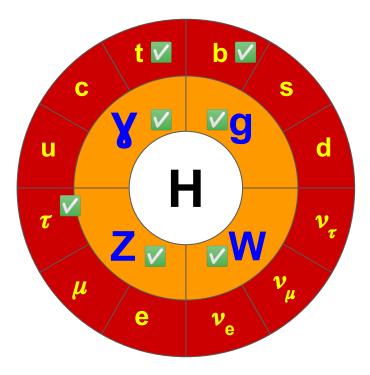
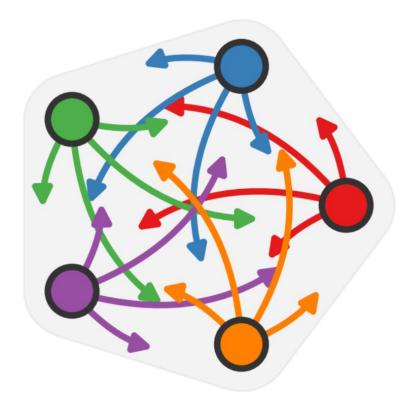
Measurements of Higgs bosons decaying into bb or cc pairs, and how to improve them with GNN-based flavour tagging techniques




Martino Tanasini, on behalf of the **ATLAS Collaboration**

> Rencontres de Moriond EW 2023 Young Scientists Forum

di Genova

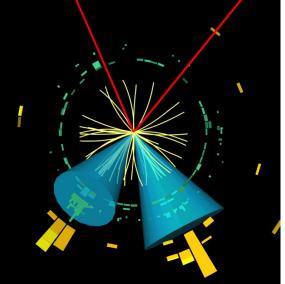
10.1140/epjc/s10052-022-10588-3

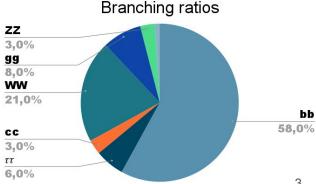
Search for VH(H \rightarrow cc) decays

Motivation:

 \rightarrow Higgs couplings to 3rd generation fermions (ttH, H $\rightarrow \tau\tau$, $H \rightarrow bb$) observed.

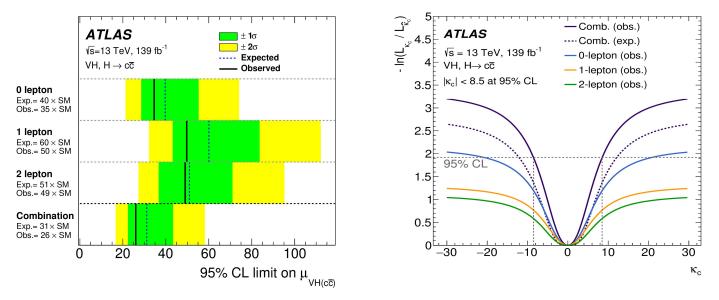
 \rightarrow Probing couplings to lighter 2nd generation fermions could open windows to new physics.


 \rightarrow H \rightarrow cc: one of the **most common** yet unobserved decay modes.

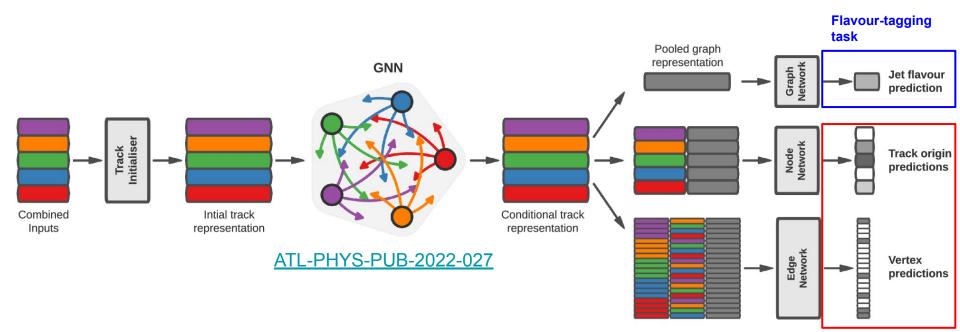

Goal:

 $\rightarrow \mu_{VH,Hcc}$ extracted with a fit on the invariant mass of the c-jet pair.

Focus of today:


 \rightarrow Deep learning based dedicated *c*-tagger with 27% c-jet efficiency, 8.3% b-jet efficiency, and 1.7% light jet efficiency (on a ttbar sample).

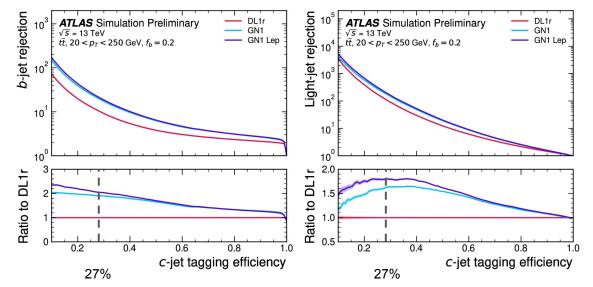
Results


10.1140/epjc/s10052-022-10588-3

 \rightarrow Upper limit is set on VH,H \rightarrow cc process of **26 times the SM prediction**.

 \rightarrow Results interpreted in the kappa framework constraining the coupling modifier $|k_c| < 8.5 @ 95\%$ CL (fixing the other couplings to the SM prediction, assuming no BSM decay modes, considering modifications to decays only).

GN1: flavour-tagging with Graph Neural Networks



Auxiliary Tasks

- \rightarrow GN1: state-of-the-art jet flavour-tagging algorithm in ATLAS.
- \rightarrow Represents jets as graphs of tracks of charged particles.

GN1: Improved *c***-tagging performance**

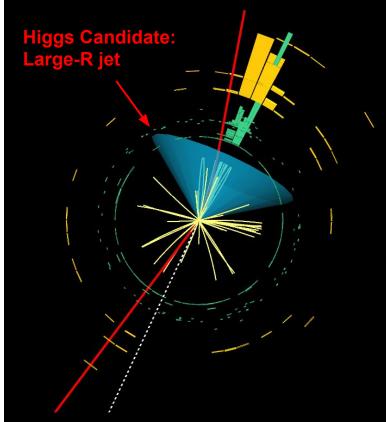
ATL-PHYS-PUB-2022-027

 \rightarrow Factor ~2 improvement for b and light-flavour jet rejection @ a 27% c-jet tagging efficiency.

 \rightarrow It will directly impact the sensitivity of the ATLAS experiment to the VH,H \rightarrow cc process.

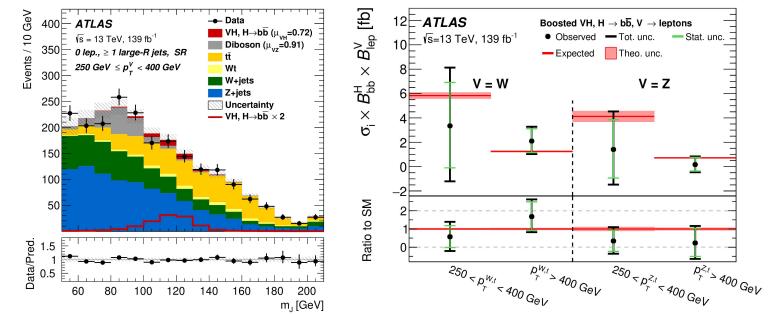
Boosted VH \rightarrow bb

Motivation:


 \rightarrow VH \rightarrow bb process observed by ATLAS and CMS in 2018.

 \rightarrow High-p_T Higgs boson production sensitive

to BSM scaling with $\sim (\frac{p_T^H}{\Lambda})^2$


Goals:

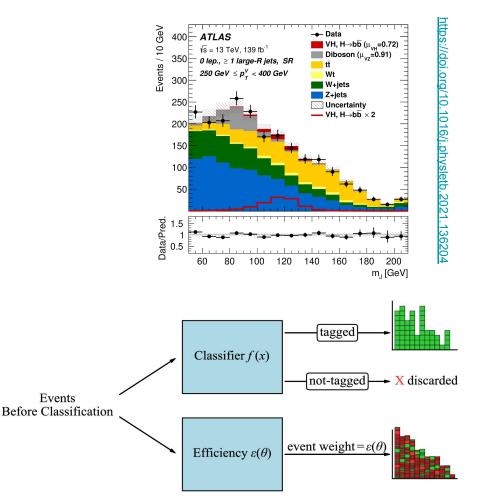
 $\to \mu_{VH,Hbb}$ and cross section measurements in bins of p_{τ} of the vector boson.

Results

https://doi.org/10.1016/j.physletb.2021.136204

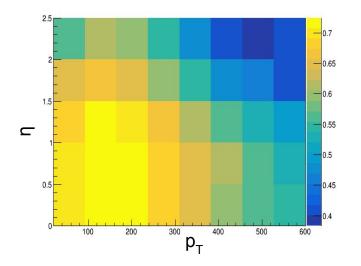
 \rightarrow Fit of the invariant mass m₁ of the Large-R jet:

- $\mu_{VHbb} = 0.72^{+0.39}_{-0.36} = 0.72^{+0.29}_{-0.28} \text{ (stat.)}^{+0.26}_{-0.22} \text{ (syst)}.$
- Cross section measurements in bins of $p_T^{W,Z}$ compatible with the SM (interpreted in an Effective Field Theory to constrain new-physics effects).

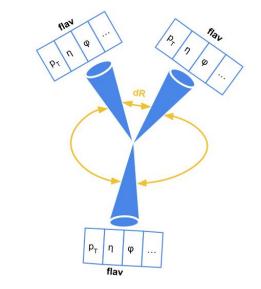

Truth-Tagging Technique

 \rightarrow Main backgrounds simulated with MC generators.

 \rightarrow **Truth-Tagging:** weighting events with their *probability* of passing the flavour-tagging cuts, instead of applying the cuts themselves.


 \rightarrow Important for light-jets (cuts discard most of simulated events).

The Truth-tagging technique strongly relies on the knowledge of the tagging efficiency ϵ for each jet.



Truth-Tagging with GNNs

 $\epsilon_{iet} = \epsilon_{iet}(\vartheta)$, with ϑ set of parameters (e.g. p_{τ} and η) of each jet/event.

VS

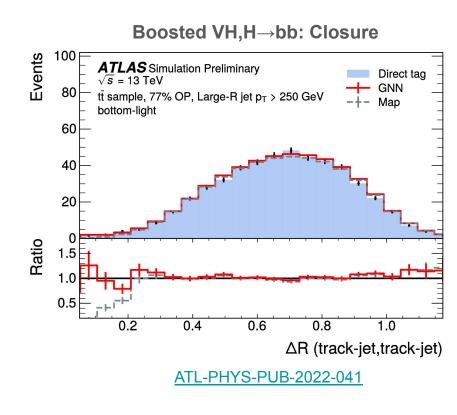
Flavour-tagging Efficiency Maps:

- \rightarrow Simple jet by jet approach.
- \rightarrow Limited in number of parameters.

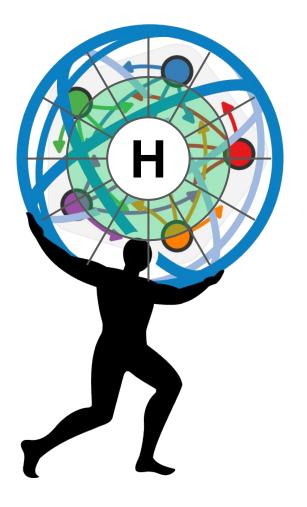
GNNs:

 \rightarrow Events as graphs of fully-connected jets. \rightarrow Allow to scale the problem to higher dimensionalities.

 \rightarrow Can take into account dependence on event-level variables.


Performance

Good parametrization of $\epsilon_{jet} \rightarrow$ Good closure on cut-based **Direct Tagging**, and less **statistical uncertainty.**


 \rightarrow **GNN** better than **Maps** at low dR.

VH, H→cc: impact of uncertainties

Source of uncertainty		$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$
Total		15.3	0.24	0.48
Statistical		10.0	0.11	0.32
Systematic		11.5	0.21	0.36
Flavour tagging	<i>c</i> -jets	1.6	0.05	0.16
	<i>b</i> -jets	1.1	0.01	0.03
	light-jets	0.4	0.01	0.06
	au-jets	0.3	0.01	0.04
Truth-flavour tagging ΔR correction Residual non-close		3.3 1.7	0.03	0.10 0.10

Non-closure of map-based truth-tagging

Backup

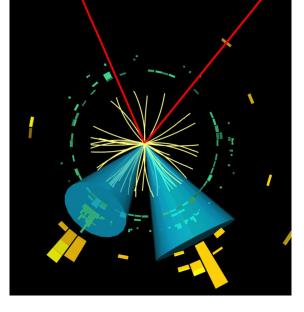
Search for VH(H \rightarrow cc) decays

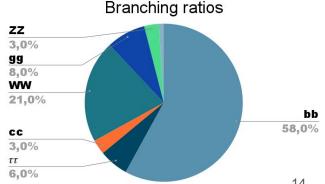
Motivation:

 \rightarrow So far, we observed directly only Higgs couplings to 3rd generation fermions (ttH, $H \rightarrow \tau \tau$, $H \rightarrow bb$).

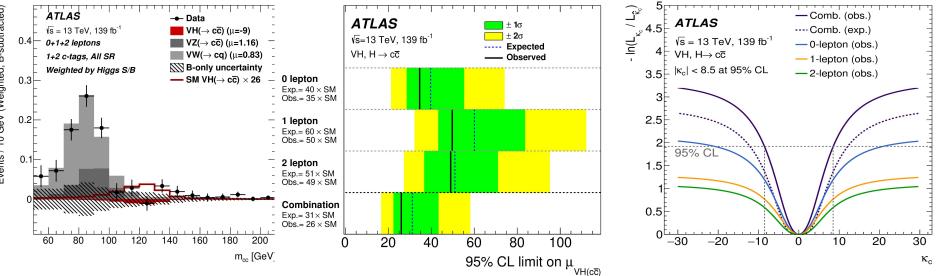
 \rightarrow Probing couplings to lighter 2nd generation fermions could **open** windows on new physics.

 \rightarrow H \rightarrow cc is one of the **most common** unobserved decay modes of the Higgs boson.


Strategy:


 \rightarrow Overwhelming QCD background suppressed using leptonic decays of W and Z bosons.

 \rightarrow Deep learning based dedicated c-tagger with 27% c-jet efficiency, 8.3% b-jet efficiency, and 1.7% light jet efficiency.

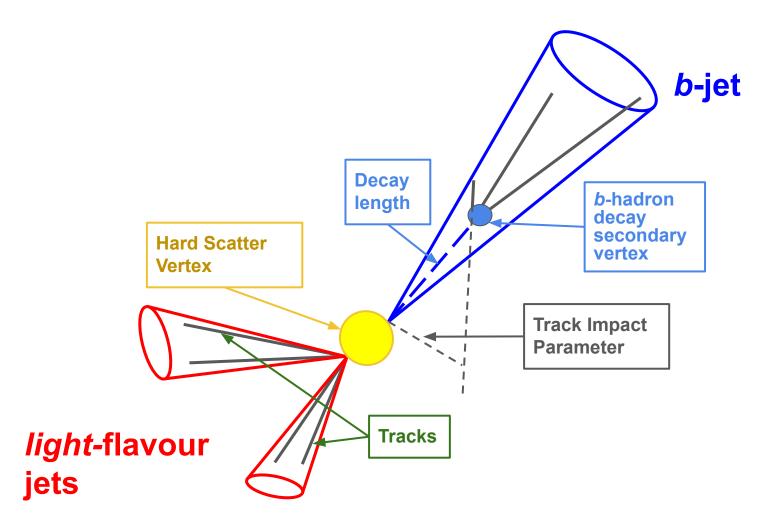

 \rightarrow Dedicated control regions to constrain main backgrounds (ttbar and V+jets).

 \rightarrow Profile likelihood fit on the invariant mass of the *c*-jet pair to extract the three parameters of interest μ_{VHcc} , μ_{VWcc} and μ_{VZcc} . The VZ/VW \rightarrow cc signal strengths are extracted to validate the strategy.

Results

 \rightarrow The Diboson cross check measurement is in agreement with the SM.

- \rightarrow Upper limit is set on VH \rightarrow cc process of **26 times the SM prediction**.
- → Results interpreted in the kappa framework as constraining the coupling modifier |k_c|<8.5 @ 95%CL.

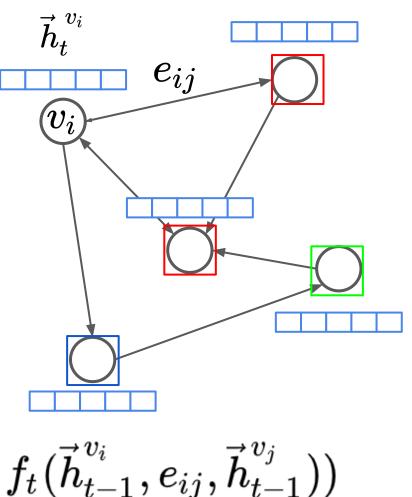

15

Kc - definition and caveats from <u>10.1140/epjc/s10052-022-10588-3</u>

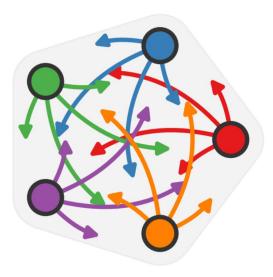
The best-fit value of the $VH(\rightarrow c\bar{c})$ signal strength is interpreted within the kappa framework [37, 38], by reparameterising $\mu_{VH(c\bar{c})}$ in the likelihood function in terms of the Higgs-charm coupling modifier, κ_c , assuming that the coupling modifier only affects the Higgs boson decays. Including effects in both the partial and full width, considering only SM decays and setting all other couplings to their SM predictions, $\mu_{VH(c\bar{c})}$ is parameterised as a function of κ_c

$$\mu_{VH(c\bar{c})}(\kappa_c) = \frac{\kappa_c^2}{1 + B_{H \to c\bar{c}}^{\mathrm{SM}}(\kappa_c^2 - 1)},$$

where $B_{H\to c\bar{c}}^{\rm SM}$ is the $H\to c\bar{c}$ branching fraction predicted in the SM.


Graph Neural Network

A graph G(V,E): a set of vertices (V) and edges (E) with their vector representations


Graph -> Graph

Builds distributed vector representations of the entities (vertices) based on a loss minimization problem. After various updates, each vertex carries information about the overall structure.

$$ec{h}_t^{v_i} = q(ec{h}_{t-1}^{v_i}, \sum_{j; orall j: v_j o v_i})$$

Inside the GN1 black-box

 \rightarrow Initial node representation h_i.

 Each h_i through a W MPL layer, becomes Wh_i.
 Edge scores between node: e(h_i,h_j)=a·Θ(Wh_i ⊕ Wh_j); where a MLP layer, Θ non-linear activation function, ⊕ is concatenation.

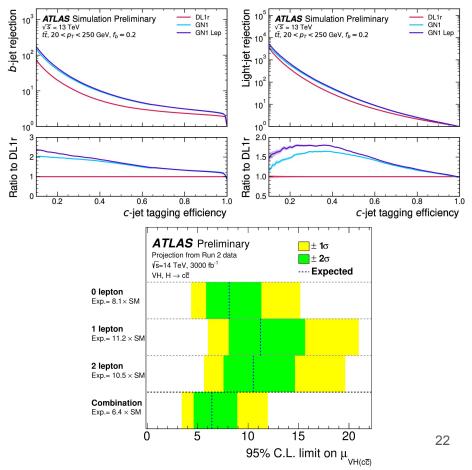
3. Attention weights a_{ij} = softmax[e(h_i , h_j)].

 \rightarrow Updated representation h'_i = $\sigma[\sum a_{ij} \mathbf{W} h_{i}]$.

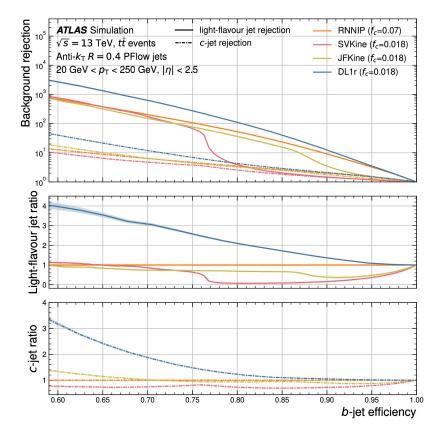
GN1(Lep): input variables

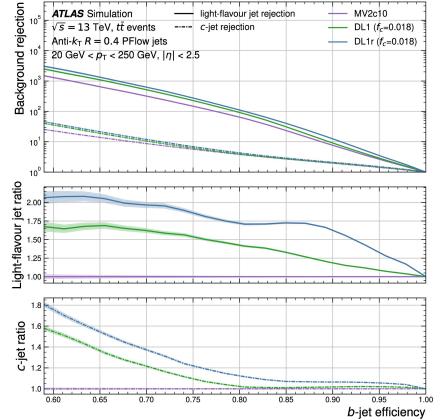
Jet Input	Description
p_{T}	Jet transverse momentum
η	Signed jet pseudorapidity
Track Input	Description
q/p	Track charge divided by momentum (measure of curvature)
$\mathrm{d}\eta$	Pseudorapidity of the track, relative to the jet η
$\mathrm{d}\phi$	Azimuthal angle of the track, relative to the jet ϕ
d_0	Closest distance from the track to the PV in the longitudinal plane
$z_0\sin heta$	Closest distance from the track to the PV in the transverse plane
$\sigma(q/p)$	Uncertainty on q/p
$\sigma(heta)$	Uncertainty on track polar angle θ
$\sigma(\phi)$	Uncertainty on track azimuthal angle ϕ
$s(d_0)$	Lifetime signed transverse IP significance
$s(z_0)$	Lifetime signed longitudinal IP significance
nPixHits	Number of pixel hits
nSCTHits	Number of SCT hits
nIBLHits	Number of IBL hits
$\mathrm{nBLHits}$	Number of B-layer hits
nIBLShared	Number of shared IBL hits
nIBLSplit	Number of split IBL hits
nPixShared	Number of shared pixel hits
nPixSplit	Number of split pixel hits
nSCTShared	Number of shared SCT hits
nPixHoles	Number of pixel holes
nSCTHoles	Number of SCT holes
leptonID	Indicates if track was used in the reconstruction of an electron or muon (only for GN1 Lep)

GN1: track classes

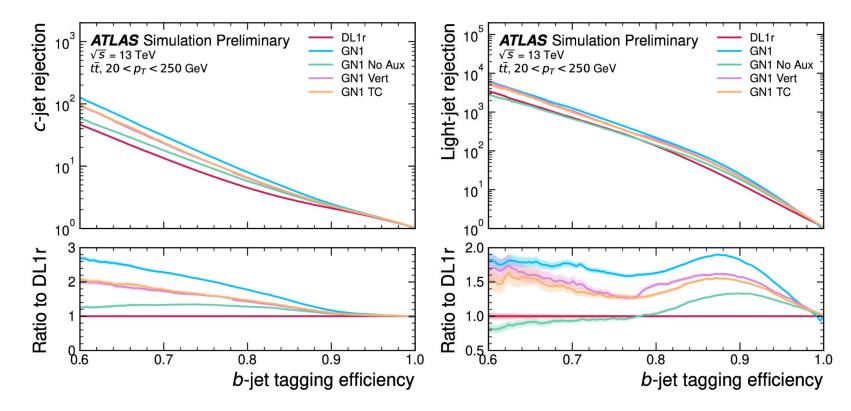

Truth Origin	Description
Pileup	From a pp collision other than the primary interaction
Fake	Created from the hits of multiple particles
Primary	Does not originate from any secondary decay
fromB	From the decay of a <i>b</i> -hadron
fromBC	From a c -hadron decay, which itself is from the decay of a b -hadron
fromC	From the decay of a <i>c</i> -hadron
OtherSecondary	From other secondary interactions and decays

Improved *c*-tagging towards HL-LHC


 \rightarrow GN1 outperforms its predecessors of factors up to 100% (80%) for b (light) flavour jet rejection @ a 27% c-jet tagging efficiency.

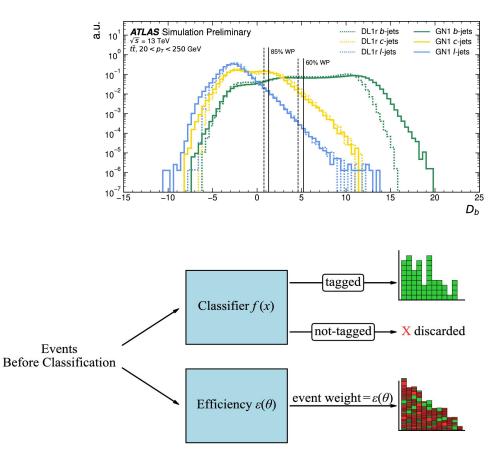

 \rightarrow The impressive improvement will directly impact the sensitivity of the ATLAS experiment to the VH \rightarrow cc process.

→ Extrapolations of the expected sensitivities of the ATLAS detector to the VH→cc process at the HL-LHC, assuming a dataset of 3000 fb⁻¹ of *pp* collisions, the presence of ITk and a *b* (light) flavour jet rejections improved of a factor of 1.5 (3), predict an upper limit on μ_{VHcc} of 6.4 x SM, corresponding to $|k_c| < 8.5$ @ 95%CL.


Low-Level Taggers, DL1, DL1r

23

GN1: Impact of Auxiliary Tasks


Truth-Tagging Technique

Direct Tagging (Pass or Fail): Define as "tagged" only jets passing a given cut on the flavour-tagging discriminant variable. Jets that don't pass the cut are discarded.

Truth Tagging: Weight jets with their *probability* of passing the cut and thus being tagged. No jet is discarded: **the statistical power of the simulated background samples is optimally exploited.**

The event weighting technique strongly relies on the *a priori* knowledge of the tagging efficiency ϵ for each jet.

 ϵ is a function of a set of parameters (e.g. the phase space coordinates) ϑ of each jet: $\epsilon_{jet} = \epsilon_{jet}(\vartheta)$.

Event Weighting for Truth Tagging

An alternative approach is to weight the events according to their probabilities of having n b-jets:

$$egin{aligned} &P_{n_b} = \sum_{(k_1,...,k_{N_{jet}}) \in M} (\prod_{i=1}^{N_{jet}} (1-k_i+(-1)^{1+k_i} ar{\epsilon_i})) \ &M = \left\{ (k_1,\ldots,k_{N_{jet}}) | k_i \in \{0,1\}, \sum_{i=1}^{N_{jet}} k_i = n_b
ight\} \end{aligned}$$

Tagging efficiency of each jet

Set that samples all the possible permutations of jets in the event with the constraint that n_b and only n_b are b-tagged (for the sake of simplicity)

Sum over all permutations of n_b b-tags, distributed over N_{iets}

If jet *i* is tagged (k_i=1), the tagging efficiency ϵ_i enters the added product

Otherwise if $k_i=0$, the mistagging efficiency $1-\epsilon_i$ enters the added product ²⁶

Sampling the permutation

Once the most probable n_b is computed, one of the possible permutation must be chosen. It can be done by tower sampling the cumulative probability of the permutations.

Permutation	j1	j2	j3	j4	Permutation probability	Rel. perm. probability	Cumulative rel. perm. prob
1	1	1			39%	83%	83%
2	1		1		4%	8%	91%
3	1			1	0.2%	0.4%	91.4%
4		1	1		4%	8%	99.4%
5		1		1	0.2%	0.4%	99.8%
6			1	1	0.01%	0.02%	99.82% ₂₇

Event Weighting: Statistical Gain

Sample with N events:

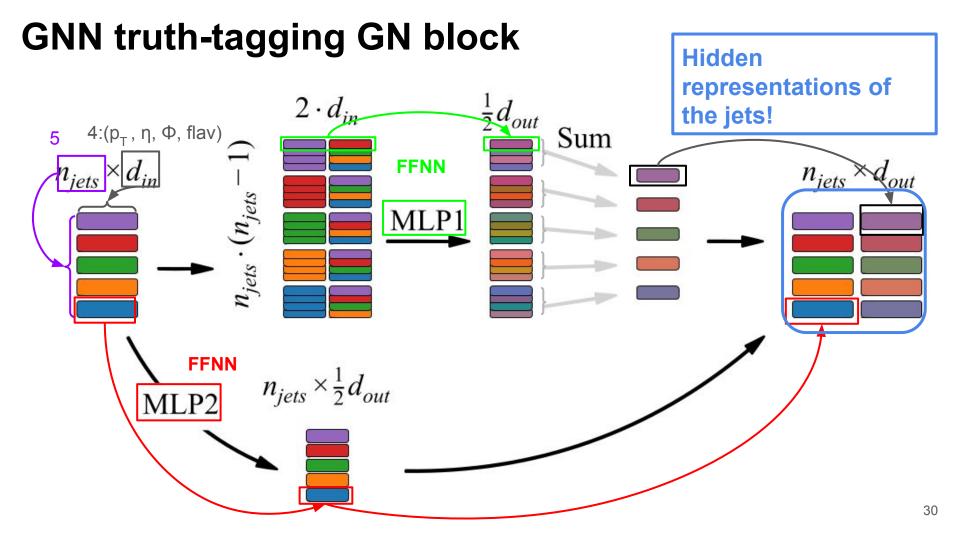
- \rightarrow Apply cuts which select N_p: relative stat uncertainty is sqrt(N_p)/N_p.
- \rightarrow Weight events and include all: sqrt($\sum w_i^2$)/N.

So, statistical gain:

$$\frac{\sqrt{N_p}}{N_p} > \frac{\sqrt{N_p}}{N} > \frac{\sqrt{(\sum_{i \le N} w_i^2)}}{N} \text{ if } \sqrt{N_p} > \sqrt{(\sum_{i \le N} w_i^2)}.$$

GNN Truth-Tagging: Input Variables

Track-jet variables

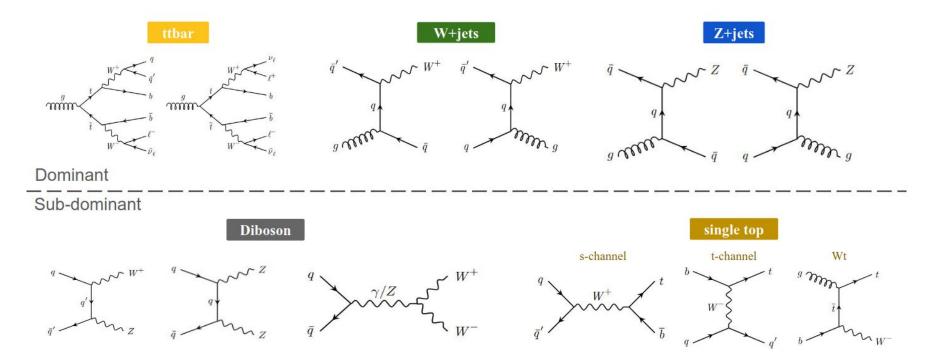

Track-jet $p_{\rm T}$ Track-jet η Track-jet ϕ Track-jet flavour label Mass of the $p_{\rm T}$ -leading *b*- or *c*-hadron in the track-jet $p_{\rm T}$ of the $p_{\rm T}$ -leading *b*- or *c*-hadron in the track-jet η of the $p_{\rm T}$ -leading *b*- or *c*-hadron in the track-jet ϕ of the $p_{\rm T}$ -leading *b*- or *c*-hadron in the track-jet

Event variables

Average number of interactions per event, $\langle \mu \rangle$

Jet-pair variables

Angular separation between two track-jets, ΔR



Full Systematics VH,H→cc

Source of uncertainty		$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$
Total	15.3	0.24	0.48	
Statistical	10.0	0.11	0.32	
Systematic	11.5	0.21	0.36	
Statistical uncertainties				
Signal normalisation		7.8	0.05	0.23
Other normalisations		5.1	0.09	0.22
Theoretical and modellin				
$VH(\rightarrow c\bar{c})$	2.1	< 0.01	0.01	
Z + jets	7.0	0.05	0.17	
Top quark	3.9	0.13	0.09	
W+ jets		3.0	0.05	0.11
Diboson		1.0	0.09	0.12
$VH(\rightarrow b\bar{b})$		0.8	< 0.01	0.01
Multi-jet	1.0	0.03	0.02	
Simulation samples size		4.2	0.09	0.13
Experimental uncertainti	es			
Jets		2.8	0.06	0.13
Leptons		0.5	0.01	0.01
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.2	0.01	0.01
Pile-up and luminosity		0.3	0.01	0.01
	<i>c</i> -jets	1.6	0.05	0.16
Eleveur tegging	<i>b</i> -jets	1.1	0.01	0.03
Flavour tagging	light-jets	0.4	0.01	0.06
	au-jets	0.3	0.01	0.04
Truth flowour togging	ΔR correction	3.3	0.03	0.10
Truth-flavour tagging	Residual non-closure	1.7	0.03	0.10

31

Main Backgrounds for VH, Hbb/Hcc

