

tt + X and t(t) + X measurements in ATLAS and CMS

Soureek Mitra Institute of Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Institut für Experimentelle Teilchenphysik

Moriond EW Session, 18-25 March, 2023

Karlsruher Institut für Technologie

LHC - The top quark Factory

- Top quarks are produced in abundance at the LHC
- Dominant production modes:
 - → $t\bar{t}$ production: ~120M events @10 Hz for $\sqrt{s} = 13$ TeV
 - Single $t(\bar{t})$ production ~ 40M events @1 Hz for $\sqrt{s} = 13$ TeV

This talk focuses on a few cherry-picked results from the latest measurements

tt production: inclusive

 \rightarrow first results with early Run3 data (CMS-TOP-22-012)

tt production: differential

- Single and double differential cross section measurements in the $e\mu$ final state
- 8 leptonic kinematic variables studied : p_T^{ℓ} , $|\eta_{\ell}|$, $m_{e\mu}$, $p_T^{e\mu}$, $|y^{e\mu}|$, $E^e + E^{\mu}$, $p_T^e + p_T^{\mu}$, $\Delta \phi^{e\mu}$ 0
- Data compared to various predictions
 - \rightarrow Good agreement observed except for the tails

QCD

EWK

- NLO (QCD + EW) + NLL prediction: $\sigma_{t\bar{t}t\bar{t}} = 13.4^{+1.0}_{-1.8} \text{ fb}$
- MVA techniques to extract signal in all final states

1 <i>ℓ</i> or 2ℓOS	SSML:28
Dominant bkg : $t\bar{t}$ + heavy flavor	Dominant b
Negligible non-prompt ℓ	Significant nor
limits on EFT couplings	limits on yukav

tttt production

EFT four-fermion coupling

SUSY

arXiv:2212.03259

tttt: all hadronic

First time all had. channel used in 4-top searches!

- SR divided based on resolved / boosted top candidates and H_T
- Data-driven estimation of QCD multijet and $t\bar{t} + jets$ bkgs. from CRs with different jet and b-tag multiplicities
- Combination with results from other final states $\sigma_{t\bar{t}t\bar{t}} = 17 \pm 4 \text{ (stat)} \pm 3 \text{ (syst) fb}$

New result with legacy reprocessing of Run2 data

Image MVA-based lepton Id. to reject fake lepton bkg. DeepJet over DeepCSV for b-jet identification performance

- Veto events with OSSF lepton pair within m_Z window to reject $t\bar{t}Z$ and multi-boson bkgs.
- Several event categories based on jet and b-tag multiplicities and H_T for better bkg. estimates
- Multi-classification using separate BDTs in the $2\ell SS$ and $3\ell \& 4\ell$ channels

 $rac{t}\overline{t}t\overline{t}$ -like,

 $rac{1}{2}t\overline{t}X$ —like

☞ *tī*−like

tttt: SSML

CMS-PAS-TOP-22-01

Observation of tttt: SSML

 $\sigma(pp \rightarrow t\bar{t}t\bar{t}) = 17.9^{+3.7}_{-3.5}$ (stat) $^{+2.4}_{-2.1}$ (syst) fb, unc. $\sigma(pp \rightarrow t\bar{t}W) = 997 \pm 58 \text{ (stat)}^{+79}_{-72} \text{ (syst) fb},$ $\sigma(pp \rightarrow t\bar{t}Z) = 1134^{+52}_{-43}$ (stat) ± 86 (syst) fb Obs. (exp.) $\sigma(pp \rightarrow t\bar{t}t\bar{t})$ Channel significance $17.6_{-4.3}^{+4.7}$ (stat) $^{+2.8}_{-2.7}$ (syst) fb 4.1 (4.1) s.d. 2ℓ $19.4_{-6.4}^{+7.1}$ (stat) $^{+2.9}_{-2.3}$ (syst) fb 3.5 (3.0) s.d. 3ℓ 0.0 (0.8) s.d. 4ℓ 5.5 (4.9) s.d. $17.9^{+3.7}_{-3.5}$ (stat) $^{+2.4}_{-2.1}$ (syst) fb Combined LHC Seminar from CMS on Tuesday, March 28 **Observation !!**

tībb production

- Irreducible bkg. to
 - $\rightarrow t\bar{t}H(b\bar{b})$
 - → $t\bar{t}t\bar{t}$ (1 ℓ and 2ℓ OS final states)
- Multi-scale process
 - → m_t ~ 172 GeV (*large*); m_b ~ 4 GeV (*non-negligible*)
 - challenging to model in simulation
- Different modeling approaches
 - $\rightarrow t\bar{t}b\bar{b}$ ME@NLO (additional b-jets from matrix element)
 - $\rightarrow t\bar{t}$ ME@NLO (additional b-jets from parton shower)
 - → 4 vs 5-flavor schemes (massive vs. massless b-quarks in the initial state)
- Previous measurements reported higher cross sections than state-of-the-art predictions

ttbb production

LHCTOPWGSummaryPlots

s-channel (~ 3% at LHC) **Challenging at LHC**

$$\sigma \propto |V_{\rm tb}|^2$$

 $|f_{LV}V_{tb}| = \sqrt{\frac{\sigma_{meas.}}{\sigma_{pred.}(|V_{tb}| = 1)}}, \text{Assuming} |V_{td}|, |V_{ts}| \ll |V_{tb}|$

 f_{IV} accounts for possible BSM contribution $\rightarrow f_{IV} = 1$ for SM

 $\sigma_{t+\bar{t}}^{t-ch}(13 \text{ TeV}) = 207 \pm 2 \text{ (stat)} \pm 31 \text{ (syst) pb} = 207 \pm 31 \text{ pb}$

<u>CMS-TOP-17-011</u>

Measurement in 1ℓ + jets final state 0

SR	W + jets CR	<i>tt</i> ⁻CR
2 jets	2 jets	≥ 3 jets
2 tight b	1 tight b, 1 loose b	≥ 2 tight b

- Data-driven QCD multijet bkg. estimation using $m_T^W(E_T^{miss})$ for $\mu(e)$ 0
- Matrix-element-method to derive signal probability per event : P(S|X)
- $\sigma_{s-ch.} = 8.2 \pm 0.6$ (stat) $^{+3.4}_{-2.8}$ (syst) pb = $8.2^{+3.5}_{-2.9}$ pb
- Observed (Expected) signal significance over bkg.-only hypothesis : 3.3 (3.9) s.d.
- Dominant unc. sources: $t\bar{t}$ norm., signal and $t\bar{t}$ simulation model, jet energy scale, jet energy resolution etc.

Evidence of s-ch. production

arXiv:2209.08990

Observation of tqy production

- 1 ℓ , 1 tight b-tag, $\geq 1\gamma$ in the final state
- Veto events with $m_{\ell\gamma}$ close to m_Z
- SR1: 0 forw_jet and SR2: \geq 1 forw_jet

NN discr. in SRs to separate signal from bkgs.

$\sigma_{tq\gamma} \times \mathscr{B}(t \to b\ell\nu)$	Meas. fid. cross section (fb)	SM predictior (fb)
Parton level	688 ± 23 (stat) $^{+75}_{-71}$ (syst)	515^{+36}_{-42}
Particle level	303 ± 9 (stat) $^{+33}_{-32}$ (syst)	217^{+27}_{-15}

- **Observed** (**Expected**) significance of the $tq\gamma$ signal is: **9.3** (6.8) s.d.
- Evidence @ 4.4 s.d. with partial (35.9 fb^{-1}) Run2 data reported earlier by CMS (CMS-TOP-17-016)

500

0.6

- 1ℓ , $\ge 1\gamma$ (in barrel), $\& \ge 1j$ in the final state
- Veto events with $|m_{e\gamma} m_Z| < 10 \text{ GeV}$
- SR1: 1j1b and SR2: > 1j, 1b
- BDTs to separate FCNC signal from SM bkgs.
- Upper Limits @95% CL extracted for $\kappa_{tq\gamma}$ and $\mathscr{B}(t \to q + \gamma)$

FCNC in $t\gamma$

Obs. limit	Exp. 1
$6.2 imes 10^{-3}$	6.9×1
7.7×10^{-3}	7.8×1
$0.95 imes 10^{-5}$	$1.20 \times$
1.51×10^{-5}	$1.54 \times$
	Obs. limit 6.2×10^{-3} 7.7×10^{-3} 0.95×10^{-5} 1.51×10^{-5}

- $\geq 3\ell$ with exactly 1 OSSF pair in the final state
- OSSF lepton pair with $|m_{\ell\ell} m_Z| < 15 \text{ GeV}$
- SR1($t\bar{t}$ -like): $\ge 2j1b$ & SR2 (Single *t*-like): 1j1b + 2j1b0
- Kinematic event reconstruction based on the signal topology \bigcirc
- Dominant bkgs : $t\bar{t}$ -dilepton and $t\bar{t}V$ 0
- BDTs to separate FCNC signal from SM bkgs.
- Upper limits are extracted @95% CL for $\mathscr{B}(t \to Zq)$

01 11	X 7 4	C 1'	01 1	F · 1
Observable	Vertex	Coupling	Observed	Expected
	SRs+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	6.2×10^{-5}	$4.9^{+2.1}_{-1.4} \times 10^{-1.4}$
$\mathcal{B}(t \to Zq)$	tZu	RH	6.6×10^{-5}	$5.1^{+2.1}_{-1.4} \times 10$
$\mathcal{B}(t \to Zq)$	tZc	LH	13×10^{-5}	$11^{+5}_{-3} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZc	RH	12×10^{-5}	$10^{+4}_{-3} \times 10^{-3}$

FCNC in tZ

- LHC ≡ Top quark factory
 ⇒ precision lab for studying top quark production & properties
 - \Rightarrow portal to new physics beyond SM
- Most measurements agree with SM prediction within uncertainties
 ⇒ several measurements out-perform predictions in precision
- Differential and fiducial measurements are key inputs for better MC modeling in future
- Observation or evidence of several rare top quarks processes during Run2
 \Rightarrow waiting to be fully exploited during Run3 and High Luminosity- LHC
- Stringent limits on FCNC couplings are placed with Run2 data
- More information : <u>ATLAS Top Public Results</u>, <u>CMS Top Public Results</u>, <u>LHC Top WG</u>
- More TOP results today by Michele, Sergio, and Jack

Thank you for your attention !!

Back - up

Observation of tttt: SSML

New

b-tagging in CMS

Typical features of heavy flavor jets:

- Tracks with high impact parameter
- Presence of soft leptons inside jets

Tagging typically relies on:

- Track info. : IP2D, IP3D, track multiplicity etc.
- SV info. : m_{SV} , SV flight distance etc.
- Charged and neutral hadron and soft lepton candidate info.
- Some combination of the above : NN

JINST 15 (2020) P12012

tttt: SSML

CMS-PAS-TOP-22-013

JHEP 07 (2020) 125

Sign	al streng	gth (μ)	Cro	oss sectio	on (fb)	Signific	cance
	(stat.)	(syst.)		(stat.)	(syst.)	Exp.	Ο
2.8	±1.0	$^{+1.9}_{-1.2}$	33	± 12	$+15\\-14$	0.6	1
1.2	$^{+0.7}_{-0.6}$	± 0.6	15	± 8	$^{+10}_{-7}$	1.2	1
5.8	± 1.4	± 2.0	70	± 17	+25 -23	0.4	2
2.5	± 0.5	± 0.5	36	± 7	$^{+10}_{-8}$	1.5	3
1.0	± 0.4	$^{+0.3}_{-0.2}$	13	$+5 \\ -4$	± 3	2.7	2
-0.2	$^{+1.7}_{-1.5}$	± 1.5	-2	$\begin{array}{c} +20 \\ -18 \end{array}$	± 18	0.4	
1.4	± 0.3	±0.2	17	± 4	± 3	3.2	4
	Sign 2.8 1.2 5.8 2.5 1.0 -0.2 1.4	Signal streng (stat.)2.8 ± 1.0 1.2 $^{+0.7}_{-0.6}$ 5.8 ± 1.4 2.5 ± 0.5 1.0 ± 0.4 -0.2 $^{+1.7}_{-1.5}$ 1.4 ± 0.3	Signal strength (μ)(stat.)(syst.)2.8 ± 1.0 $^{+1.9}_{-1.2}$ 1.2 $^{+0.7}_{-0.6}$ ± 0.6 5.8 ± 1.4 ± 2.0 2.5 ± 0.5 ± 0.5 1.0 ± 0.4 $^{+0.3}_{-0.2}$ -0.2 $^{+1.7}_{-1.5}$ ± 1.5 1.4 ± 0.3 ± 0.2	Signal strength (μ)Crown(stat.)(syst.)2.8 ± 1.0 $^{+1.9}_{-1.2}$ 331.2 $^{+0.7}_{-0.6}$ ± 0.6 155.8 ± 1.4 ± 2.0 702.5 ± 0.5 ± 0.5 361.0 ± 0.4 $^{+0.3}_{-0.2}$ 13 -0.2 $^{+1.7}_{-1.5}$ ± 1.5 -2 1.4 ± 0.3 ± 0.2 17	Signal strength (μ)Cross section(stat.)(syst.)(stat.)2.8 ± 1.0 $^{+1.9}_{-1.2}$ 33 ± 12 1.2 $^{+0.7}_{-0.6}$ ± 0.6 15 ± 8 5.8 ± 1.4 ± 2.0 70 ± 17 2.5 ± 0.5 ± 0.5 36 ± 7 1.0 ± 0.4 $^{+0.3}_{-0.2}$ 13 $^{+5}_{-4}$ -0.2 $^{+1.7}_{-1.5}$ ± 1.5 -2 $^{+20}_{-18}$ 1.4 ± 0.3 ± 0.2 17 ± 4	Signal strength (μ)Cross section (fb)(stat.)(syst.)(stat.)(syst.)2.8 ± 1.0 $^{+1.9}_{-1.2}$ 33 ± 12 $^{+15}_{-14}$ 1.2 $^{+0.7}_{-0.6}$ ± 0.6 15 ± 8 $^{+10}_{-7}$ 5.8 ± 1.4 ± 2.0 70 ± 17 $^{+25}_{-23}$ 2.5 ± 0.5 ± 0.5 36 ± 7 $^{+10}_{-8}$ 1.0 ± 0.4 $^{+0.3}_{-0.2}$ 13 $^{+5}_{-4}$ ± 3 -0.2 $^{+1.7}_{-1.5}$ ± 1.5 -2 $^{+20}_{-18}$ ± 18 1.4 ± 0.3 ± 0.2 17 ± 4 ± 3	Signal strength (μ)Cross section (fb)Significant (syst.)2.8 ± 1.0 $^{+1.9}_{-1.2}$ 33 ± 12 $^{+15}_{-14}$ 0.61.2 $^{+0.7}_{-0.6}$ ± 0.6 15 ± 8 $^{+10}_{-7}$ 1.25.8 ± 1.4 ± 2.0 70 ± 17 $^{+25}_{-23}$ 0.42.5 ± 0.5 ± 0.5 36 ± 7 $^{+10}_{-8}$ 1.51.0 ± 0.4 $^{+0.3}_{-0.2}$ 13 $^{+5}_{-4}$ ± 3 2.7 -0.2 $^{+1.7}_{-1.5}$ ± 1.5 -2 $^{+20}_{-18}$ ± 18 0.41.4 ± 0.3 ± 0.2 17 ± 4 ± 3 3.2

Summary of *tttt* production

ATLAS+CMS Preliminary LHC*top*WG

 $\sigma_{t\bar{t}t\bar{t}} = 12.0^{+2.2}_{-2.5}$ (scale) fb JHEP 02 (2018) 031 NLO QCD+EW

ATLAS, 2LSS/3L, 139 fb⁻¹ EPJC 80 (2020) 1085

ATLAS, 1L/2LOS, 139 fb⁻¹ JHEP 11 (2021) 118

ATLAS, comb., 139 fb^{-1} JHEP 11 (2021) 118

CMS, 2LSS/3L, 137 fb⁻¹ EPJC 80 (2020) 75

CMS, 1L/2LOS, 35.8 fb⁻¹ JHEP 11 (2019) 082

CMS, 1L/2LOS/all-had, 138 fb⁻¹ CMS-PAS-TOP-21-005 *

CMS, comb., 138 fb⁻¹ CMS-PAS-TOP-21-005 *

*Preliminary

0

LHCTOPWGSummaryPlots

24

Response Matrix

ttbb production

Uncertainties in diff. measurements

2ℓSS	
Event categories based on ℓ flavor & charge	12 event multiplicit
DNN discr. for signal vs bkg. separation	Signal ex

ttW production

Observable	Measurement	SM J NLO + NNLI
$\sigma_{ m t\bar{t}W}$	$868\pm40(\mathrm{stat})\pm51(\mathrm{syst})\mathrm{fb}$	592^{+155}_{-97} (theo)
$\sigma_{t\bar{t}W^+}$	$553\pm30(\mathrm{stat})\pm30(\mathrm{syst})\mathrm{fb}$	384_{-33}^{+53} (theo) f
$\sigma_{t\bar{t}W^{-}}$	$343\pm26(\mathrm{stat})\pm25(\mathrm{syst})\mathrm{fb}$	198 $^{+26}_{-17}$ (theo) f
$\sigma_{t\bar{t}W^+}/\sigma_{t\bar{t}W^-}$	1.61 ± 0.15 (stat) $^{+0.07}_{-0.05}$ (syst)	$1.94^{+0.37}_{-0.24}$ (theo

Factor of 2 improvement on systematic uncertainty w.r.t earlier measurement @ 13 TeV with only 2016 data !!!

Dominant systematics:

- $\rightarrow t\bar{t}H$ normalization (2.6%)
- \rightarrow Luminosity(1.9%)
- $\rightarrow t\bar{t}W$ ME scale (1.8 %)
- → b tagging efficiency (1.6 %)

prediction NLO + FxFx**CMS-TOP-21-011** 722_{-78}^{+71} (theo) fb fb 138 fb⁻¹ (13 TeV) CMS 475_{-52}^{+46} (theo) fb fb 550 -[fb] **Best fit** 247^{+24}_{-27} (theo) fb fb ^O tīW 500 JHEP 11 (2021) 029 $1.92^{+0.27}_{-0.29}$ (theo) 0) 68% CL 450 95% CL 400 350 300 250

200

500

450

600

550

Inclusive and differential $t\bar{t}\gamma$: 2ℓ

- NLO prediction: $\sigma_{t\bar{t}\gamma} = 155 \pm 27 \,\text{fb}$ $|p_T(\gamma) > 20 \,\text{GeV} \& |\eta(\gamma)| < 1.442|$
- \sim Exactly 1 γ , exactly 1 OS ℓ pair, \geq 1 b-tagged jet in the final state -> Bkgs.: Non-prompt γ (data-driven), $Z\gamma$ (from Z peak), others from simulation
- Measured: $\sigma_{t\bar{t}\gamma} = 175.2 \pm 2.5(\text{stat}) \pm 6.3(\text{syst}) \text{ fb} (4\%)$ Dominant sources: Luminosity, signal model, bkg. normalization
- Differential measurements used to extract combined (2 ℓ & ℓ + jets) limits on coupling C_{tZ}

eV)	20	
'-	20	1
-	 18	
-	16	Ī
-	14	
-	12	
-	10	
-	8	
-	6	
-	Δ	
-	т О	
	2	
6 \21	0	

Inclusive and differential $tt\gamma$: ℓ + jets

- NLO Prediction: $\sigma_{t\bar{t}\gamma} = 773 \pm 135 \,\text{fb}$ $|p_T(\gamma) > 20 \,\text{GeV} \,\& |\eta(\gamma)| < 1.442|$
- Final state consists of exactly 1 γ , exactly 1 ℓ , \geq 3 jets, \geq 1 b-tagged jet
- Measured inclusive cross section: $\sigma_{t\bar{t}\gamma} = 798 \pm 7$ (stat) ± 48 (syst) fb
- Differential measurements used to extract limits on EFT coupling Ctz

Summary of $t\bar{t}V$ measurements

	ATLAS+CMS Pre	liminary				
	$\sigma_{t\bar{t}W} = 0.72^{+0.07}_{-0.08}(scale) \pm 0.01$ JHEP 11 (2021) 29 FxFx@2J+NLO_{EW}^{lead}+NLO_{E}^{8}	(PDF) pb $\sigma_{t\bar{t}Z} = 0.86^{+0.07}_{-0.08}$ (scale) ± 0.02(PDF) pb Eur. Phys. J. C 80 (2020) 428 NLO(QCD+EW)+NNLL	σ _{ttγ} JHI NL	le ; + E _(
		$\sigma_{meas.} \pm (stat.) \pm (syst.)$	_			
		0.87 ± 0.13 ± 0.14 pb	÷			
	ttVV	0.87 ± 0.04 ± 0.05 pb				
	+Ŧ7	0.99 ± 0.05 ± 0.08 pb				
		0.95 ± 0.05 ± 0.06 pb				
	$t\bar{t}\gamma + tW\gamma$ dilepton eµ	$0.040 \pm 0.001 {}^{+ 0.003}_{- 0.002} pb \times 20$				
	ttγ dilepton	0.175 ± 0.003 ± 0.006 pb × 5				
	tī γ I+jets	0.798 ± 0.007 ± 0.048 pb				
U) 0.2	0.4 0.6				

$$\mathcal{P}(X \mid H_{\text{proc}}) = \int d\Phi \frac{1}{\sigma_{H_{\text{proc}}}} \frac{d\sigma_{H_{\text{proc}}}}{d\Phi} T_{H_{\text{proc}}}(X \mid \Phi)$$

$$P(S \mid X) = \frac{\sum_{i} P(S_i) \mathcal{P}(X \mid S_i)}{\sum_{i} P(S_i) \mathcal{P}(X \mid S_i) + \sum_{j} P(B_j) \mathcal{P}(X \mid B_j)}$$

arXiv:2209.08990

Source	$\Delta\sigma/\sigma$ [%]
$t\bar{t}$ normalisation	+24/-17
$t\bar{t}$ shape modelling	+18/-15
PS & had.	+12/-10
ME/PS matching	+10/-8
$h_{\rm damp}$	<1
s-channel modelling	+18/-8
PS & had.	+18/-8
ISR/FSR	+3/-1
Jet energy resolution	+18/-12
Jet energy scale	+18/-13
MC statistics	+13/-11
Flavour tagging	+12/-10
W+ jets normalisation	+11/-8
PDFs	+10/-9
$t\overline{t}$	+10/-9
s-channel	± 1
t-channel	± 1
tW	± 1
t-channel modelling	± 6
PS & had.	± 5
ISR/FSR	± 4
$W+$ jets $\mu_{\rm r}/\mu_{\rm f}$ shape	+6/-5
Normalisation of other processes	+6/-5
Pile-up	+5/-3
Luminosity	+4/-3
tW modelling	+1/-2
PS & had.	± 1
tt overlap	± 1
ISR/FSR	± 1
Missing transverse momentum	± 1
Multijet shape modelling	± 1
Other detector sources	± 1
Systematic uncertainties	+42/-34
Statistical uncertainty	± 8
Total	+42/-35

Observation of tqy production

arXiv:2302.01283

Fiducial region

Parton level

• At least one photon with $p_T \ge 20$ GeV Frixione isolated with $\Delta R < 0.2$.

Particle level

- One lepton with $p_T \ge 25 \text{ GeV}$
- At least one photon with $p_T \ge 25$ GeV.
- One b with $p_T \ge 25 \text{ GeV}$
- One neutrino not from a hadron decay

Uncertainty

 $t\bar{t}\gamma$ modeling Background MC st $tq\gamma$ MC statistics *tī* modeling $tq\gamma$ modeling $t (\rightarrow \ell \nu b \gamma) q \mod q$ Additional backgro $t (\rightarrow \ell \nu b \gamma) q \text{ MC}$

 $h \rightarrow \gamma$ photon fake Lepton fakes

 $e \rightarrow \gamma$ photon fakes

Luminosity Pileup

Jets and $E_{\rm T}^{\rm miss}$ Photons Leptons

b-tagging

Total systematic un

Parton-level

Particle-level

	$\Delta\sigma/\sigma$	Uncertainty	Δ
	±5.5%	$t\bar{t}\gamma$ modeling	±:
tatistics	±3.5%	Background MC statistics	±.
	±3.3%	$t (\rightarrow \ell \nu b \gamma) q$ modeling	±.
	±2.4%	$tq\gamma$ MC statistics	±.
	±2.0%	<i>tī</i> modeling	±ź
eling	$\pm 1.9\%$	$tq\gamma$ modeling	±ź
ound uncertainties	$\pm 1.9\%$	Additional background uncertainties	±ź
statistics	±0.3%	$t (\rightarrow \ell \nu b \gamma) q$ MC statistics	±(
es	±2.0%	Lepton fakes	±ź
	$\pm 1.9\%$	$h \rightarrow \gamma$ photon fakes	± 2
es	$\pm 0.6\%$	$e \rightarrow \gamma$ photon fakes	±
	±2.2%	Luminosity	±ź
	±1.2%	Pileup	±
	±3.6%	Jets and $E_{\rm T}^{\rm miss}$	±.
	±2.5%	Photons	±ź
	$\pm 0.9\%$	Leptons	±
	±0.9%	<i>b</i> -tagging	±
ncertainty	±10.6%	Total systematic uncertainty	±1

Evidence for tqy (CMS-TOP-17-016)

- 1μ , 1γ , & 2j1b in the final state
- $\Delta R(X, \gamma) > 0.5$, where $X = \mu$ or jets \rightarrow Removes overlap b/w single top + "soft" γ (PS) & single top + "hard" γ (ME)
- Fake γ bkg. estimated from SB data \rightarrow loose *Id.* and inversion of *Iso. / shower shape criteria*
- Maximum likelihood fit to BDT discriminant to extract signal $\sigma^{\text{Fid.}}(\text{pp} \rightarrow t\gamma j)\mathscr{B}(t \rightarrow \mu\nu b) = 115 \pm 17(\text{stat}) \pm 30(\text{syst}) \text{ fb}$

 $\sigma_{\rm SM}^{\rm Fid.} = 81 \pm 4 \, {\rm fb}$

- Observed (Expected) significance of 4.4 (3.0) s.d.
- Dominant Uncertainties:
 - → Jet energy scale ~ 12%
 - ➤ Signal modeling ~ 9%
 - Estimation of $Z\gamma$ +jets Bkg. ~ 8%
 - ➤ b-tag/mistag ~ 7%

tW production

- tW @NLO has large interference with $t\overline{t}$
- Two schemes to tackle this in MC

 \mathbb{R} Remove $t\bar{t}$ diagrams from ME \rightarrow Diagram Removal (DR) Local subtraction term added to ME to cancel resonant *tt* contribution \rightarrow Diagram Subtraction (DS)

- Diff. b/w DR (nominal) and DS (alternative) schemes as signal modeling uncertainty
- BDTs to separate tW signal from $t\overline{t}$ \rightarrow ML fit to BDTs in 1j1b and 2j1b to extract signal

• $\sigma_{TW}^{\text{meas.}} = 79.2 \pm 0.8 \text{ (stat)} \pm 7.1 \text{ (syst)} \pm 1.1 \text{ (lumi) pb}$

- Dominant sources: JES, non-W/Z bkg. rate, $\mu_R \& \mu_F$ scales of *tW* signal
- Diff. cross section measured against various kinematic variables \rightarrow Good agreement b/w data and various predictions

= 79.5 ± 1.9 (scale) ± 1.7 (PDF) pb

- Data

 $+ \bigcirc \sqrt{}$

100

80

otal unc.

arXiv:2301.11605

Observable	Vertex	Coupling	Observed	Expected
	SRs+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	6.2×10^{-5}	$4.9^{+2.1}_{-1.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZu	RH	6.6×10^{-5}	$5.1^{+2.1}_{-1.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZc	LH	13×10^{-5}	$11^{+5}_{-3} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZc	RH	12×10^{-5}	$10^{+4}_{-3} \times 10^{-5}$
$ C_{\mu W}^{(13)*} $ and $ C_{\mu B}^{(13)*} $	tZu	LH	0.15	$0.13 \begin{array}{c} +0.03 \\ -0.02 \end{array}$
$ C_{\mu W}^{(31)} $ and $ C_{\mu B}^{(31)} $	tZu	RH	0.16	$0.14 \stackrel{+0.03}{_{-0.02}}$
$ C_{\mu W}^{(23)*} $ and $ C_{\mu B}^{(23)*} $	tZc	LH	0.22	$0.20 \stackrel{+0.04}{_{-0.03}}$
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	RH	0.21	$0.19 \stackrel{+0.04}{_{-0.03}}$
	SR1+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	9.7×10^{-5}	$8.6^{+3.6}_{-2.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZu	RH	9.5×10^{-5}	$8.2^{+3.4}_{-2.3} \times 10^{-5}$
	SR2+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	7.8×10^{-5}	$6.1^{+2.7}_{-1.7} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZu	RH	9.0×10^{-5}	$6.6^{+2.9}_{-1.8} \times 10^{-5}$

Combined	Obs. limit	Exp. limit	$\pm 1\sigma$ (exp. limit)	$\pm 2\sigma$ (exp. limi
$\kappa_{tu\gamma}$	6.2×10^{-3}	6.9×10^{-3}	$(5.9 - 8.4) \times 10^{-3}$	$(5.1 - 10.1) \times 10$
$\kappa_{tc\gamma}$	7.7×10^{-3}	$7.8 imes10^{-3}$	$(6.7 - 9.7) \times 10^{-3}$	$(5.7 - 11.5) \times 10^{-10}$
$\mathcal{B}(t ightarrow u + \gamma)$	0.95×10^{-5}	1.20×10^{-5}	$(0.89 - 1.78) \times 10^{-5}$	$(0.64 - 2.57) \times 1$
$\mathcal{B}(t ightarrow c + \gamma)$	1.51×10^{-5}	$1.54 imes10^{-5}$	$(1.13 - 2.37) \times 10^{-5}$	$(0.81 - 3.32) \times 1$

FCNC in ty

Summary of *tX* measurements

Summary of FCNC measurements

Limits @ 95% CL from $\tilde{g}\tilde{g}$ production

CMS-SUSY-Summary-Plots

ATL-PHYS-PUB-2023-005

