Machine learning techniques for cross-section measurements for the vectorboson-fusion production of the Higgs boson in the $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ decay channel with the ATLAS detector

57th Recontres de Moriond 23rd March, 2023 Sagar Vidya Addepalli

INTRODUCTION

VBF cross-section measurement probes directly the Higgs coupling to W and Z bosons.

$H \rightarrow WW^*$ has a high BR (~20%) and good signal purity

Sagar Addepalli (Brandeis University | sagar@brandeis.edu)

Understanding the fundamental properties of the Higgs boson is one of the main goals of the physics programme at the LHC.

anomalous couplings.

DISCRIMINANTS

Measurement extremely challenging:

- W
- Final state not fully reconstructed non-resonant signal
- Signal/Background of 0.13 in the targeted phase space

To maximize signal sensitivity:

- Boosted Decision Trees output used as classifiers
- Classifiers used as templates in the multi-dimensional fit

Sagar Addepalli (Brandeis University | sagar@brandeis.edu)

To minimize model dependency with BDTs:

- BDTs trained in a broader phase space than what is measured
- Retrained with a smaller set of variables for each differential XS measurement

SIGNAL EXTRACTION STRATEGY

- SR1 rich in VBF signal.
- SR2 rich in top and VV.

D_{VBF} - VBF signal against Top+VV.

Sagar Addepalli (Brandeis University | sagar@brandeis.edu)

SIGNAL EXTRACTION STRATEGY

- SR1 rich in VBF signal.
- SR2 rich in top and VV.

D_{VBF} - VBF signal against Top+VV.

Sagar Addepalli (Brandeis University | sagar@brandeis.edu)

D_{ggF} - ggF background against all other processes.

Data driven estimates also for ggH and Z/γ^* +jets bkgs.

Unregularized matrix-based unfolding in the same step as the likelihood fit

13 differential cross-sections measured – lepton kinematics, jet kinematics, and combined

Sagar Addepalli (Brandeis University | sagar@brandeis.edu)

Results compatible with SM predictions, limited by statistical uncertainty.

INTERPRETATION - EFT

- (7 CP-even, 3 CP-odd) within the SMEFT formalism.

Sagar Addepalli (Brandeis University | sagar@brandeis.edu)

Thank you for listening!

Sagar Addepalli (Brandeis University | sagar@brandeis.edu)

CERN-EP-2023-25

Selection Requirements

Lepton pair flavors

Lepton pair charge

Leading (subleading) lepton $p_{\rm T}$

Lepton η^{ℓ}

No. of additional leptons

 $\Delta R(\ell,\ell)$

 $m_{\ell\ell}$

 $\Delta R(\ell, \text{jet})$

No. of jets ($p_{\rm T} > 30$ GeV, $|\eta| < 4.5$

No. of *b*-jets ($p_{\rm T} > 20$ GeV, $|\eta| < 2$

 $m_{\tau\tau}$

Central jet veto ($p_T > 20 \text{ GeV}$)

Outside lepton veto

 m_{jj} $|\Delta y_{jj}|$ $|\Delta \phi_{\ell \ell}|$

Sagar Addepalli (Brandeis University | sagar@brandeis.edu)

	Signal Region	Fiducial Region			
	e-µ	!			
	0				
	> 22 GeV (>	• 15 GeV)			
	$ \eta^{\mu} <$	2.5			
	$0 < \eta^e < 1.37$				
	or	$ \eta^{e} < 2.5$			
	$1.52 < \eta^e < 2.47$				
	0				
	overlap removal	> 0.1			
	> 10 GeV				
	overlap removal	> 0.4			
5)	≥ 2	2			
2.5)	0				
	$< m_Z - 25 \text{ GeV}$ \checkmark > 450 GeV				
	> 2.	1			
	< 1.4 rad				
	•				

Scheme designed to **minimize total uncertainty**. Comes at a cost of slight increase in stat. unc., but significant reduction in syst. unc.

Sagar Addepalli (Brandeis University | sagar@brandeis.edu)

Background	Estimatio
Diboson	Data-driv
Top Induced	Data-driv
ggF H	Data-driv
Z+Jets	Data-driv
W+Jets (Mis-Id)	Data-driv
$\vee\gamma$	MC
Htt, VH	MC

BACKUP

$m_{ au au}$		$ < m_Z - 25~{ m GeV}$	
${ m Central jet veto} \ (p_{ m T}>20$	(GeV)	m_{ij} Bin1 m_{ij} Bin2 m_{ij} Bin3	m _{jj} Bir x2
Outside lepton veto		Exactly 1 Ialls	
$ \Delta \phi_{\ell\ell} $	^ш 400	$< 1.4 \mathrm{~rad}$	

ggF CR definition

Sample	SR	Z/γ^* +jets CR	ggF CR
Signal (Powheg+Pythia 8)	110	13	86
ggF Higgs	39	4	450
Other Higgs	3	10	78
Тор	420	41	11000
Z/γ^* +jets	79	320	1 400
VV	280	32	4 300
$V\gamma$	13	14	210
Mis-Id	47	12	810
Total Signal+Background	1000 ± 120	450 ± 160	18800 ± 2600
Data	916	406	18 228

$m_{ au au}$	$66.2~{ m GeV} < m_{ au au} < 116.2~{ m GeV}$
${ m Centraljetveto}~(p_{ m T}>20{ m GeV})$	yes
Outside lepton veto	$\mathbf{yes}^{1.5}$
m_{jj}	$>450~{ m GeV}$
$m_{\ell\ell}$	$< 80 \mathrm{~GeV}$

Z/γ^* +jets CR definition

Sagar Addepalli (Brandeis University | sagar@brandeis.edu)

D_{ggF} - ggF background against all other processes.

 μ_{ggF} estimated in ggF CR and SR

W+jets CR used to estimate the contribution from jets mis-reconstructed as leptons.

> μ_{Z+jets} estimated in Z/γ^* +jets CR and SR

- Measurements limited by data statistics.
- Inclusive XS measurement limited by (in order) -
 - Data statistics,
 - Background modeling (*tt* PS/UE and matching),
 - Signal modeling (generator),
 - Jets (JER), pileup, and MET,
 - MC stats.

	Uncertainty [%]	Uncertainty range [%]				
Source	$\sigma^{ m fid}$	p_{T}^{H}	$p_{\mathrm{T}}^{\ell\ell}, p_{\mathrm{T}}^{\ell_1},$	$m_{\ell\ell}$	$p_{\rm T}^{j_1}, p_{\rm T}^{j_2},$	
		-	$p_{\mathrm{T}}^{\ell_2}, \Delta y_{\ell\ell} ,$		$ \Delta y_{jj} , \Delta \phi_{jj} $	
			$ \Delta \phi_{\ell\ell} , \cos(\theta_{\eta}^*)$			
Signal modelling	5	< 1 – 7	< 1 – 7	< 1 – 19	< 1 - 8	
Signal parton shower	< 1	< 1 – 2	< 1 – 1.8	< 1 – 10	< 1 – 1.8	.
tī modelling	6	1.7 - 30	3 – 13	3 - 80	3 – 10	1
WW modelling	4	< 1 – 12	3 – 11	2 - 90	3 – 10	
Z/γ^* +jets modelling	4	< 1 – 19	2 – 18	4 - 30	3 – 13	
ggF modelling	5	4.0 - 28	3.4 – 10	2.6 – 12	2.3 - 9.0	1
Mis-Id. background	< 1	< 1 – 12	1.1 – 5	< 1 – 19	1 – 3	<
Jets & Pile-up & $E_{\rm T}^{\rm miss}$	5	8 - 60	6-30	6 – 120	9 - 30	9
<i>b</i> -tagging	< 1	< 1 – 9	< 1 – 3	< 1 – 19	1.1 – 3	<
Leptons	1.5	3 – 17	2-9	1.2 – 13	1.7 – 7	<
Luminosity	1.5	1.7 – 2	1.3 – 1.9	< 1 – 4	1.5 - 2	<
MC statistics	5	10 - 40	6 - 30	6 – 180	8 - 30	
Total systematics	13	19 – 90	13 - 60	12 – 180	15 – 50	15
Data statistics	20	50 - 160	30 – 110	30 - 400	40 - 100	50
Total uncertainty	23	50 – 190	40 - 120	30 - 500	40 - 100	50

Post-fit uncertainty range for all the measurements

- Correlations between differential XS and background normalizations for all observables measured evaluated using the bootstrapping technique.
- Same procedure also used to evaluate correlations between central values of EFT operators.
- Correlations extremely useful for future global fits and EFT interpretations using more than one observable.
- All correlations as well as all individual correlated measurements published on HepData.

BACKUP

Wilson	Operator	Fit
Coeff.	Structure	distr.
C _{HW}	$H^{\dagger}HW^{n}_{\mu u}W^{n\mu u}$	$\Delta \phi_{jj}$
c _{HB}	$H^\dagger HB_{\mu u}B^{\mu u}$	$\Delta \phi_{jj}$
C _{HWB}	$H^{\dagger} au^n H W^n_{\mu u} B^{\mu u}$	$\Delta \phi_{jj}$
c_{Hq1}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	p_{T}^{j1}
c _{Hq} 3	$(H^{\dagger}i\overleftrightarrow{D}^{n}_{\mu}H)(\bar{q}\tau^{n}\gamma^{\mu}q)$	p_{T}^{j1}
c _{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u)$	p_{T}^{j1}
C _{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d)$	p_{T}^{j1}
$c_{H ilde W}$	$H^\dagger H ilde W^n_{\mu u} W^{n\mu u}$	$\Delta \phi_{jj}$
$c_{H\tilde{B}}$	$H^\dagger H ilde{B}_{\mu u}B^{\mu u}$	$\Delta \phi_{jj}$
$c_{H\tilde{W}B}$	$H^{\dagger} au^{n}H ilde{W}^{n}_{\mu u}B^{\mu u}$	$\Delta \phi_{jj}$

Operator structure corresponding to the constrained Wilson coefficients

Sagar Addepalli (Brandeis University | sagar@brandeis.edu)

