Precise SMEFT predictions

Eleni Vryonidou University of Manchester

Moriond EW 24/3/2023

LHC: the story so far

Rediscovering the SM

Searching for the unknown

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

†Small-radius (large-radius) jets are denoted by the letter j (J).

Good agreement with the SM predictions No evidence of new light particles

ATLAS Preliminary

Where is New Physics?

There is a good chance that New Physics is Heavy

Not enough energy to produce it

Indirect searches are needed **new directions**

Effective Field Theory

Effective Field Theory reveals high energy physics through precise measurements at low energy.

E.Vryonidou

Global nature of EFT

SMEFT correlates different sectors — Global fits

E.Vryonidou

Moriond EW

Global fit Setup

Operator examples

E.Vryonidou

Global fit observables

	Category	Processes	$n_{ m dat}$
Тор	Top quark production	$t\bar{t}$ (inclusive)	94
		$t\bar{t}Z,t\bar{t}W$	14
		single top (inclusive)	27
		tZ, tW	9
		$tar{t}tar{t}$, $tar{t}bar{b}$	6
		Total	150
Higgs	Higgs production and decay	Run I signal strengths	22
		Run II signal strengths	40
		Run II, differential distributions & STXS	35
		Total	97
EW	Diboson production	LEP-2	40
		LHC	30
		Total	70
	Baseline dataset	Total	317

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

Global fit results

Bounds vary from operator to operator! Lots of information

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

What do we learn from global fits?

Bounds on new physics scale vary from 0.1 TeV (unconstrained) to 10s of TeV. Bounds depend on:

- the operator
- assumption of a strongly or weakly coupled theory
- individual or marginalised bounds (reality is somewhere in-between)
- linear or quadratic bounds

Where is most information from?

Fisher information table

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

E.Vryonidou

Where is most information from?

Fisher information table

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

E.Vryonidou

Future of global fits

More observables:

- particle level observablesspin correlations
- new final states

More/different operators: different flavour assumptions dimension-8 operators

Better EFT predictions

Higher Orders in 1/Λ4

- squared dim-6 contributions
- double insertions of dim-6
- dim-8 contributions

Higher Orders in QCD and EW

EFT is a QFT, renormalisable order-by order in $1/\Lambda^2$

$$\mathcal{O}(\alpha_s, \alpha_{ew}) + \mathcal{O}\left(\frac{1}{\Lambda^2}\right) + \mathcal{O}\left(\frac{\alpha_s}{\Lambda^2}\right) + \mathcal{O}\left(\frac{\alpha_{ew}}{\Lambda^2}\right)$$

E.Vryonidou

SMEFT of computations at dimension-6

$$\Delta Obs_n = Obs_n^{\mathsf{EXP}} - Obs_n^{\mathsf{SM}} = \sum_i \frac{c_i^6(\mu)}{\Lambda^2} a_{n,i}^6(\mu) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

Tree level: Done (SMEFTsim)

https://smeftsim.github.io/ Brivio, arXiv: 2012.11343

NLO QCD: ~Done (SMEFT@NLO)

http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

NLO EW: Some examples available, needed to probe unconstrained operators.

SMEFT of computations at dimension-6

$$\Delta Obs_n = Obs_n^{\mathsf{EXP}} - Obs_n^{\mathsf{SM}} = \sum_i \frac{c_i^6(\mu)}{\Lambda^2} a_{n,i}^6(\mu) + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

Tree level: Done (SMEFTsim)

https://smeftsim.github.io/ Brivio, arXiv: 2012.11343

NLO QCD: ~Done (SMEFT@NLO)

http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

NLO EW: Some examples available, needed to probe unconstrained operators.

How about this μ ?

Running and mixing in SMEFT

One loop anomalous dimension known:

(Alonso) Jenkins et al arXiv:1308.2627, 1310.4838, 1312.2014

Example: Turn one 1 operator at high-scale

Compute effect on top pair cross-section

 $\frac{dc_i(\mu)}{d\log\mu} = \boldsymbol{\gamma}_{ij} \, c_j(\mu)$

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067

 $c_{Ou}^{1} = 1$ at 2 TeV

Impact of RGE on constraints

How does running and mixing impacts the constraints?

Top sector fit:

Aoude, Maltoni, Mattelaer, Severi, EV arXiv:2212.05067

Effect becomes more important for differential distributions & measurements with very different scales

Conclusions

- SMEFT is a consistent way to look for new interactions
- The LHC gives a lot of opportunities to explore SMEFT through a lot of new measurements
- First global fits results already available: important to combine as many processes as possible
- Strong link between Higgs and top sectors
- Precise EFT predictions (NLO, RGE-improved) maximise the potential of EFT probes
- Eventually global fit results give us a clear indication of the scale of potential new physics

Thank you for your attention