

Higgs Boson Fiducial Cross Section Measurements in the Four-lepton Final State

Qianying GUO

(Beihang University and Institute of High Energy Physics, Beijing) On behalf of CMS HZZ4I team

Moriond EW2023, 18-25 Mar 2023, La Thuile (Italy)

Overview

- Fiducial cross section measurement [CMS PAS-HIG-21-009] in $H \rightarrow ZZ^* \rightarrow 4l$ channel with 138fb⁻¹ of Run II samples with latest objects calibration
- Extend the measurement with respect to the previous Run II analysis [EPJC81(2021)488]
- Inclusive fiducial cross section measurement
- Differential fiducial cross section measurements
 - Revised binning and extended set of variables (4 ⇒ 31)
 - Compared with POWHEG, MADGRAPH5, and NNLOPS predictions
 - 1D measurements
 - Production observables
 - Decay observables
 - Matrix-Element discriminants
 - 2D measurements
 - Enhance sensitivity to specific phase space regions

Interpretations

- Higgs boson trilinear self-coupling κ_{λ}
- Higgs boson couplings modifier κ_b, κ_c

2

Overview

- Fiducial cross section measurement [CMS PAS-HIG-21-009] in $H \rightarrow ZZ^* \rightarrow 4l$ channel with 138fb⁻¹ of Run II samples with latest objects calibration
- Extend the measurement with respect to the previous Run II analysis [EPJC81(2021)488]
- Inclusive fiducial cross section measurement
- Differential fiducial cross section measurements

Requirements for the $H \rightarrow ZZ \rightarrow 4\ell$ fiducial ph		
Lepton kinematics and isolation		Its definition matches
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20\mathrm{GeV}$	
Sub-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10\mathrm{GeV}$	closely the experimental
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m GeV}$	acceptance after the
Pseudorapidity of electrons (muons)	$ \eta <$ 2.5 (2.4)	reconstruction-level
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{ m T}$	selection
Event topology	Selection.	
Existence of at least two same-flavor OS lepton pairs, where leptons		
Inv. mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$	
Inv. mass of the Z ₂ candidate	$12 < m_{Z_2} < 120 \text{GeV}$	
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$	
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-}>4{ m GeV}$	
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 160{ m GeV}$	3

Results of Inclusive Fiducial Cross Section

- Systematic uncertainty dominated by
 - Electrons-related nuisances,
 - Especially electron reconstruction efficiency

Results of Inclusive Fiducial Cross Section

- Systematic uncertainty dominated by •
 - Electrons-related nuisances,
 - Especially electron reconstruction efficiency
- Reduction of the systematic component due to the reduction of • the main lepton nuisances

 $pp \rightarrow (H \rightarrow 4I) + X$

10

11 12 13 14

√s (TeV)

Differential Fiducial Cross Section

• Higgs **production** observables (12):

• Higgs **decay** observables (13):

$$\begin{array}{cccc} m_{Z1} & m_{Z2} & \Phi & \Phi_1 & \cos \theta & \cos \theta_1 & \cos \theta^* \\ \mathcal{D}_{0-}^{\text{dec}} & \mathcal{D}_{cp}^{\text{dec}} & \mathcal{D}_{0h+}^{\text{dec}} & \mathcal{D}_{\Lambda 1}^{\text{dec}} & \mathcal{D}_{\Lambda 1}^{\text{Z}\gamma,\text{dec}} & \mathcal{D}_{int}^{\text{dec}} \end{array}$$

• **Double** differential observables (6):

$$\begin{array}{ccc} m_{Z1} \operatorname{vs} m_{Z2} & N_{jets} \operatorname{vs} p_T^H \\ p_T^{j1} \operatorname{vs} p_T^{j2} & \mathcal{T}_C \operatorname{vs} p_T^H \\ p_T^{Hj} \operatorname{vs} p_T^H & |y^H| \operatorname{vs} p_T^H \end{array}$$

1D Differential Cross Section --- Production

- Differential observables of Higgs boson kinematics
 - P_T^H : probes the perturbative QCD modelling of this production mechanism
 - $|y^H|$: sensitive to the gluon fusion production mechanism and PDFs
- Average precision of 35%

1D Differential Cross Section --- Production

•

- Maximum is taken among all jets and events with $T_B \leq 30$ GeV and $T_C \leq 15$ GeV make the 0-jet bin
- The advantage of such observables is that they can be *factorized and resumed* allowing for *precise theory predictions*.

- Higgs **Decay** in 4l final states could be characterized by the following seven parameters:
 - *m*_{Z1}, *m*_{Z2}
 - Φ , Φ_1 , $\cos \theta$, $\cos \theta_1$, $\cos \theta^*$

- Higher order spin-zero 0⁺_h a₂: sensitive to possible BSM contributions from heavy H bosons
- 13 Differential cross sections of decay are also measured in the **same-flavor** and **different flavor** final states.
- Its final state is sensitive to *interference effects*

- Higgs **Decay** in 4l final states could be characterized by the following seven parameters:
 - m_{Z1}, m_{Z2}

0.5

04

0.6

0.7 0.8

10⁻¹

1.5

°0

0.1

Ratio to SM

• Φ , Φ_1 , $\cos \theta$, $\cos \theta_1$, $\cos \theta^*$

10⁻¹

2.5

1.5

0.5

0

0.2 0.3

0.4

0.1

Ratio to SM

0.9

 D_{0h+}^{dec}

0.5 0.6 0.7

08

Constraints on the H boson self-coupling

Probing κ_{λ} via single-Higgs decay

• Differential XS measurement as a function of $p_T^H \Rightarrow$ extract limits on H boson self coupling.

$$\mu_{i}^{f} = \mu_{i} \times \mu^{f} = \frac{\sigma^{NLO}}{\sigma_{SM}^{NLO}} \frac{BR(H \to ZZ)}{BR^{SM}(H \to ZZ)} = \frac{1 + \kappa_{\lambda}C_{1,i} + \delta Z_{H}}{(1 - (\kappa_{\lambda}^{2} - 1)\delta Z_{H})(1 + C_{1,i} + \delta Z_{H})} \times \left[1 + \frac{(\kappa_{\lambda} - 1)(C_{1}^{\Gamma ZZ} - C_{1}^{\Gamma tot})}{1 + (\kappa_{\lambda} - 1)C_{1}^{\Gamma tot}}\right]$$

 Cross sections of different production mechanisms of H boson is parameterized as a function of

$$\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$$

• The corresponding observed (expected) excluded κ_{λ} range at 95% CL

 $-5.5(-7.7) < \kappa_{\lambda} < 15.1(17.9)$

Constraints on Higgs boson couplings modifier

Probing κ_b , κ_c via p_T^H differential cross section

• Simultaneous fit for coupling modifier κ_b , κ_c assuming

- (left) coupling dependence of the branching fractions (*shape+normalization*)
- (right)branching fractions implemented as nuisance parameters with no prior constraint (*shape-only*)
- Observed and expected 95% confidence intervals for the Yukawa coupling modifiers 12

Summary

- Measurements of Higgs boson cross section in four-lepton final state at $\sqrt{s} = 13TeV$ using data sample corresponding to an integrated luminosity of 138 fb⁻¹.
 - The inclusive fiducial cross section measured is $\sigma^{fid} = 2.73^{+0.22}_{-0.22}(stat.)^{+0.15}_{-0.14}(sys.)$ fb.
 - **Differential** cross sections as a function of **31 observables** are measured, including one and **two dimension observables**, which involves the
 - H boson production and **HZZ decay**, jet related observables, and observables sensitive to spin and CP quantum numbers
 - Complete coverage of the whole phase space
 - The measurement of fiducial cross section in bins of the transverse momentum is reinterpreted to set constraints to
 - H boson self-coupling (κ_{λ})
 - Couplings to bottom and charm quarks (κ_b, κ_c)
- All results are consistent, within their uncertainties, with the expectations for the Standard Model H boson.

Thanks for your attention!

Backup

Fiducial/Differential Cross Section of 41

- Definition of the fiducial phase space of $H \rightarrow ZZ \rightarrow 4l$
- Number of events of different final state *f* and different year *y* in the given bin *i* are expressed as a function of 4l invariable mass

		$N_{\text{obs}}^{f,i,y}(m_{4\ell}) = N_{\text{fid}}^{f,i,y}(m_{4\ell}) + N_{\text{nonfid}}^{f,i,y}(m_{4\ell}) + N_{\text{nonres}}^{f,i,y}(m_{4\ell}) + N_{\text{bkg}}^{f,i,y}(m_{4\ell})$
Requirements for the H \rightarrow ZZ \rightarrow 4 ℓ fiducial phaLepton kinematics and isolationLeading lepton p_T Sub-leading lepton p_T HIG-21-009Additional electrons (muons) p_T	ase space $p_{\rm T} > 20 {\rm GeV}$ $p_{\rm T} > 10 {\rm GeV}$ $p_{\rm T} > 7(5) {\rm GeV}$	$= \sum_{j}^{\text{genBin}} \epsilon_{i,j,y}^{f,y} \cdot (1 + f_{\text{nonfid}}^{f,i,y}) \cdot \sigma_{\text{fid}}^{f,j,y} \cdot \mathcal{L} \cdot \mathcal{P}_{\text{res}}^{f,y}(m_{4\ell}) + N_{\text{nonres}}^{f,i,y} \cdot \mathcal{P}_{\text{nonres}}^{f,y}(m_{4\ell}) + N_{\text{bkg}}^{f,i,y} \cdot \mathcal{P}_{\text{bkg}}^{f,i,y}(m_{4\ell}) $ HIG-21-009
Pseudorapidity of electrons (muons) Sum of scalar p_T of all stable particles within $\Delta R < 0.3$ from lepton Event topology Existence of at least two same-flavor OS lepton pairs, where leptons s Inv. mass of the Z ₁ candidate Inv. mass of the Z ₂ candidate Distance between selected four leptons Inv. mass of any opposite sign lepton pair Inv. mass of the selected four leptons	$\begin{split} \eta &< 2.5 \ (2.4) \\ &< 0.35 p_{\rm T} \end{split}$ satisfy criteria above $& 40 < m_{Z_1} < 120 {\rm GeV} \\ & 12 < m_{Z_2} < 120 {\rm GeV} \\ & \Delta R(\ell_i,\ell_j) > 0.02 {\rm for any} i = m_{\ell^+\ell'^-} > 4 {\rm GeV} \\ & 105 < m_{4\ell} < 160 {\rm GeV} \end{split}$	 Fiducial + non-fiducial resonances signal contribution: Shape is described by double-sided Crystal Ball function. Normalization is proportional to the fiducial cross section. Non-resonant signal contribution
		 Arises from WH, ZH ttH where one of the leptons from Higgs is lost or not selected. Modeled by Landau distribution Treated as background

OBJECTS

• Electrons

- Loose electrons
 - $P_T > 7 {
 m GeV}; |\eta| < 2.5$
 - $d_{xy} < 0.5 \ cm; d_z < 1 \ cm; SIP_{3D} < 4$
- BDT cut based on ID+Iso in 6 ($|\eta|$, P_T)bins

• FSR photon

- $P_{T,\gamma} > 2 \text{ GeV}; |\eta^{\gamma}| < 2.4; \text{relPFIso} < 1.8$
- Associated γ to the closest loose lepton
- $\Delta R(\gamma, l) < 0.5; \frac{\Delta R(\gamma, l)}{E_{T, \gamma}^2} < 0.012;$ choose photon with lowest $\frac{\Delta R(\gamma, l)}{E_{T, \gamma}^2}$
- Remove selected FSRs from lepton isolation cone for all loose leptons

• Muons

- Loose muons
 - $P_T > 5 \text{GeV}; |\eta| < 2.4$
 - $d_{xy} < 0.5 \ cm; d_z < 1 \ cm; SIP_{3D} < 4$
- PF muon ID if $P_T < 200$ GeV, PF muon ID or High-pT muon ID if $P_T > 200$ GeV,
- RelPFIso($\Delta R = 0.3$) < 0.35
 - $\mathcal{I}^{\ell} \equiv \left(\sum p_{\mathrm{T}}^{\mathrm{charged}} + \max\left[0, \sum p_{\mathrm{T}}^{\mathrm{neutral}} + \sum p_{\mathrm{T}}^{\gamma} p_{\mathrm{T}}^{\mathrm{PU}}(\ell)\right]\right) / p_{\mathrm{T}}^{\ell}$

$$\Delta R(i,j) = \sqrt{(\eta^i - \eta^j)^2 + (\phi^i - \phi^j)^2}$$

• Jets

- AK4 PFCHs jets
- $P_T > 30~{
 m GeV}; |\eta| < 4.7;$ Tight PF jet ID
- Cleaned $\Delta R(jet, l/\gamma) > 0.4$
- Cut-based jet ID (tight WP); Jet pileup ID (tight WP)

Event reconstruction and selections

- Loose e (μ) passing selections $p_T > 7(5)$ GeV; $|\eta| < 2.5(2.4)$; vertex cut $d_{xy} < 0.5 \ cm$; $d_z < 1 \ cm$; $SIP_{3D} < 3$; Tight Selections based on BDT method for e (PF μ RelPFIso< 0.35);
- Z candidate
 - Any OS-SF pair that satisfy $12 < m_{ll(\gamma)} < 120$ GeV
- Build all possible ZZ candidates defined as pairs of non-overlapping Z candidate; define Z₁ candidate with $m_{ll(\gamma)}$ closest to the POG m(Z) mass
 - $m_{Z1} > 40 \text{ GeV}; p_T(l1) > 20 \text{ GeV}; p_T(l2) > 10 \text{ GeV}$
 - $\Delta R > 0.02$ between each of the four leptons
 - $m_{ll} > 4$ GeV for OS pairs (regardless of flavour)
 - Reject 4 μ and 4e candidates where the alternative pair $Z_a Z_b$ satisfies $|m_{Z_a} m_Z| < |m_{Z_1}|$
 - $-m_Z$ | and $m_{Z_h} < 12$ GeV
 - $m_{4l} > 70~{
 m GeV}$
- If more than one ZZ candidate is left, take the one with Z_1 mass closest to m_Z and the Z_2 from the candidates whose lepton give higher p_T sum

 Z_2

Z1

Zb

Za

Background estimation

- Irreducible background
 - $q\overline{q} \rightarrow ZZ$
 - $gg \rightarrow ZZ$
 - Estimated using simulation
- Reducible background
 - Misidentified leptons
 - Secondary produced leptons
 - Two independent methods used to estimated Z+X background: OS and SS
 - Fake rates calculated in Z+l control region
 - Z+X yields estimated in orthogonal regions of Z+II control region
 - Final estimate combination of 2 methods
 - Templates are built from the control regions in data

Background normalization

---- only applied in inclusive cross section measurement due to statistics

- In previous HIG-19-001, ZZ background from MC predictions
 - Both shape and normalization
 - Mass4l [105, 140]
- Several studies carried out to assess the measurement's precision
 - Its ZZ normalization from data sidebands
 - Improvement of estimation as well as reduction in uncertainties
 - because luminosity and other theoretical uncertainties no longer contribute to the normalization.

ZZ floating approach:

--- inclusive normalization for qqZZ and ggZZ process profiled in the fit

Systematics Uncertainties

- Experimental uncertainties
 - Integrated luminosity
 - Lepton identification and reconstruction efficiency
 - Reducible background
 - Lepton scale and resolution
 - Jet energy scale
- Theoretical uncertainties
 - QCD uncertainty
 - Uncertainty on the Choice of PDF set

- Uncertainty of 2% on H \rightarrow 4l **branching ratio**

HIG-21-009	Common experimental uncertainties				
	2016	2017	2018		
Luminosity uncorrelated	1 %	2 %	1.5 %		
Luminosity corr 16 17 18	0.6 %	0.9 %	2 %		
Luminosity corr 17 18	-	0.6 %	0.2 %		
Lepton id/reco efficiencies	0.7–10 %	0.6 – 8.5 %	0.6 – 9.5 %		
Background related uncertainties					
Reducible background (Z+X) 25 – 43 %	23 – 36 %	24 –36 %		
Signal related uncertainties					
Lepton energy scale	0.01%(µ) - 0.06%(e)	0.01%(µ) - 0.06%(e)	0.01%(µ) - 0.06%(e)		
Lepton energy resolution	3%(µ) - 10%(e)	3%(µ) - 10%(e)	3%(µ) - 10%(e)		

The uncertainties of lepton reconstruction and selection range for

- 4μ channel 0.6 1.9%
- 4e channel 4.3 10.9%

A reduction in the 4e uncertainties thanks to a dedicated <u>RMS method</u>.

Distribution of p_T^H and $|y_H|$

 Points with error bars represent the data, while the solid histograms represent the MC simulation.

Fiducial/Differential Cross Section

- An alternative approach to study the properties of the Higgs boson
- Cross section of bin i is defined as:
- Fiducial cross section = cross section in fiducial volume (cuts applied to generated events) $\sigma_{fid,i} * B = \frac{N_{reco,i}}{C_i * L}$

 $\sigma_i = \frac{N_{reco,i}}{C_i * A_i * L * B}$

g(q)

- Higgs boson kinematics:
 - P_T^H : probes the perturbative QCD modelling of this production mechanism
 - $|\eta^{H}|$: sensitive to the gluon fusion production mechanism and PDFs
- Jet activity: N_{jets} ; P_T and η of leading (sub) jet; T_B , T_C ...
 - sensitive to the theoretical modelling and relative Higgs production.
- Spin and CP quantum numbers: Angular observables, such as $\Phi, \Phi_1, \cos \theta_1, \cos \theta_2$, $|\cos \theta^*|$:
 - sensitive to the spin and charge conjugation and parity properties of the Higgs
- Higgs boson production mechanisms
 - specific fiducial regions may be constructed

HIG-21-009

Φ

Results of Measurements

Inclusive fiducial cross section

Irreducible background normalization taken from MC simulation and ZZ floating in the fit

Interpretations

 $k_{\lambda}, k_{b}, k_{c}$

Differential observables Higgs Production

 $\begin{array}{c|c} p_T^H & |y_H| \\ N_{jets} & p_T^{j1} & p_T^{j2} & m_{jj} & \left| \Delta \eta_{jj} \right| \end{array}$ $p_T^{Hj} m_{Hj} p_T^{Hjj} \mathcal{T}_B \mathcal{T}_C$

Differential observables Higgs decay

 m_{Z1} m_{Z2} $\Phi \ \Phi_1 \ \cos \theta \ \cos \theta_1 \ \cos \theta^*$ $\mathcal{D}_{0-}^{\text{dec}} \mathcal{D}_{cn}^{\text{dec}} \mathcal{D}_{0h+}^{\text{dec}} \mathcal{D}_{\Lambda 1}^{\text{dec}} \mathcal{D}_{\Lambda 1}^{\text{Z}\gamma,\text{dec}} \mathcal{D}_{int}^{\text{dec}}$

Double differential observables

 $\mathcal{T}_C \operatorname{vs} p_T^H = |y^H| \operatorname{vs} p_T^H$ p_T^{Hj} vs p_T^H p_T^{j1} vs p_T^{j2}

 $m_{Z1} \operatorname{vs} m_{Z2} \quad N_{jets} \operatorname{vs} p_T^H$

Results of measurements

Inclusive fiducial cross section

Irreducible background normalization taken from MC simulation and ZZ floating in the fit

Interpretations

 k_{λ}, k_b, k_c

Differential observables Higgs Production $p_T^H |y_H|$ $N_{jets} p_T^{j1} p_T^{j2} m_{jj} |\Delta \eta_{jj}|$ $p_T^{Hj} m_{Hj} p_T^{Hjj} \mathcal{T}_B \mathcal{T}_C$

Differential observables Higgs decay

 $m_{Z1} m_{Z2}$ $\Phi \Phi_1 \cos \theta \cos \theta_1 \cos \theta^*$ $\mathcal{D}_{0-}^{\text{dec}} \mathcal{D}_{cp}^{\text{dec}} \mathcal{D}_{0h+}^{\text{dec}} \mathcal{D}_{\Lambda 1}^{\text{Z}\gamma,\text{dec}} \mathcal{D}_{int}^{\text{dec}}$

Double differential observables

 $m_{Z1} ext{ vs } m_Z^{T}$ $\mathcal{T}_C ext{ vs } p_T^H$ $p_T^{Hj} ext{ vs } p_T^H$ $egin{aligned} &N_{jets} ext{ vs } p_T^H \ &| y^H | ext{ vs } p_T^H \ &p_T^{j1} ext{ vs } p_T^{j2} \end{aligned}$

Results of Inclusive Fiducial Cross Section

• The integrated fiducial cross section for $H \rightarrow ZZ \rightarrow 4l$ process is measured to be

 $\sigma^{\text{fid}} = 2.73^{+0.22}_{-0.22} \text{ (stat)}^{+0.15}_{-0.14} \text{ (syst) fb}$ $= 2.73^{+0.22}_{-0.22} \text{ (stat)}^{+0.12}_{-0.12} \text{ (electrons)}^{+0.06}_{-0.05} \text{ (lumi)}^{+0.04}_{-0.04} \text{ (bkg)}^{+0.03}_{-0.02} \text{ (muons) fb}$

in good agreement with the SM expectation.

- The systematic uncertainty dominated by
 - Electrons-related nuisances,
 - Especially electron reconstruction efficiency

HIG-21-009

Signal process	$\mathcal{A}_{ ext{fid}}$	ϵ	$f_{\sf nonfid}$	$(1+f_{\text{nonfid}})\epsilon$
ggH (powheg)	0.408 ± 0.001	0.619 ± 0.001	0.053 ± 0.001	0.652 ± 0.001
VBF	0.448 ± 0.001	0.632 ± 0.002	0.043 ± 0.001	0.659 ± 0.002
WH	0.332 ± 0.001	0.616 ± 0.002	0.077 ± 0.001	0.664 ± 0.002
ZH	0.344 ± 0.002	0.626 ± 0.003	0.083 ± 0.002	0.678 ± 0.003
tīH	0.320 ± 0.002	0.614 ± 0.003	0.179 ± 0.003	0.725 ± 0.005

CMS *Preliminary* 138 fb⁻¹ (13 TeV) 2d In L Exp. $\sigma_{incl} = 2.86^{+0.23}_{-0.22} \text{ (stat)}^{+0.18}_{-0.14} \text{ (syst)}$ **Obs.** $\sigma_{incl} = 2.73^{+0.22}_{-0.22} (stat)^{+0.15}_{-0.14} (syst)$ HIG-21-009 95% CL 68% CL 2.2 2.4 2.6 3.2 3.4 3.6 2.8 3 σ_{incl}

Results of Inclusive Fiducial Cross Section

- Remove the impact of nuisances on ZZ normalization
- Being sensitive to BSM effects in the background

Results of measurements

Inclusive fiducial cross section

Irreducible background normalization taken from MC simulation and ZZ floating in the fit

Interpretations

 k_{λ}, k_b, k_c

Differential observables Higgs Production $p_{\pi}^{H} |v_{\mu}|$

 $\begin{array}{c|c} p_T^H & |y_H| \\ N_{jets} & p_T^{j1} & p_T^{j2} & m_{jj} & |\Delta \eta_{jj}| \\ p_T^{Hj} & m_{Hj} & p_T^{Hjj} & \mathcal{T}_B & \mathcal{T}_C \end{array}$

Differential observables Higgs decay

 $m_{Z1} m_{Z2}$ $\Phi \Phi_1 \cos \theta \cos \theta_1 \cos \theta^*$ $\mathcal{D}_{0-}^{\text{dec}} \mathcal{D}_{cp}^{\text{dec}} \mathcal{D}_{0h+}^{\text{dec}} \mathcal{D}_{\Lambda 1}^{\text{Z}\gamma,\text{dec}} \mathcal{D}_{int}^{\text{dec}}$

Double differential observables

 $m_{Z1} ext{ vs } m_{Z1} \ T_C ext{ vs } p_T^H \ p_T^{Hj} ext{ vs } p_T^H$

 $N_{jets} ext{ vs } p_T^H \ |y^H| ext{ vs } p_T^H \ p_T^{j1} ext{ vs } p_T^{j2}$

1D Differential Cross Section --- Production

- Differential observables of Jet activity
 - Number of the associated jets
 - Transverse momentum of leading jet and subleading jet
 - sensitive to the theoretical modelling and relative Higgs production.

1D Differential Cross Section --- Production

- Differential observables of Jet activity
 - Mass and distance of the di-jets
 - Mass and p_T of H + j systems
 - Mass of H + di-jets systems
 - To exploit the dedicated phase region

Results of measurements

Inclusive fiducial cross section

Irreducible background normalization taken from MC simulation and ZZ floating in the fit

Interpretations

 k_{λ}, k_b, k_c

Differential observables Higgs Production $p_T^H |y_H|$ $N_{jets} p_T^{j1} p_T^{j2} m_{jj} |\Delta \eta_{jj}|$ $p_T^{Hj} m_{Hj} p_T^{Hjj} T_B T_C$

Differential observables Higgs decay

 $m_{Z1} m_{Z2} \ \Phi \ \Phi_1 \ \cos \theta \ \cos \theta_1 \ \cos \theta^* \ \mathcal{D}_{0-}^{\mathrm{dec}} \ \mathcal{D}_{cp}^{\mathrm{dec}} \ \mathcal{D}_{0h+}^{\mathrm{dec}} \ \mathcal{D}_{\Lambda 1}^{\mathrm{dec}} \ \mathcal{D}_{\Lambda 1}^{\mathrm{dec}} \ \mathcal{D}_{int}^{\mathrm{dec}}$

Double differential observables

 $m_{Z1} ext{ vs } m_Z \ \mathcal{T}_C ext{ vs } p_T^H \ p_T^{Hj} ext{ vs } p_T^H$

 $egin{aligned} & \mathbb{V}_{jets} \ \mathrm{vs} \ p_T^H \ \mathrm{vs} \ p_T^H \ \mathrm{vs} \ p_T^H \ p_T^{j1} \ \mathrm{vs} \ p_T^{j2} \end{aligned}$

Results of 1D Differential Cross Section

- Differential observables of Higgs decay •
 - Mass of Z1 •
 - Mass of Z2 lacksquare
- Since the final state is sensitive to *interference effects*, differential cross sections of decay are also measured • in the same-flavor and different flavor final states. 32

138 fb⁻¹ (13 TeV)

HIG-21-009

60

 m_{72} (GeV)

50

40

(amcatnloFXFX + JHUGen + Pythia) + XH

p-value(POWHEG): 0.25

Results of 1D Differential Cross Section

- Differential observables of Higgs decay
 - Mass of Z1
 - Mass of Z2
- Since the final state is sensitive to *interference effects*, differential cross sections of decay are also measured in the **same-flavor** and **different flavor** final states.

• Differential cross sections as a function of the invariant mass of the sub-leading di-lepton pair $m_{Z2}^{4e+4\mu}$ in the same-flavor (left) and different flavor $m_{Z2}^{2e2\mu}$ (right).

Decay observables

- Differential observables of **Higgs decay**
 - Angular observables: $\Phi \quad \Phi_1 \quad \cos \theta \quad \cos \theta_1 \ \cos \theta^*$
 - Describe angle between the plane of Higgs, Z_1 , Z_2 decay and the beam direction
 - Sensitive to the spin and charge conjugation and parity properties of the Higgs

- Differential observables of Higgs decay
 - $\Phi_1 \Phi_1 \cos \theta^*$
 - Sensitive to the spin and charge conjugation and parity properties of the Higgs

•

• Differential cross sections as a function of $cos\theta_{4e+4\mu}^*$ in the same-flavor (left) and different flavor $cos\theta_{2e2\mu}^*$ (right).

• Differential cross sections as a function of $cos\theta_1^{4e+4\mu}$ in the same-flavor (left) and different flavor $cos\theta_1^{2e2\mu}$ (right).

• Differential cross sections as a function of $cos\theta_2^{4e+4\mu}$ in the same-flavor (left) and different flavor $cos\theta_2^{2e2\mu}$ (right).

• Differential cross sections as a function of angle $\Phi_{4e+4\mu}$ in the same-flavor (left) and different flavor $\Phi_{2e2\mu}$ (right).

• Differential cross sections as a function of angle $\Phi_1^{4e+4\mu}$ in the same-flavor (left) and different flavor $\Phi_1^{2e2\mu}$ (right).

- Higgs **Decay** in 4l final states could be characterized by the following seven parameters:
 - m_{Z1} , m_{Z2}
 - Φ , Φ_1 , $\cos \theta$, $\cos \theta_1$, $\cos \theta^*$
 - $\bigstar \mathcal{D}_{0-}^{\text{dec}} \mathcal{D}_{0h+}^{\text{dec}} \mathcal{D}_{\Lambda 1}^{\text{dec}} \mathcal{D}_{\Lambda 1}^{\text{Z}\gamma,\text{dec}} | \mathcal{D}_{cp}^{\text{dec}} \mathcal{D}_{int}^{\text{dec}}$

- Higgs **Decay** in 4l final states could be characterized by the following seven parameters:
 - m_{Z1}, m_{Z2}
 - Φ , Φ_1 , $\cos \theta$, $\cos \theta_1$, $\cos \theta^*$
 - $\bigstar \mathcal{D}_{0-}^{\text{dec}} \mathcal{D}_{0h+}^{\text{dec}} \mathcal{D}_{\Lambda 1}^{\text{dec}} \mathcal{D}_{\Lambda 1}^{\text{Z}\gamma,\text{dec}} | \mathcal{D}_{cp}^{\text{dec}} \mathcal{D}_{int}^{\text{dec}}$
 - HVV scattering amplitude of a spin-0 boson H and two spin-one gauge bosons

$$A(HV_{1}V_{2}) = \frac{1}{v} \left[a_{1}^{VV} + \frac{k_{1}^{VV} q_{\frac{VV}{V1} + k_{2}^{VV} q_{\frac{V2}{V2}}}{(\Lambda_{1}^{VV})^{2}} + \frac{k_{3}^{VV} (q_{V1} + q_{V2})^{2}}{(\Lambda_{Q}^{VV})^{2}} \right] m_{V1}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*} + a_{2}^{VV} \epsilon_{V1}^{*} \epsilon_{V2}^{*} + a_{3}^{VV} f_{\mu\nu}^{*(1)} \bar{f}^{*(2),\mu\nu} + a_{3}^{VV} f_{\mu\nu}^{*(1)} \bar{f}^{*(2),\mu\nu$$

• Observables sensitive to HVV anomalous couplings using kinematics of leptons in decay

$$\mathcal{D}_{alt} = \frac{\mathcal{P}_{sig}(\vec{\Omega})}{\mathcal{P}_{sig}(\vec{\Omega}) + \mathcal{P}_{alt}(\vec{\Omega})} \quad \mathcal{D}_{int} = \frac{\mathcal{P}_{int}(\vec{\Omega})}{2 \cdot \sqrt{\mathcal{P}_{sig}(\vec{\Omega}) \cdot \mathcal{P}_{alt}(\vec{\Omega})}},$$

	\mathcal{D}_{alt}		\mathcal{D}_{int}			
		Coupling				
	a ₃	a ₂	κ_1	$\kappa_2^{Z,\gamma}$	a ₃	a ₂
Discriminant	\mathcal{D}_{0-}	$\mathcal{D}_{0h^{+}}$	$\mathcal{D}_{\Lambda 1}$	$\mathcal{D}^{{ m Z},\gamma}_{\Lambda 1}$	$\mathcal{D}_{ ext{CP}}$	\mathcal{D}_{int}

g(q)

- Differential cross sections as a function of
 - Matrix-element discriminants
 - Built based on the two hypotheses for which the discriminant is designed for
 - Standard Model prediction ggH (POWHEG) + XH
 - Anomalous Coupling prediction ggH AC samples normalized to the ggH+XH SM cross section
 - Probe HZZ vertex and sensitive to BSM physics

- Differential cross sections as a function of
 - Matrix-element discriminants
 - Built based on the two hypotheses for which the discriminant is designed for
 - Standard Model prediction ggH (POWHEG) + XH
 - Anomalous Coupling prediction ggH AC samples normalized to the ggH+XH SM cross section
 - Probe HZZ vertex and sensitive to BSM physics

• Differential cross sections as a function of the matrix element kinematic discriminant $\mathcal{D}_{0-}^{dec}(4e + 4\mu)$ in the same-flavor (left) and different flavor $\mathcal{D}_{0-}^{dec}(2e2\mu)$ (right).

• Differential cross sections as a function of the matrix element kinematic discriminant $\mathcal{D}_{0h+}^{dec}(4e + 4\mu)$ in the same-flavor (left) and different flavor $\mathcal{D}_{0h+}^{dec}(2e2\mu)$ (right).

• Differential cross sections as a function of the matrix element kinematic discriminant $\mathcal{D}_{CP}^{dec}(4e + 4\mu)$ in the same-flavor (left) and different flavor $\mathcal{D}_{CP}^{dec}(2e2\mu)$ (right).

• Differential cross sections as a function of the matrix element kinematic discriminant $\mathcal{D}_{int}^{dec}(4e + 4\mu)$ in the same-flavor (left) and different flavor $\mathcal{D}_{int}^{dec}(2e2\mu)$ (right).

• Differential cross sections as a function of the matrix element kinematic discriminant $\mathcal{D}_{\Lambda 1}^{dec}(4e + 4\mu)$ in the same-flavor (left) and different flavor $\mathcal{D}_{\Lambda 1}^{dec}(2e2\mu)$ (right).

• Differential cross sections as a function of the matrix element kinematic discriminant $\mathcal{D}_{\Lambda 1 Z_{\gamma}}^{dec}(4e + 4\mu)$ in the same-flavor (left) and different flavor $\mathcal{D}_{\Lambda 1 Z_{\gamma}}^{dec}(2e2\mu)$ (right).

Results of measurements

Inclusive fiducial cross section

Irreducible background normalization taken from MC simulation and ZZ floating in the fit

Interpretations

Differential observables Higgs Production $p_T^H |y_H|$ $N_{jets} p_T^{j1} p_T^{j2} m_{jj} |\Delta \eta_{jj}|$

Differential observables Higgs decay

 m_{Z1} m_{Z2} $\mathcal{D}_{0-}^{\mathrm{dec}} \mathcal{D}_{cp}^{\mathrm{dec}} \mathcal{D}_{0h+}^{\mathrm{dec}} \mathcal{D}_{\Lambda 1}^{\mathrm{dec}} \mathcal{D}_{\Lambda 1}^{\mathrm{Z}\gamma,\mathrm{dec}} \mathcal{D}_{int}^{\mathrm{dec}}$

Double differential observables

 $m_{Z1} \operatorname{vs} m_{Z2} \quad N_{jets} \operatorname{vs} p_T^H$ $\begin{array}{ccc} \mathcal{T}_C \operatorname{vs} p_T^H & |y^H| \operatorname{vs} p_T^H \\ p_T^{Hj} \operatorname{vs} p_T^H & p_T^{j1} \operatorname{vs} p_T^{j2} \end{array}$

- A set of double differential measurements is also performed
 - Enhance sensitivity to specific phase space regions such as H+jets
 - Probe the possible BSM effects
 - Achieve a further characterization of HZZ4I
- Define mutually exclusive phase space regions for obs1 vs obs2.
- The bin boundaries for these measurements are defined with the same approach employed for one

dimensional case. (The detailed bin boundaries are listed in the backup slides.)

Variable HIG	-21-009 Definition	Target
$p_T(H) vs y(H)$	Transverse momentum and rapidity of the 4ℓ system	Production
m_{Z_1} vs m_{Z_2}	Invariant masses of the two Z boson candidates	Decay
$p_T(H) vs N_{jets}$	Transverse momentum of the 4ℓ system and number of jets in the event	Production
$p_T(H) \ \mathrm{vs} \ p_T^{Hj}$	Transverse momenta of the 4ℓ and 4ℓ +leading jet systems	Production
$p_{\mathrm{T}}^{\mathrm{j1}}~\mathrm{vs}p_{\mathrm{T}}^{\mathrm{j2}}$	Transverse momenta of the leading and sub-leading jets	Production
$ au_C^{jmax} \operatorname{vs} \operatorname{p}_T(H)$	Transverse momenta of the Higgs and leading and $ au_{C}^{jmax}$ variables	Production

Bin boundaries for 2D diffe	rential measurement	Bin $\mathcal{T}_{C}(GeV)$ $p_{T}^{H}(GeV)$
Bin $ y^{H} $ $p_{T}^{H}(GeV)$ Bin1 $[0,0.5]$ $[0,40]$ Bin2 $[0,0.5]$ $[40,80]$ Bin3 $[0,0.5]$ $[80,150]$ Bin4 $[0,0.5]$ $[150,\infty]$ Bin5 $[0.5,1.0]$ $[0,45]$ Bin6 $[0.5,1.0]$ $[45,120]$ Bin7 $[0.5,1.0]$ $[120,\infty]$	Bin N^j $p_T^H(GeV)$ Bin 10 $[0, 15]$ Bin 20 $[15, 30]$ Bin 30 $[30, \infty]$ Bin 41 $[0, 60]$ Bin 51 $[60, 80]$ Bin 61 $[80, 120]$ Bin 71 $[120, \infty]$	Bin $\mathcal{T}_{C}(GeV)$ $p_{T}^{11}(GeV)$ Bin 1 $[0, 15]$ $[0, 15]$ Bin 2 $[0, 15]$ $[15, 30]$ Bin 3 $[0, 15]$ $[30, 45]$ Bin 4 $[0, 15]$ $[45, 70]$ Bin 5 $[0, 15]$ $[70, 120]$ Bin 6 $[0, 15]$ $[120, \infty]$ Bin 7 $[15, 25]$ $[0, 120]$ Bin 8 $[15, 25]$ $[120, \infty]$
Bin 8 $[1.0,2.5]$ $[0, 45]$ Bin 9 $[1.0,2.5]$ $[45, 120]$ Bin 10 $[1.0,2.5]$ $[120, \infty]$	Bin 8>= 2 $[0, 100]$ Bin 9>= 2 $[100, 170]$ Bin 10>= 2 $[170, 250]$ Bin 11>= 2 $[250,\infty]$	Bin 9 $[25, 40]$ $[0, 120]$ Bin 10 $[25, 40]$ $[120, \infty]$ Bin 11 $[40, \infty]$ $[0, 200]$ Bin 12 $[40, \infty]$ $[200, \infty]$
Bin $m_{Z_1}(GeV)$ $m_{Z_2}(GeV)$ Bin $[40,85]$ $[12,35]$ Bin 2 $[40,70]$ $[35,65]$ Bin 3 $[70,120]$ $[35,65]$ Bin 4 $[85,120]$ $[30,35]$ Bin 5 $[85,120]$ $[24,30]$ Bin 6 $[85,120]$ $[12,24]$	Bin $p_T^{j_1}(GeV)$ $p_T^{j_2}(GeV)$ Bin 1 $N_{jets} < 2$ Bin 2[30, 60]Bin 3[60, 350]Bin 4[60, 350]Bin 5[60, 350]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Results of 2D Differential Cross Section

Bin	$m_{Z_1}(\text{GeV})$	$m_{Z_2}(\text{GeV})$
Bin 1	[40,85]	[12,35]
Bin 2	[40,70]	[35,65]
Bin 3	[70,120]	[35,65]
Bin 4	[85,120]	[30,35]
Bin 5	[85,120]	[24,30]
Bin 6	[85,120]	[12,24]

- The boundaries divide massZ1 massZ2 plane in six regions
 - Collect the majority of signal events in several bins
 - Leave the most of background event in the other bins
 - To ensure a good S/B ratio.
- 2D Differential cross sections as a function of
 - $\mathbf{m}_{\mathbf{Z}1}\,\mathbf{vs}\,\mathbf{m}_{\mathbf{Z}2}$

Results of 2D Differential Cross Section

- The boundaries divide plane in regions
 - To ensure a good S/B ratio.
- 2D Differential cross sections as a function of
 - $\mathcal{T}_C \operatorname{vs} p_T^H$
 - $|y^H|$ vs p_T^H
 - N_{jets} vs p_T^H

Results of 2D Differential Cross Section

- The boundaries divide plane in regions
 - To ensure a good S/B ratio.
- 2D Differential cross sections as a function of
 - p_T^{Hj} vs p_T^H
 - $p_T^{j_1}$ vs $p_T^{j_2}$

Results of measurements

Inclusive fiducial cross section

Irreducible background normalization taken from MC simulation and ZZ floating in the fit

Interpretations

 k_{λ}, k_b, k_c

Differential observables Higgs Production $p_T^H |y_H|$ $N_{jets} p_T^{j1} p_T^{j2} m_{jj} |\Delta \eta_{jj}|$ $p_T^{Hj} m_{Hj} p_T^{Hjj} T_B T_C$

Differential observables Higgs decay

 $m_{Z1} m_{Z2}$ $\Phi \Phi_1 \cos \theta \cos \theta_1 \cos \theta^*$ $\mathcal{D}_{0-}^{\text{dec}} \mathcal{D}_{cp}^{\text{dec}} \mathcal{D}_{0h+}^{\text{dec}} \mathcal{D}_{\Lambda 1}^{\text{Z}\gamma,\text{dec}} \mathcal{D}_{int}^{\text{dec}}$

Double differential observables

 $m_{Z1} ext{ vs } m_Z$ $\mathcal{T}_C ext{ vs } p_T^H$ $p_T^{Hj} ext{ vs } p_T^H$ $egin{aligned} &N_{jets} ext{ vs } p_T^H \ &| y^H | ext{ vs } p_T^H \ &p_T^{j1} ext{ vs } p_T^{j2} \end{aligned}$

Constraints on the H boson self-coupling

Probing k_{λ} via single-Higgs decay

• Differential XS measurement as a function of $p_T^H \Rightarrow$ extract limits on H boson self coupling.

$$\mu_i^f = \mu_i \times \mu^f = \frac{\sigma^{NLO}}{\sigma_{SM}^{NLO}} \frac{BR(H \to ZZ)}{BR^{SM}(H \to ZZ)} = \frac{1 + k_\lambda C_{1,i} + \delta Z_H}{(1 - (k_\lambda^2 - 1)\delta Z_H)(1 + C_{1,i} + \delta Z_H)} \times \left[1 + \frac{(k_\lambda - 1)(C_1^{\Gamma ZZ} - C_1^{\Gamma tot})}{1 + (k_\lambda - 1)C_1^{\Gamma tot}}\right]$$

- The cross sections of the different production mechanisms of the H boson
 - Parameterized as a function of $k_{\lambda} = \lambda_3 / \lambda_3^{SM}$,
 - To account for NLO terms arising from the H boson trilinear self-coupling
 - Where $\delta Z_H = -1.536 \times 10^{-3}$ is a universal quantity, $C_1(p_n)$ is dependent on H production model and kinematics;
 - $C_1^{\Gamma_{ZZ}} = 0.0082$ and $C_1^{\Gamma_{tot}} = 2.5 \times 10^{-3}$

- $C_1 = xsec_{\mathcal{O}(\lambda_3)}/xsec_{LO}$ by Madgraph5 simulation
- Differential predictions only for VBF, VH, and ttH
- Inclusive value for the parametrization of the H boson cross section for ggH process

Constraints on the H boson self-coupling

- Limits on k_{λ} extracted from a one-dimensional maximum likelihood fit: $S_{k}^{i,j}(\mu_{i,j}, \overrightarrow{\theta_{s}}) \rightarrow S_{k}^{i,j}(\mu_{i,j}(k_{\lambda}), \overrightarrow{\theta_{s}}) = \mu_{i,j}^{prod.}(k_{\lambda}) \times \mu^{dec}(k_{\lambda}) \times S_{k}^{i,j}(\overrightarrow{\theta_{s}})|_{k_{\lambda}=1}$
- Different sensitivity to k_{λ} of each production mode
 - VBF, VH have a **mild** dependence on k_{λ}
 - ttH process have a very **strong** dependence on k_{λ}
- The observed constraint on k_{λ} at 68% CL is

 $k_{\lambda} = 4.11^{+6.41}_{-5.88} = 4.11^{+6.10}_{-5.75}(stat.)^{+1.96}_{-1.23}(syst.)$

• The corresponding observed (expected) excluded k_{λ} range at 95% CL is:

$$-5.5(-7.7) < k_{\lambda} < 15.1(17.9)$$

Constraints on Higgs boson couplings modifier

Probing k_b , k_c via p_T^H differential cross section

- Interpretation of $p_H^T \Rightarrow$ extract limits of Higgs boson coupling of light quarks
- Described in κ framework
 - Coupling modifiers expressed as $\kappa_c = y_c / y_c^{SM}$
 - Scan of modification κ_c
 - Check its relative formula with P_H^T distribution
- The theory predication combined of 2 method
 - Loop-induced ggF production -- Radish
 - Quark-initiated production of Higgs

-- MadGraph5_aMC@NLO

Two methods applied in the constrain of $\kappa_b \kappa_c$

- Results vary strongly depending on the assumption of the **branching ratios**.
- Overall discrimination power
 - Shape
 - Normalization
- The branching ratios depend on the couplings
 - Maximum amount of discrimination power
 - Normalization
 - Expected Cross section
 - Branching ratios scaled with coupling modifications
 - Constrain by the Higgs decay width.
- Freely floating branching ratios
 - Normalization of parametrization and coupling dependence of BRs are eliminated
 - Purely the constraints from only the shape.

Comparison of \mathcal{K}_h VS \mathcal{K}_c

		Full Run2 Ultra Legacy Floating $\kappa_b \kappa_c$			Direct measuremen	t via $(W/Z)H \rightarrow c\bar{c}$	
HIG-21-009		Observed 95% confidence interval	Expected 95% confidence interval		CMS 95% confidence interval	ATLAS 95% confidence interval	
Shape-Only $\frac{\kappa_b}{\kappa_c}$	[-5.6, 8.9]	[-5.5, 7.4]					
	[-20, 23]	[-19, 20]	14	1.1< κ _c <5.5	$ \kappa_{\rm c} < 8.5$		
Shape+ κ_b normalization κ_c	κ_b	[-1.1, 1.1]	[-1.3, 1.2]	κ _c	(<i>κ</i> _c <3.4)	(12.4)	
	[-5.3, 5.2]	[-5.7, 5.7]		arxiv:2205.05550	<u>Eur. Phys. J. C (2022) 82</u>	717	

- Observed and expected constraints in 95% confidence intervals for the Yukawa coupling modifiers
- (Left) Indirect measurement by p_T^H in $H \to ZZ \to 4l$
 - Simultaneous fit for coupling modifier κ_b , κ_c assuming
 - (Top) coupling dependence of the branching fractions (*shape+normalization*)
 - (Bottom)branching fractions implemented as nuisance parameters with no prior constraint (*shape-only*)
- (Right) Direct measurement of κ_c via $H \rightarrow c\bar{c}$ of ATLAS and CMS
- When the κ_b is fixed to SM, the κ_c region of shape+normalization would be almost half of the value in left table, which is also confirmed by ATLAS indirect measurement[<u>CERN-EP-2022-143</u>]
- Compared with the direct measurement of κ_c via $H \to c\bar{c}$, the expected results achieve the agreement at CMS