

Differential Higgs cross section measurements

Haider Abidi On behalf of the ATLAS & CMS Collaborations March 23rd, 2023

Higgs @ LHC

- A rich set of measurements accessible at the LHC for $m_H = 125 \text{ GeV}$
- All variety of production modes & final states accessible
 - Final states with large BR (H→bb, H→WW, H→ττ) have large backgrounds and limited mass resolution
 - Low BR channels ($H \rightarrow ZZ \rightarrow 4I$, $H \rightarrow \gamma \gamma$) are typically cleaner with good mass resolution
 - But each channel brings complementary information and probes a different phase space

Higgs Decay mode

Fiducial Differential Cross-section measurement

- Fiducial cross-sections are the most model independent way to measure Higgs interactions at LHC
- Fiducial phase space are based on the real detector acceptance and extrapolation effects are minimized
- Limitations:
 - To combine channels the extrapolation to the total phase space is needed (including BR)
 - Less sensitive BSM exclusion limits when compared to a dedicated analysis
- Typical unfolded quantities:
 - Higgs boson kinematics & decay observables
 - Jet produced in association with Higgs boson
 - Measure observables in phase space that are enriched in specific production mode

Analysis Flow

Current Measurements

- A wide range of decay modes probed with the 13/TeV dataset
 - New results are still coming!

		ATLAS	CMS
New	H→ZZ*	<u>Eur. Phys. J. C 80 (2020) 942</u> <u>CERN-EP-2023-030</u>	<u>PAS-HIG-21-009</u>
	Н→уу	<u>JHEP08 (2022) 027</u>	<u>2208.12279</u>
New	H→WW*	<u>2301.06822</u> CERN-EP-2023-025	<u>JHEP 03 (2021) 003</u>
	Η→ττ	_	<u>PRL 128 (2022) 081805</u>
	H→bb	CONF-2022-015	
	Combination (With partial channels)	2207.08615	<u>PLB 792 (2019) 369</u>

A small subset of results are highlighted in this talk!

 $H \rightarrow \chi \chi \& H \rightarrow ZZ^* \rightarrow 4\ell$

- Workhorse channels of Higgs measurements
 - Fully reconstructible final state: 4 isolated leptons (µ,e) or 2 photons
- Excellent mass resolution 1-2% m_H
- Main background:
 - γγ Data driven fits
 - 4I: ZZ* estimated using MC (CMS) or data sidebands (ATLAS)

$H \rightarrow ZZ^* \rightarrow 4\ell$: differential cross-sections

- High p_T region is sensitive to heavy additional particles in the ggF loop
- Dedicated results for VBF-like phase space & BSM sensitive observables

+0.065-0.053

Exp: 0.134

New

H→yy: differential cross-sections

- $\Delta \phi_{jj}$ angle between two leading jets: sensitive to the CP structure of the Higgs
- n_{jets} is sensitive to production mode composition and gluon emission

- Large signal but not fully reconstructible final state and low S/B $\sim 10^{-1}$ - 10^{-2}
- Main backgrounds: WW*, tt shapes evaluated with MC and normalization from data -> reduces impact of theory modelling uncertainties
- Split into two phase spaces to target different production modes
 - Gluon Fusion: =0, =1 jet fiducial phase space
 - Vector boson fusion: >= 2 jets fiducial phase space

ggF enriched H→WW*: differential cross-section

- Cross section extracted by fitting m_T dimensional distribution in each bin, with control regions for background estimation $m_T = \sqrt{(E_T^{\ell\ell} + E_T^{miss})^2 - |\vec{p_T^{\ell\ell}} + E_T^{miss}|^2}$
- Competitive channel at high Higgs p_T : uncertainties < 100% p_T > 120 GeV

VBF enriched H→WW*: differential cross-section

- Cross section extracted from signal region with background estimated form both signal and control regions
 - ggF contribution is taken from a fit to dedicated control region
 - Sensitivity improved by using BDTs to separate the processes
- Detailed studies of second largest production mode at LHC!

- Similar as HWW: Large signal but not fully reconstructible final state and low S/B \sim 10⁻¹-10⁻²
- Main backgrounds: Z and mis-idenfitication of jets as $\boldsymbol{\tau}$
- Competitive channel at high p_T and high jet multiplicity: p_T > 200 GeV region similar to HZZ and Hyy & uncertainties < 100% for n_{jet} ≥ 3

$H \rightarrow \tau \tau$: differential cross-section

- Cross section extracted by fitting $m_{\tau\tau}$ in each bin with background estimated from MC and data driven techniques
- Results extracted with and without regularization the former is more model dependant but less sensitive to statistical fluctuations

Combined differential cross sections

measurements

Conclusions

- Several differential cross sections measurements of the Higgs Boson have been performed in ATLAS and CMS (dominated by statistical uncertainties)
- Good agreement between Standard Model predictions and experimental results
 - Few tensions that point for more detailed measurements and theoretical calculations
- Run 3 dataset is slowly accumulating already have ~ 30/fb
 - Expected to have similar as full Run 2 next year!
 - First results to be presented tomorrow!
- A rich program with many new results still to come: stay tuned!

Backup

- Fully reconstructible final state and very high S/B ~ 2
- Signal signature: 4 isolated leptons (µ,e) at "low" p⊤ (5-20 GeV) 2 lepton pairs same flavour opposite sign
- Excellent mass resolution 1-2% m_H
- Main background: ZZ* estimated using only MC in case of CMS or data sidebands and MC for ATLAS

Η→γγ

- Fully reconstructible final state but lower S/B compared to $4\ell \sim 10^{-1}$ - 10^{-2}
- Signal signature: 2 isolated photons
- Excellent mass resolution 1-2% mH

$H \rightarrow \gamma \gamma \& H \rightarrow ZZ^* \rightarrow 4\ell$

- High p_T region is sensitive to heavy additional particles in the ggF loop
- n_{jets} is sensitive to production mode composition and gluon emission

