

Di-Higgs searches by ATLAS and CMS

Dennis Roy (Kansas State University) on behalf of the ATLAS and CMS collaborations

24.03.2023

Motivation

Many of the Higgs boson's couplings experimentally validated since it's discovery, but not yet the self-coupling parameter λ

$$V(\phi) \supseteq \frac{1}{2}m_H^2\phi^2 + \lambda v\phi^3 + \frac{1}{4}\lambda\phi^4$$

- Direct measurement of trilinear coupling λ by analysis of events with two Higgs boson
 - Coupling modifiers κ defined as coupling strength w.r.t. SM predictions: $\kappa_{\lambda} = \lambda / \lambda_{SM}$
 - Resonant X \rightarrow HH searches and SMEFT / HEFT interpretations also of interest for BSM physics

Graphs from <u>arXiv:2211.01216</u> and ATL-PHYS-PUB-2021-031

Branching fractions

Which final state(s) should be studied?

- Final states with high branching fractions have larger backgrounds
- → Make combinations of multiple channels!
- Many channels already covered (non-resonant):

BR (HH \rightarrow XXYY) [%]

	ATLAS	CMS
bb bb	<u>arXiv:2301.03212</u>	Phys. Rev. Lett. 129 (2022) 081802 & boosted: <u>arXiv:2205.06667</u>
bb ττ	<u>arXiv:2209.10910</u>	arXiv:2206.09401
bb yy	Phys. Rev. D 106 (2022) 052001	<u>JHEP 03 (2021) 257</u>
bb WW	Phys. Lett. B 801 (2020) 135145	
bb ZZ		arXiv:2206.10657
Multilepton (W/τ)		arXiv:2206.10268

Di-Higgs searches Dennis Roy | Moriond EW 2023 | 24.03.2023

3

All analyses using Full Run2 data

Branching fractions

Which final state(s) should be studied?

- Final states with high branching fractions have larger backgrounds
- → Make combinations of multiple channels!
- The following analyses are presented:
 - ATLAS HH \rightarrow bbbb: arXiv:2301.03212
 - CMS HH \rightarrow WW $\gamma\gamma$:
 - CMS VHH (HH \rightarrow bbbb):
 - ATLAS VHH (HH \rightarrow bbbb): <u>arXiv:2210.05415</u>
 - CMS combination:
 - ATLAS combination:
 - Summary of resonant searches Di-Higgs searches Dennis Roy | Moriond EW 2023 | 24.03.2023

<u>CMS-HIG-22-006</u>

<u>CMS-HIG-21-014</u>

- Nature 607 (2022) 60-68
- arXiv:2211.01216

All analyses using Full Run2 data

arXiv:2301.03212

$\textbf{ATLAS: HH} \rightarrow \textbf{bbbb}$

- Select events with 4 b-tagged jets
- Pair jets together, such that highest- p_T pair has smallest separation ΔR
 - \rightarrow 90% correct pairing efficiency for SM signal
 - Backgrounds are 90% Multijet, 10% Top quarks
- Background fully estimated from data
 - Get data from signal region, but where only 2 b-tagged jets are selected

ATLAS

ggF CR1

√s = 13 TeV. 2018 57.7 fb⁻¹

\$3000 E

£ 2500

1500

1000

- Reweight using data from control region
- Neural network used to obtain weight as function of kinematic variables

arXiv:2301.03212

ATLAS: $HH \rightarrow bbbb$

- 95% CL Observed (expected) results:
- Limit on σ / σ_{SM} : 5.4 (8.1)
- Constraints: $-3.9 < \kappa_{\lambda} < 11.1 (-4.6 < \kappa_{\lambda} < 10.8)$ $-0.03 < \kappa_{2V} < 2.11 (-0.05 < \kappa_{2V} < 2.12)$
- More interpretations in SM EFT and H EFT models
 - Limits on SM EFT Wilson coefficients:

Parameter	Expected Constraint		Observed Constraint		
	Lower	Upper	Lower	Upper	0.0
c_H	-20	11	-22	11	
c_{HG}	-0.056	0.049	-0.067	0.060	-0.0
$c_{H\Box}$	-9.3	13.9	-8.9	14.5	
c_{tH}	-10.0	6.4	-10.7	6.2	-0.1
c_{tG}	-0.97	0.94	-1.12	1.15	1+6
					results
ings searches				More	ckup!
nis Rov Morio	nd EW 2023	24.03.2023		lin ba	<u>Cr.</u>
, , , , , , , , , , , , , , , , , , ,					

CMS: $HH \rightarrow WW_{YY}$

- No significant excesses observed
- 95% CL Observed (exp.) results:
 - Limit on σ / σ_{SM} : 96.8 (52.5)
- Constraint on κ_{λ} : $-25.8 < \kappa_{\lambda} < 24.1 (-14.4 < \kappa_{\lambda} < 18.3)$ **CMS** Preliminary 138 fb⁻¹ (13 TeV) More results $HH \rightarrow WW\gamma\gamma$ Observed Median expected $\kappa_{\lambda} = \kappa_{t} = 1$ in backup! 68% expected $\kappa_{\rm V} = \kappa_{\rm 2V} = 1$ 95% expected Fully-Leptonic Expected: 189 Observed: 278 Fully-Hadronic Expected: 143 Observed: 313 Semi-Leptonic Expected: 64 Observed: 71 Combined Expected: 52 Observed: 97 10 100 95% CL limit on $\sigma(\text{pp} \rightarrow \text{HH})$ / σ_{Theory} 8 **Di-Higgs searches**

Dennis Roy | Moriond EW 2023 | 24.03.2023

CMS: VHH (HH \rightarrow 4b)

CMS Simulation Preliminary

400

1L categorization BDT output

600

800

1000

1200

1400

160

1800

′*т*_{нн} (GeV)

2000

 $\Delta \phi_{\rm HH}$

200

CMS-HIG-22-006

138 fb⁻¹ (13 TeV)

ealection~1(

- Construct HH from 4 jets with highest b-tag scores
- All W/Z decays considered:
 - **1L**: $W \rightarrow \ell v$, **2L**: $Z \rightarrow \ell \ell$
 - **MET**: $Z \rightarrow vv$, **FH**: $W/Z \rightarrow qq$

- All channels: Resolved (4 AK4 jets), **1L** and **MET**: Boosted (2 AK8 jets) —
- Resolved categories: Split events $\kappa_{\lambda}^{0.15}$ into κ_{λ} and κ_{2V} enriched regions 2017 (13 TeV) 2017 (13 TeV) Event fraction 5.0 5.0 CMS CMS Simulation Preliminary Simulation Preliminary - WHH κ₂ =20 - WHH κ₁=20 \rightarrow Done using BDT ____WHH κ_λ=0 - WHH $\kappa_{\lambda}=0$ 0.05 0.1 **Di-Higgs searches** -0.5 0 0.5 2 3

Absolute efficiency

0.4

0.2

Dennis Roy | Moriond EW 2023 | 24.03.2023

CMS: VHH (HH \rightarrow 4b)

- **Observed** signal strength is 145 (+81 / -63) over SM pred.
- 95% CL Observed (exp.) upper limit on σ / σ_{SM} is 288 (122)
- Able to separate κ_{2V} into κ_{2W} and κ_{27} components:
 - $-14.0 < \kappa_{_{2W}} < 15.4$ (-10.2 < κ_{2W} < 11.6) [№]

More results

 $- -17.4 < \kappa_{27} < 18.5$ $(-10.5 < \kappa_{27} < 11.6)$

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Upper limit on o/o

FH channel Expected: 220 Observed: 367

Combined

Expected: 124

Observed: 294

0

ATLAS: VHH (HH \rightarrow 4b)

- 95% CL Observed (exp.) upper limit on σ / $\sigma_{_{\rm SM}}$ is 184 (87)
- Constraints:
 - $-12.3 < \kappa_{_{2W}} < 13.5$ (-8.6 < $\kappa_{_{2W}} < 9.8$)
 - $-9.9 < \kappa_{2Z} < 11.3$ (-7.1 < $\kappa_{2Z} < 8.5$)
 - Also provides 2HDM interpretations:
 - $V \rightarrow VH \rightarrow Vhh \rightarrow V+4b$
 - $A \rightarrow ZH \rightarrow Zhh \rightarrow Z+4b$

Di-Higgs searches Dennis Roy | Moriond EW 2023 | 24.03.2023

CMS combination

"The whole is greater than the sum of its parts" - Aristotle

Combining five CMS analyses:

- bbbb, bbττ, bbγγ, bbZZ and Multilepton (4W / 2W2 τ / 4 τ)
- 95% CL Observed (exp.) limit on More results in backup! $\sigma / \sigma_{\rm SM}$ is 3.4 (2.5)

CMS

 $\kappa_1 = \kappa_{2V} = \kappa_V = 1$

Constrained couplings:

- $-1.25 < \kappa_{\lambda} < 6.85$ $(-0.89 < \kappa_{2} < 7.12)$
- $0.61 < \kappa_{2V} < 1.42$ $(0.68 < \kappa_{2V} < 1.37)$

95% CL limit on α(pp → HH (incl.)) / fb Theory prediction 68% expected 95% expected 10² 95% CL limit on α (pp 10 Excluded Excluded -6 -2 2 10 -4 6 8

Observed

bb ZZ

bb yy

bb ττ

bb bb

Median expected

Nature 607 (2022) 60-68

Dennis Roy | Moriond EW 2023 | 24.03.2023

Di-Higgs searches

Observed limit

Expected limit

 $(\mu_{HH} = 0 \text{ hypothesis})$

Expected limit ±1 σ Expected limit ±20

Obs.

4.2

4.7

5.4

2.4

25

Observed limit (95% CL)

Exp.

5.7

3.9

8.1

2.9

ATLAS combination

"The whole is greater than the sum of its parts" - Aristotle

³₉₉F+∨вF(*HH*) [fb]

104

10³

10²

10¹

ATLAS

-2

0

- Combining three ATLAS analyses:
 - bbbb, bbττ, bbγγ
- 95% CL Observed (exp.) limit on σ / σ_{sm} is 2.4 (2.9)
 - Constrained couplings:
 - $-0.6 < \kappa_{\lambda} < 6.6$
 - $(-2.1 < \kappa_{\lambda} < 7.8)$ $- 0.1 < \kappa_{2V} < 2.0$

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 126 - 139 \text{ fb}^{-1}$

 $\sigma_{aaF+VBF}^{SM}(HH) = 32.7 \text{ fb}$

Di-Higgs searches Dennis Roy | Moriond EW 2023 | 24.03.2023

 $(0.0 < \kappa_{2V} < 2.1)$

M_н (GeV)

Conclusion

- A summary of the most recent Di-Higgs analyses and combinations has been presented
- Limits are being improved every year
 - Combined Run 2 results still not final
- Best 95% CL observed limits by either ATLAS or CMS:

Backup

HL-LHC Prospects

- Both ATLAS and CMS expect a σ/σ_{SM}<1.0 limit after combining different channels
 - ATLAS prediction: 3.4 σ significance if κ_{λ} =1 with expected HL-LHC uncertainties

ATLAS Preliminary

Projection from Run 2 data

Asimov data ($\kappa_{\lambda} = 1$)

 $HH \rightarrow b\bar{b}\gamma\gamma + b\bar{b}\tau^{+}\tau^{-} + b\bar{b}b\bar{b}$

Baseline

Bun 2 syst und

Theoretical unc. halved

Integrated Luminosity [fb-1

Expected limit (95% CL)

Expected limit ±1σ

Expected limit ±2a

Theory prediction

SM prediction

 $\sqrt{s} = 14 \text{ TeV}$

ATLAS Preliminary

Projection from Run 2 data

Asimov data (bkg. only)

10²

 $HH \rightarrow b\bar{b}\gamma\gamma + b\bar{b}\tau^+\tau^- + b\bar{b}b\bar{b}$

 $\sqrt{s} = 14 \text{ TeV}$. 3000 fb⁻¹

4.9 σ with no syst. unc.

Di-Higgs searches Dennis Roy | Moriond EW 2023 | 24.03.2023

$\textbf{ATLAS: HH} \rightarrow \textbf{bbbb}$

Some details about background estimation:

- SR defined by $X_{HH} < 1.6$ $X_{HH} = \sqrt{\left(\frac{m_{H1} 124 \text{ GeV}}{0.1 m_{H1}}\right)^2 + \left(\frac{m_{H2} 117 \text{ GeV}}{0.1 m_{H2}}\right)^2}$
- CR defined by circle R_{CR} $R_{CR} = \sqrt{(m_{H1} 1.05 \cdot 124 \text{ GeV})^2 + (m_{H2} 1.05 \cdot 117 \text{ GeV})^2} = 45 \text{ GeV}$
- CR1 used for background estimation, CR2 used to obtain uncertainties

Plots for weight derivation in VBF region:

Dennis Roy | Moriond EW 2023 | 24.03.2023

arXiv:2301.03212

$\textbf{ATLAS: HH} \rightarrow \textbf{bbbb}$

Dennis Roy | Moriond EW 2023 | 24.03.2023

m_{HH} [GeV]

arXiv:2301.03212

ATLAS: $HH \rightarrow bbbb$

Various limits on sets of one of the SM EFT coefficients c_{HG} , c_{tG} , c_{tH} , $c_{H_{III}}$ over c_{H} :

Limits on H EFT benchmark scenarios:

Benchmark Model	c_{HHH}	c_{ttH}	c_{ggH}	c_{ggHH}	c_{ttHH}
${ m SM}$	1	1	0	0	0
BM1	3.94	0.94	1/2	1/3	-1/3
BM2	6.84	0.61	0.0	-1/3	1/3
BM3	2.21	1.05	1/2	1/2	-1/3
BM4	2.79	0.61	-1/2	1/6	1/3
BM5	3.95	1.17	1/6	-1/2	-1/3
BM6	5.68	0.83	-1/2	1/3	1/3
BM7	-0.10	0.94	1/6	-1/6	1

$\text{CMS: HH} \rightarrow \text{WW}_{YY}$

Signal shapes obtained per final state, category and year

CMS-HIG-21-014

- Left, Fully Hadronic: second highest DNN bin
- Middle, Semi Leptonic: Highest DNN bin
- Right, Full Leptonic (single category)

$\text{CMS: HH} \rightarrow \text{WW}_{YY}$

Limits on κ_{λ} per channel

- Limits on parameter c₂ (ttHH coupling) of Higgs-EFT
 - Obs. (exp.) constraints are
 -2.4 < c₂ < 2.9 (-1.7 < c₂ < 2.2)

$\text{CMS: HH} \rightarrow \text{WW}_{YY}$

Results for various Higgs-EFT benchmark scenarios

ATL-PHYS-PUB-2022-019

ATLAS: HEFT combination

- HEFT interpretations from combined bbττ and bbγγ analyses
 - Obs. (exp.) constraints are $-0.3 < C_{aahh} < 0.4$ (-0.3 < $C_{aghh} < 0.3$),

 $-0.2 < c_{tthh} < 0.6 (-0.2 < c_{tthh} < 0.6)$

Benchmark model	$\begin{vmatrix} c_{hhh} \end{vmatrix}$	c_{tth}	c_{ggh}	c_{gghh}	c_{tthh}
SM	1	1	0	0	0
BM 1	3.94	0.94	1/2	1/3	-1/3
BM 2	6.84	0.61	0.0	-1/3	1/3
BM 3	2.21	1.05	1/2	1/2	-1/3
BM 4	2.79	0.61	-1/2	1/6	1/3
BM 5	3.95	1.17	1/6	-1/2	-1/3
BM 6	5.68	0.83	-1/2	1/3	1/3
BM 7	-0.10	0.94	1/6	-1/6	1

CMS: VHH (HH \rightarrow 4b)

Choosing combination of b-tagged jets

- 2L / 1L / MET:

Pair jets together based on their resulting invariant mass

$$D_{HH} = \frac{|m_{H1} - 1.05 \times m_{H2}|}{\sqrt{1 + 1.05^2}}$$

- **FH**:

Pair jets together based on their ΔR w.r.t. full invariant mass

$$\frac{360 \,\text{GeV}}{m_{4j}} - 0.5 < \text{Leading } S_T \text{ dijet } \Delta R(j,j) < \max\left(1.5, \frac{650 \,\text{GeV}}{m_{4j}} + 0.5\right)$$

$$\frac{235 \,\text{GeV}}{m_{4j}} < \text{Sub-leading } S_T \text{ dijet } \Delta R(j,j) < \max\left(1.5, \frac{650 \,\text{GeV}}{m_{4j}} + 0.7\right)$$

CMS: VHH (HH \rightarrow 4b)

- Separate σ / σ_{sM} upper limits for κ_{λ} =5.5
 - → Higher sensitivity in κ_{λ} -enriched regions in resolved categories (Boosted categories are $\kappa_{2\nu}$ -enriched by construction)

CMS: VHH (HH \rightarrow 4b)

- **Observed** (expected) constraints on κ_{λ} , κ_{2V} , κ_{V} :, and κ_{ZZ} , κ_{WW}
 - $-37.7 < \kappa_{\lambda} < 37.2$ (-30.1 < $\kappa_{\lambda} < 28.9$)

 $- -3.7 < \kappa_v < 3.8$ (-3.1 < \kappa_v < 3.1)

 $- -12.2 < \kappa_{2V} < 13.5$ (-7.2 < \kappa_{2V} < 8.9)

Di-Higgs searches Dennis Roy | Moriond EW 2023 | 24.03.2023

CMS: VHH (HH \rightarrow 4b)

- Limit on κ_{λ} vs. κ_{2V} (top)
 - Limit on separate κ_{2V} contributions: κ_{WW} VS. κ_{ZZ} (bottom)

- Left: Expectation
- Right: Observation

arXiv:2210.05415

ATLAS: VHH (HH \rightarrow 4b)

- Observed (expected) constraints on κ_{λ} and κ_{2V} :
 - $-34.4 < \kappa_{\lambda} < 33.3$ (-24.1 < $\kappa_{\lambda} < 22.9$)
 - $-8.6 < \kappa_{_{2V}} < 10.0$ (-5.7 < $\kappa_{_{2V}} < 7.1$)

arXiv:2210.05415

ATLAS: VHH (HH \rightarrow 4b)

2HDM interpretations: Limits on H / A:

-0.2 -0.1 0.0 0.1 0.2 $\cos(\beta - \alpha)$

31

ATLAS: VHH (HH \rightarrow 4b)

2HDM interpretations over $\cos(\beta - \alpha)$ and m_{A} :

Type-1 2HDM

 $\tan\beta = 1$ $m_{\mu} \approx 260 GeV$ **ATLAS** $\sqrt{s} = 13$ TeV, 139 fb⁻¹ 95% CL exclusion Observed A→ZH→Zhh, 2HDM type-I Expected m_н = 260 GeV. tanβ=1.0 H Width > 1% [] ⁸⁰⁰ [] ⁸⁰⁰ [] ⁸⁰⁰ [] ⁸⁰⁰ 600 500 -0.1 01 02 -0.2 $\cos(\beta - \alpha)$ $m_{H} = 350 GeV$ **ATLAS** $\sqrt{s} = 13$ TeV, 139 fb⁻¹ 95% CL exclusion Observed A→ZH→Zhh, 2HDM type-I Expected $m_H = 350 \text{ GeV}, \tan\beta=1.0$ H Width > 1% ⁸⁰⁰ M⁸⁰⁰ M⁸⁰⁰ 600 500

$\tan\beta = 10$

Lepton-specific 2HDM

arXiv:2210.05415

 $\tan\beta = 10$

 $\tan\beta = 5$

Constraints on Higgs boson selfinteraction and quartic coupling

Constraint on the Higgs boson self-coupling modifier κ_{λ} from single and pair production of Higgs boson(s)

Likelihood scans from combinations

- CMS observed ranges:
 - $-1.24 < \kappa_{\lambda} < 6.49$
 - $0.67 < \kappa_{_{2V}} < 1.38$
- ATLAS observed (exp.) ranges:
 - HH only:
 - $-0.6 < \kappa_{\lambda} < 6.6$ (-2.1 < $\kappa_{\lambda} < 7.8$)
 - $0.1 < \kappa_{2V} < 2.0$ (0.0 < $\kappa_{2V} < 2.1$)
 - H + HH:
 - $-0.4 < \kappa_{\lambda} < 6.3$

arXiv:2211.01216

 \mathbf{K}_{t} - \mathbf{K}_{λ}

- Scans of κ_{t} over κ_{λ} by ATLAS
 - Blue: H
 - Red: HH
 - Black: HH + H
- Top: Observed
- Bottom: Expected

