

Measurements of rare Higgs boson processes

Yurii Maravin (Kansas State University) On behalf of ATLAS and CMS Collaborations

Moriond/EW2023: 57th Rencontres de Moriond on "Electroweak Interactions & Unified Theories" March 18, 2023

Yurii Maravin (K-State)

Measurements of rare Higgs boson processes

1

A decade since the Higgs discovery

- A triumph of theoretical and experimental physics
- One of few handles to search for new physics
 - Sensitivity to new physics in rare decays
 - Experimentally challenging

A decade since the Higgs discovery

- A triumph of theoretical and experimental physics
- One of few handles to search for new physics
 - Sensitivity to new physics in rare decays
 - Experimentally challenging

Decay channel	Branching fraction $(\%)$
bb	57.63 ± 0.70
WW	$22.00 \pm 0.33 $
gg	8.15 ± 0.42
ττ	$6.21 \pm 0.09 $
cc	2.86 ± 0.09
$\mathbf{Z}\mathbf{Z}$	$2.71 \pm 0.04 $
γγ	$0.227\ \pm 0.005$
$Z\gamma$	$0.157\ \pm 0.009$
SS	$0.025\ \pm 0.001$
μμ	0.0216 ± 0.0004

• In this talk:

- H→cc
- H→Zγ
- Decays to quarkonium and vector mesons and a photon

Eur. Phys. J. C 82 (2022) 717

• Very challenging analysis

- $H \rightarrow c\overline{c}$ is difficult to trigger
- Multijet background is larger by many orders of magnitude
- Charm-jet tagging is more complex compared to b-tagging
 - YSF Talk later today on $H \rightarrow c \bar{c}$ tagging by Martino Tanasini
- Search using VH production
 - Categories based on number of leptons
 - Further categorization based on $p_{T}(V)$ and N_{jets}
 - Validation of methods on $V \rightarrow cq$ process
 - Evidence for VW(\rightarrow cq): observed (expected) significance is 3.8 σ (4.6 σ)
 - Observed (expected) significance of $VZ(\rightarrow c\overline{c})$ is 2.6 (2.2

- Very challenging analysis
 - $H \rightarrow c\overline{c}$ is difficult to trigger
 - Multijet background is larger by many orders of magnitude
 - Charm-jet tagging is more complex compared to b-tagging
 - YSF Talk later today on $H \rightarrow c \bar{c}$ tagging by Martino Tanasini
- Search using VH production
 - Categories based on number of leptons
 - Further categorization based on $p_{T}(V)$ and N_{jets}
 - Validation of methods on $V \rightarrow cq$ process
 - Evidence for VW(\rightarrow cq): observed (expected) significance is 3.8 σ (4.6 σ)
 - Observed (expected) significance of $VZ(\rightarrow c\overline{c})$ is 2.6 σ (2.2 σ)
- Combined observed (expected) limit (95% CL) on $H \rightarrow c\overline{c}$ is 26 (31) of the SM signal strength
 - A limit on $|\kappa_c/\kappa_b| < 4.5$ @ 95% CL, from the combination with VH(H \rightarrow bb)

Search for $H \rightarrow c\overline{c}$

- Search using VH production
 - Combined resolved and boosted approach
- Significant improvement in c-tagging performance
 - Adopting boosted H production utilizing specialized c-jet tagger based on the ParticleNet algorithm
 - An improvement by a factor of 3 with respect to the CMS previous algorithm (DeepAK15)
- First observation of $VZ(Z \rightarrow c\overline{c}) @ 5.7\sigma$

Search for $H \rightarrow c\overline{c}$

- Search using VH production
 - Combined resolved and boosted approach
- Significant improvement in c-tagging performance
 - Adopting boosted H production utilizing specialized c-jet tagger based on the ParticleNet algorithm
 - An improvement by a factor of 3 with respect to the CMS previous algorithm (DeepAK15)
- First observation of $VZ(Z \rightarrow c\overline{c}) @ 5.7\sigma$
- Combined observed (expected) limit (95% CL) 0L on $H \rightarrow c\overline{c}$ is 14 (7.6) of the SM signal strength
 - Most stringent limit: $1.1 < |\kappa_c| < 5.5$ at 95% CL

2L

Search for boosted $H \rightarrow c\overline{c}$

- Dedicated effort to look for boosted $H \rightarrow c\overline{c}$ process enriched with ggH production
 - Target p_T > 450 GeV and use <u>decorrelated taggers</u> (DDT)
 - DNN discriminators for signal vs. background (QCD multijet) separation
- Observed Z \rightarrow c \overline{c} process with $\mu = 1.00^{+0.19}_{-0.17}$
- Observed (expected) upper limit on the signal is 47 (39) times the SM expectation

Search for boosted $H \rightarrow c\overline{c}$

- Dedicated effort to look for boosted $H \rightarrow c\overline{c}$ process enriched with ggH production <u>CMS</u> 138
 - Target p_T > 450 GeV and use <u>decorrelated taggers</u> (DDT)
 - DNN discriminators for signal vs. background (QCD multijet) separation
- Observed Z \rightarrow c \overline{c} process with $\mu = 1.00^{+0.19}_{-0.17}$
- Observed (expected) upper limit on the signal is 47 (39) times the SM expectation

• Small branching fraction $Br(H \rightarrow Z\gamma) \sim O(1.6 \times 10^{-3})$

- A ratio of $Br(H \rightarrow Z\gamma)/Br(H \rightarrow \gamma\gamma)$ is sensitive to BSM effects
 - Some systematics cancels, BSM change two branching fractions differently enhancing the sensitivity
- Pursue $ee\gamma$ and $\mu\mu\gamma$ final states
- Final state radiation recovery to improve the mass resolution

CMS

• BDT discriminator (D_{kin}) to improve S/B

• Utilize 8 categories

- VH and ttH production (lepton-tagged)
- VBF (dijet-tagged): BDT VBF classifier (D_{VBF})
- ggH (untagged)

Accepted to JHEP

- Observed (expected) signal: 2.7σ (1.2σ)
 - Signal strength: $\hat{\mu} = 2.4 \pm 0.9$
 - Ratio of branching fractions is consistent with the SM @ 1.5σ $Br(H \to Z\gamma)$ $= 1.54^{+0.65}_{-0.58}$

 $Br(H \to \gamma \gamma$

Accepted to JHEF

- Use 6 categories with different signal-to-background ratio and mass resolution to enhance the sensitivity
 - MVA enriched VBF

PLB 809 (2020) 135754

Search for H to quarkonia

0

Submitted to PLB

н

= O

- Small branching fractions but clean experimental signature
 - $Br(H \rightarrow Z J/\Psi) \sim 2 \times 10^{-6}$,
 - $Br(H \rightarrow J/\Psi J/\Psi) \sim 2 \times 10^{-10}$
- Analysis strategy
 - Search for ee, $\mu\mu$ final states from Z and $\mu\mu$ final state from J/Ψ
 - Search for double Υ decays

Н

0

Ζ

н

Search for H to quarkonia

- Small branching fractions but clean experimental signature
 - $Br(H \rightarrow Z J/\Psi) \sim 2 \times 10^{-6}$,
 - $Br(H \rightarrow J/\Psi J/\Psi) \sim 2 \times 10^{-10}$
- Analysis strategy
 - Search for ee, $\mu\mu$ final states from Z and $\mu\mu$ final state from J/Ψ
 - Search for double Υ decays

Submitted to PLB

Process	Observed	Expected	Obser	ved
Higgs boson channel	Longitudinal	Longitudinal	Unpolarized	Transverse
$\mathcal{B}(\mathrm{H} ightarrow \mathrm{ZJ}/\psi)$	$1.9 imes10^{-3}$	$(2.6^{+1.1}_{-0.7}) imes 10^{-3}$	$2.4 imes10^{-3}$	$2.8 imes10^{-3}$
$\mathcal{B}(\mathrm{H} \to \mathrm{Z}\psi(\mathrm{2S}))$	$6.6 imes10^{-3}$	$(7.1^{+2.8}_{-2.0}) imes 10^{-3}$	$8.3 imes10^{-3}$	$9.4 imes10^{-3}$
$\mathcal{B}(\mathrm{H} \to \mathrm{J}/\psi\mathrm{J}/\psi)$	$3.8 imes 10^{-4}$	$(4.6^{+2.0}_{-0.6}) imes10^{-4}$	$4.7 imes10^{-4}$	$5.2 imes 10^{-4}$
$\mathcal{B}(\mathrm{H} ightarrow \psi(\mathrm{2S})\mathrm{J}/\psi)$	$2.1 imes10^{-3}$	$(1.4^{+0.6}_{-0.4}) imes 10^{-3}$	$2.6 imes10^{-3}$	$2.9 imes10^{-3}$
$\mathcal{B}(\mathrm{H} ightarrow \psi(\mathrm{2S})\psi(\mathrm{2S}))$	$3.0 imes 10^{-3}$	$(3.3^{+1.5}_{-0.9}) imes 10^{-3}$	$3.6 imes10^{-3}$	$4.7 imes10^{-3}$
$\mathcal{B}(H \to Y(nS)Y(mS))$	$3.5 imes10^{-4}$	$(3.6^{+0.2}_{-0.3}) imes 10^{-4}$	$4.3 imes10^{-4}$	$4.6 imes10^{-4}$
$\mathcal{B}(H \to Y(1S)Y(1S))$	$1.7 imes 10^{-3}$	$(1.7^{+0.1}_{-0.1}) imes 10^{-3}$	$2.0 imes 10^{-3}$	$2.2 imes 10^{-3}$
Z boson channel				
${\cal B}({ m Z} ightarrow { m J}/\psi { m J}/\psi)$	$11 imes 10^{-7}$	$(9.5^{+3.8}_{-2.6}) imes10^{-7}$	$14 imes 10^{-7}$	$16 imes 10^{-7}$
$\mathcal{B}(Z \to Y(nS)Y(mS))$	$3.9 imes10^{-7}$	$(4.0^{+0.3}_{-0.3}) imes10^{-7}$	$4.9 imes10^{-7}$	$5.6 imes10^{-7}$
$\mathcal{B}(Z \to Y(1S)Y(1S))$	$1.8 imes 10^{-6}$	$(1.8^{+0.1}_{-0.0})\times10^{-6}$	$2.2 imes 10^{-6}$	$2.4 imes 10^{-6}$

Accepted to EPJC

H(Z)

М

۸ یکریر

H(Z)

- Small branching fractions
 - $Br(H \rightarrow J/\Psi \gamma) \sim 3 \times 10^{-6}, Br(H \rightarrow \Upsilon \gamma) \sim 10^{-9}$
- Focus on $\mu\mu\gamma$ final state
 - Major background is FSR $\mu\mu\gamma$ and γ +jet processes
 - Estimated from data (shape of exclusive background is from MC)
 - 2D simultaneous unbinned fit to $m_{\mu\mu}$ and $m_{\mu\mu\gamma}$

Accepted to EPJC

• Similar distributions for $\Upsilon(nS)$

Search for H to quarkonia

- Similar distributions for $\Upsilon(nS)$
- Observations are consistent with background-only hypotheses
 - $Br(H \rightarrow Q\gamma) < O(10^{-4})$

	95% CL _s upper limits					
	Branching fraction			$\sigma \times \mathcal{B}$		
Decay	Higgs bos	on [10 ⁻⁴]	Z boson [10 ⁻⁶]		Higgs boson [fb]	Z boson [fb]
channel	Expected	Observed	Expected	Observed	Observed	Observed
$J/\psi \gamma$	$1.9^{+0.8}_{-0.5}$	2.1	$0.6^{+0.3}_{-0.2}$	1.2	12	71
$\psi(2S) \gamma$	$8.5^{+3.8}_{-2.4}$	10.9	$2.9^{+1.3}_{-0.8}$	2.3	61	135
$\Upsilon(1S) \gamma$	$2.8^{+1.3}_{-0.8}$	2.6	$1.5^{+0.6}_{-0.4}$	1.0	14	59
$\Upsilon(2S) \gamma$	$3.5^{+1.6}_{-1.0}$	4.4	$2.0^{+0.8}_{-0.6}$	1.2	24	71
$\Upsilon(3S) \gamma$	$3.1^{+1.4}_{-0.9}$	3.5	$1.9^{+0.8}_{-0.5}$	2.3	19	135

100

Flavor conserving/violating decays

- $H(Z) \rightarrow \omega \gamma \rightarrow \pi^+ \pi^- \pi^0 \gamma$
- $H \to K^* \to K^+ \pi^- \gamma$

Dedicated trigger and tau lepton particle flow to identify pions

Events / 2.5 GeV

140

120

100

80

60

40

20

05

Data / Fit

ATLAS

√s=13 TeV, 89.5 fb⁻¹

Data

200

150

250

Background Fit ±10

 $B(H\rightarrow\omega\gamma)=1.5\times10^{-4}$

 $B(Z\rightarrow\omega\gamma)=3.8\times10^{-7}$

Background

 Backgrounds are determined from data

Channel	95% CL upper limit		
	Expected	Observed	
$H \rightarrow \omega \gamma \; [10^{-4}]$	$3.0^{+1.2}_{-0.8}$	1.5	
$Z ightarrow \omega \gamma \; [10^{-7}]$	$5.7^{+2.3}_{-1.6}$	3.8	
$H \to K^* \gamma \; [10^{-5}]$	$12.2^{+4.9}_{-3.4}$	8.9	

• Limits for $H \rightarrow \omega \gamma$ are ~100 times the SM expected values

H(Z)

Y

Submitted to PL

H(Z)

ATLAS Search for H to meson and gamma

ATLAS: <u>ATL-PHYS-PUB-2023-004</u>

 These results together with the other ATLAS results on mesons + photon searches are illustrated below

Z to meson and gamma

Yurii Maravin (K-State)

Summary

 Studies of rare Higgs boson decays are essential in the LHC physics program

~MS

- Both experiments are making impressive progress in studying Higgs boson
 - First evidence of Higgs boson couplings to muons at CMS
 - First evidence of Higgs decay to low-mass $\ell\ell\gamma$ in ATLAS
- Improvement not only comes from a larger data set, but also from using innovative MVA techniques
- Run 3 will consolidate the evidence in some decay channels and will bring further improvement in sensitivity

10¹

Particle mass (GeV)

100

10

10-2

10-3

10-

1.4

1.2

1.0

0.8

 10^{-1}

 κ_F or κ_V

Or VKV.

m_F vev

 10^{2}

- Small branching fractions $Br(H \rightarrow \ell \ell \gamma) \sim 10^{-4}$
 - Use di-electron and di-muon plus photon
 - $m_{\ell\ell} < 30$ GeV (excluding J/Ψ and Υ resonances)
- Three types of categories
 - VBF enriched, high- and low-pTt categories
 - pTt is strongly correlated with the transverse momentum of the $\ell\ell\gamma$ system
- Use both resolved and merged ee signatures
 - Dedicated ID and calibration for merged electrons

ATLAS: PLB 819 (2021) 13641

ATLAS: PLB 819 (2021) 136412

- Small branching fractions $Br(H \rightarrow \ell \ell \gamma) \sim 10^{-4}$
 - Use di-electron and di-muon plus photon
 - $m_{\ell\ell} < 30$ GeV (excluding J/Ψ and Υ resonances)
- Three types of categories
 - VBF enriched, high- and low-pTt categories
 - pTt is strongly correlated with the transverse momentum of the $\ell\ell\gamma$ system
- Use both resolved and merged ee signatures
 - Dedicated ID and calibration for merged electrons
- Observed (expected) signal: 3.2σ (2.1σ)
 - Signal strength: $\hat{\mu} = 1.5 \pm 0.5$

- Very small branching fraction $Br(H \rightarrow \mu\mu) = 2.17 \times 10^{-4}$
- Indistinguishable Drell-Yan background with signal to background $pprox 10^{-3}$
- Background modeling is essential to search for the narrow mass peak

• Final state radiation recovery

CMS

- Utilize 20 mutually exclusive categories
 - Exploiting the topological and kinematic differences between production modes
 - Dedicated MVA

ATLAS: PLB 812 (2021) 13598

• Limits:

- Observed (expected) limit: 2.0σ (1.7σ)
- $Br(H \to \mu\mu) < 4.7 (2.4) \times 10^{-4} \text{ obs (exp)}$
- About x2 of that of the SM prediction

Yurii Maravin (K-State)

- Multiple categories based on production processes
 - VBF uses DNN discriminator
- First evidence: 3.0σ (2.5σ) observed (expected)

CMS EXPERIMENT

- **Really** small branching fraction $Br(H \rightarrow ee) = 5 \times 10^{-9}$
 - Expected enhancement from BSM sources
- No evidence for the decay, 95% CL limits are set
 - ATLAS: $Br(H \to ee) < 3.6 (3.5) \times 10^{-5}$ obs (exp)
 - CMS: $Br(H \to ee) < 3.0 (3.0) \times 10^{-5}$ obs (exp)

