

Scalar extensions of the SM and recent discrepencies

Based on [2203.13180], [2204.05975] and [2208.14466] in collaboration with Sven Heinemeyer, José Miguel No, María Olalla Olea Romacho, Georg Weiglein

57th Rencontres de Moriond: EW Interactions and Unified Theories

24th of March 2023

The SM Higgs sector T < vEW symmetry unbroken in early universe Cross-over transition at $T \sim v$ EW symmetry broken at T = 0

Minimal parametrization of EW symmetry breaking

57th Rencontres de Moriond: EW Interactions and Unified Theories

The SM Higgs sector

Consequences:

- \rightarrow One physical scalar particle
- \rightarrow Couplings \sim Mass
- \rightarrow No CP violation in Higgs potential

Any departure from these predictions \rightarrow BSM physics

Why extended Higgs sector?

Why extended Higgs sector?

Matter-antimatter asymmetry

SM prediction: We do not exit: $\frac{n_b}{n_\gamma} \sim 6 \cdot 10^{-19}$

Observations: We exist: $\frac{n_b}{n_{\gamma}} \sim 6 \cdot 10^{-10}$ [BBN, CMB]

[D0, Fermilab]

Baryon Asymmetry of the Universe (BAU) $ ightarrow$ Sakharov conditions		
1. B violation	2. Loss of thermal equilibrium	3. C and CP violation

Electroweak baryogenesis: Requires BSM around the EW scale

Currently probed at the LHC

Gravitational waves

1st-order EWPT gives rise to a primordial stochastic GW background

LHC

[CERN]

Complementarity: Colliders \leftrightarrow GW detectors

Thomas Biekötter

57th Rencontres de Moriond: EW Interactions and Unified Theories

The (next-to) 2HDM

 $N2HDM = 2HDM(\phi_1, \phi_2) + Real Scalar Singlet(\phi_s)$

Scalar tree-level potential

$$\begin{aligned} V_{\text{tree}} &= m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \text{h.c.}) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.}] \\ &\left(+ \frac{1}{2} m_S^2 \Phi_S^2 + \frac{\lambda_6}{8} \Phi_S^4 + \frac{\lambda_7}{2} (\Phi_1^{\dagger} \Phi_1) \Phi_S^2 + \frac{\lambda_8}{2} (\Phi_2^{\dagger} \Phi_2) \Phi_S^2 \right) \end{aligned}$$

Extension of Z_2 ($\Phi_1 \rightarrow \Phi_1$ and $\Phi_2 \rightarrow -\Phi_2$) to Yukawa sector \Rightarrow 4 types of the (N)2HDM Type-II/IV(flipped): u_R coupled to Φ_2 , d_R coupled to Φ_1 , ℓ_R coupled to Φ_1/Φ_2 EW vacuum:

$$\langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ v_1/\sqrt{2} \end{pmatrix}$$
, $\langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$, $\langle \Phi_S \rangle = v_S/\sqrt{2}$ $\in \mathbb{R}$ $\tan \beta := v_2/v_1$

Scalar spectrum: CP-even scalars h_1/h , h_2/H , h_3 , CP-odd scalar A, charged scalars H^{\pm}

Opportunities?*,**

Cascade decays: 1st-order EWPT smoking gun signature $A \rightarrow ZH \rightarrow Zt\bar{t}$

 h_{125} self coupling: Non-resonant pair production and GW

A scalar at 95 GeV?
$$gg \rightarrow h_{95} \rightarrow \gamma\gamma$$
 (CMS)
 $gg \rightarrow h_{95} \rightarrow \tau^+\tau^-$ (CMS)
 $e^+e^- \rightarrow Zh_{95} \rightarrow Zb\bar{b}$ (LEP)

W-boson mass: CDF measurement and weak isopin breaking

*Personal selection

 $^{\ast\ast} {\rm At} \ {\rm LHC}$ and future e^+e^- collider

1st-order EWPT in 2HDM-II

 $[\tan\beta=3,\,\cos(\beta-\alpha)=0,\,m_A=m_{H^\pm}]$

Smoking gun at the (HL-)LHC:

 $pp \to A \to ZH \to \ell^+ \ell^- t \bar{t}$

Vital to exploit the $H \rightarrow t\bar{t}$ channel

No limits yet!

Red: Extrapolations of projections for 41 fb^{-1}

Huge discovery potential (low $\tan \beta$) [TB, S. Heinemeyer, J. No, O. Olea, G. Weiglein, 2208.14466]

1st-order EWPT in 2HDM-II

Pair production and GW at LISA:

Expectations at LISA will be shaped by (HL-)LHC results

For points with potentially detectable GW signals:

 $\kappa_{\lambda} \approx 2 \approx \exp$. HL-LHC limit

[TB, S. Heinemeyer, J. No, O. Olea, G. Weiglein, 2208.14466]

1st-order EWPT in 2HDM-II

[TB, S. Heinemeyer, J. No, O. Olea, G. Weiglein, 2208.14466]

The 95GeV excesses

[CMS: 1811.08459]

Local significance: 3.1σ

Extracted signal strength: $\mu_{\tau\tau} (gg \rightarrow h \rightarrow \tau^+ \tau^-) =$ 1.2 ± 0.5 [CMS: 2208.02717]

Thomas Biekötter

57th Rencontres de Moriond: EW Interactions and Unified Theories

The 95GeV excesses

 0.117 ± 0.057

Local significance: 2.9σ Extracted signal strength: $\mu_{\gamma\gamma} (gg \rightarrow h \rightarrow \gamma\gamma) \approx 0.35$

[CIMI3: 2208.027

Local significance: 3.1σ

Extracted signal strength: $\mu_{\tau\tau} (gg \rightarrow h \rightarrow \tau^+ \tau^-) = 1.2 \pm 0.5$

[CMS: 2208.02717]

[[]Cao, Guo, He, Wu, Zhang: 1612.08522]

This week's news from CMS

Refined analysis (see Susan Gascon-Shotkin's talk), but the excess persists in the updated analysis! $\approx 3\sigma$ local significance (unchanged), but signal strength reduced

This week's news from CMS 132.2 fb⁻¹ (13 TeV) √10³ CMS Preliminary CMS Preliminary 132.2 fb⁻¹ (13 TeV) yy)_{SM} S/(S+B) Weighted Events / GeV 100 $H \rightarrow \gamma \gamma$ $H \rightarrow \gamma \gamma$ Data — Observed m.=95.4 GeV 0.9 S+B fit $\sigma_{\rm H} \times {\rm B}({\rm H} \rightarrow)$ 80 Expected ± 1o ----- B component 0.8 $\mu_{\gamma\gamma}^{\text{1st-year Run 2}} =$ $\pm 1 \sigma$ Expected $\pm 2\sigma$ 60 +2 σ 0.7 0.6 ± 0.2 0.6 40 $\sigma_{\rm H} \times {\rm B(H \rightarrow \ yy)}_{\rm 95\% CL}$ 0.5 20 $\mu_{\gamma\gamma}^{\text{Full Run 2}} \approx$ 0.4 0.35 ± 0.12 0.3 600 component subtracted [TB, S. Heinemeyer, G. Weiglein, 0.2 400 2303.12018] 200 0 1 -200 70 100 105 110 -400 m_u (GeV) 70 80 100 120 m_{vv} (GeV) [CMS: CMS HIG-20-002]

Refined analysis (see Susan Gascon-Shotkin's talk), but the excess persists in the updated analysis! $\approx 3\sigma$ local significance (unchanged), but signal strength reduced

This week's news from CMS

Refined analysis (see Susan Gascon-Shotkin's talk), but the excess persists in the updated analysis! $\approx 3\sigma$ local significance (unchanged), but signal strength reduced

Singlet-extended 2HDM

Singlet-extended 2HDM

M_W in the SM and beyond

$$\Rightarrow M_W^2 = M_Z^2 \left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\alpha \pi}{\sqrt{2}G_\mu M_Z^2}} (1 + \Delta r)} \right) = M_W^2(G_\mu, \alpha, M_Z, \Delta r(m_t, m_b, \dots))$$

Loop corrections: $\Delta r = \Delta \alpha - \frac{c_w^2}{s_w^2} \Delta \rho + \dots$
Custodial symmetry: $\rho = 1$ at classical level \leftarrow holds in (N)2HDM
Quantum corrections from isospin splitting: $\Delta \rho \neq 0$

SM:
$$\Delta \rho \sim (m_t^2 - m_b^2)$$
 (N)2HDM: $\Delta \rho \sim (m_A^2 - m_{H^{\pm}}^2)(m_H^2 - m_{H^{\pm}}^2)$

CDF measurement of M_W

What to make of this?

At the moment it is not justified to disregard neither the CDF measurement nor the previous ones

Precision of M_W measurements dominates EW fits in SM and beyond (second most important: $\sin^2 \theta_{\text{eff}}$)

New PDG average will have significantly inflated uncertainties

CDF measurement of M_W

What to make of this?

At the moment it is not justified to disregard neither the CDF measurement nor the following ones

Precision of M_W measurements dominates EW fits in SM and beyond (second most important: $\sin^2 \theta_{\text{eff}}$)

New PDG average will have significantly inflated uncertainties

Conclusions and prospects

EW baryogenesis smoking gun: Searches are ongoing by CMS (U. Hamburg) and ATLAS (U. Freiburg)

[AFAIK]

Self-coupling of h_{125} : 1st-order EWPT in 2HDM \rightarrow Difficult to probe at HL-LHC $\rightarrow e^+e^-$ collider at $\sqrt{s} = 500$ GeV: $\delta\kappa_\lambda \approx 10\%$ for $\kappa_\lambda \approx 2$

 $\mathbf{M}_{\mathbf{W}}$ in **2HDMs**: Cannot disregard neither the CDF measurement nor the previous ones Problem for pheno analyses: EW fits driven by M_W \rightarrow Conclusions depend on what you choose (average value? ... separate scans?)

Excesses at 95 GeV: Clarification from low-mass di-photon searches with full Run 2 data

Thanks!

Conclusions and prospects

EW baryogenesis smoking gun: Searches are ongoing by CMS (U. Hamburg) and ATLAS (U. Freiburg)

[AFAIK]

Self-coupling of h_{125} : 1st-order EWPT in 2HDM \rightarrow Difficult to probe at HL-LHC $\rightarrow e^+e^-$ collider at $\sqrt{s} = 500$ GeV: $\delta\kappa_\lambda \approx 10\%$ for $\kappa_\lambda \approx 2$

 $\mathbf{M}_{\mathbf{W}}$ in **2HDMs**: Cannot disregard neither the CDF measurement nor the other ones Problem for pheno analyses: EW fits driven by M_W \rightarrow Conclusions depend on what you choose (average value? ... separate scans?)

Excesses at 95 GeV: Clarification from ATLAS low-mass di-photon searches with full Run 2 data

Thanks!

ATLAS di-photon search ($80fb^{-1}$) (IT

[ATLAS-CONF-2018-025]

B-number preservation criterion

Outside the bubbles: Quantum mechanical sphaleron processes create the B-asymmetry **Inside the bubbles:** Sphalerons must be suppressed.

S.Dimopoulos, L. Susskind, Phys.Rev.D 18 (1978) 4500-4509:

events are really important. The point is that the rates for these processes are of the renormalizable type for T>250 GeV. Thus they can allow the system to return to equilibrium and may wash out any excess which developed at super high temperature.

Condition to prevent the washout of the asymmetry: $\frac{v}{T} \gtrsim 1$

 \rightarrow Strong 1st-order phase transition [Kuzmin, Rubakov, Shaposhnikov, Phys.Lett.B 155 (1985) 36]

HH pair production at the LHC

⁵⁷th Rencontres de Moriond: EW Interactions and Unified Theories

HH pair production at the ILC

 $e^+e^- \rightarrow Zhh$

h95: Future prospects

Indirect via h125 couplings

Directly producung h95 at ILC

Singlet-extended 2HDM

