligned}$
	Baseline dataset	Total	317

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

Global fit results

Bounds vary from operator to operator! Lots of information
Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

What do we learn from global fits?

Bounds on new physics scale vary from 0.1 TeV (unconstrained) to 10 s of TeV . Bounds depend on:

$$
\frac{c_{i}^{6}(\mu)}{\Lambda^{2}}=\frac{\lambda^{2}}{M^{2}}<X
$$

- the operator
- assumption of a strongly or weakly coupled theory
- individual or marginalised bounds (reality is somewhere in-between)

- linear or quadratic bounds

Where is most information from?

Higgs-Top interface
Fisher information table

Where is most information from?

Fisher information table

Future of global fits

More observables:

- particle level observables
- spin correlations
- new final states

More/different operators:

- different flavour assumptions
- dimension-8 operators

Better EFT predictions

Higher Orders in $1 / \wedge^{4}$

- squared dim-6 contributions
- double insertions of dim-6
- dim-8 contributions

Higher Orders in QCD and EW
EFT is a QFT, renormalisable order-by order in $1 / \wedge^{2}$

$$
\mathcal{O}\left(\alpha_{s}, \alpha_{e w}\right)+\mathcal{O}\left(\frac{1}{\Lambda^{2}}\right)+\mathcal{O}\left(\frac{\alpha_{s}}{\Lambda^{2}}\right)+\mathcal{O}\left(\frac{\alpha_{e w}}{\Lambda^{2}}\right)
$$

SMEFT of computations at dimension-6

$$
\Delta \mathrm{Obs}_{n}=\mathrm{Obs}_{n}^{\mathrm{EXP}}-\mathrm{Obs}_{n}^{\mathrm{SM}}=\sum_{i} \frac{c_{i}^{6}(\mu)}{\Lambda^{2}} a_{n, i}^{6}(\mu)+\mathcal{O}\left(\frac{1}{\Lambda^{4}}\right)
$$

Tree level: Done (SMEFTsim) https://smeftsim.github.io/ Brivio, arXiv: 2012.11343

NLO QCD: ~Done (SMEFT@NLO) http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743
NLO EW: Some examples available, needed to probe unconstrained operators.

SMEFT of computations at dimension-6

$$
\Delta \mathrm{Obs}_{n}=\mathrm{Obs}_{n}^{\mathrm{EXP}}-\mathrm{Obs}_{n}^{\mathrm{SM}}=\sum_{i} \frac{c_{i}^{6}(\mu)}{\Lambda^{2}} a_{n, i}^{6}(\mu)+\mathcal{O}\left(\frac{1}{\Lambda^{4}}\right)
$$

Tree level: Done (SMEFTsim) https://smeftsim.github.io/ Brivio, arXiv: 2012.11343

NLO QCD: ~Done (SMEFT@NLO) http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743
NLO EW: Some examples available, needed to probe unconstrained operators.

$$
\text { How about this } \mu \text { ? }
$$

Running and mixing in SMEFT

$$
\frac{d c_{i}(\mu)}{d \log \mu}=\gamma_{i j} c_{j}(\mu)
$$

One loop anomalous dimension known:
(Alonso) Jenkins et al arXiv:1308.2627, 1310.4838, 1312.2014
Example: Turn one 1 operator at high-scale
Compute effect on top pair cross-section

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067

Impact of RGE on constraints

How does running and mixing impacts the constraints?

Top sector fit:

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067
Effect becomes more important for differential distributions \& measurements with very different scales

Conclusions

- SMEFT is a consistent way to look for new interactions
- The LHC gives a lot of opportunities to explore SMEFT through a lot of new measurements
- First global fits results already available: important to combine as many processes as possible
- Strong link between Higgs and top sectors
- Precise EFT predictions (NLO, RGE-improved) maximise the potential of EFT probes
- Eventually global fit results give us a clear indication of the scale of potential new physics

