

Electroweak Physics (W and Z) at LHCb

Menglin Xu

on behalf of the LHCb collaboration Moriond EW 2023, 23.03

LHCb Detector

- Single-arm forward spectrometer
- Designed for the heavy flavour physics with $2 < \eta < 5$
- Extended to **EW** measurements: excellent performance of tracking and muon detector

Forward Region

Low pile-up environment ٠

Tracking

ECAL HCAL

Muon

Forward region: high/low-x partons involved ٠

m_W Measurement

• m_W is directly related to electroweak symmetry breaking in the standard model

$$n_W^2 = \frac{\pi \alpha}{\sqrt{2}G_F (1 - m_W^2 / m_Z^2)(1 - \Delta r)}$$

 Δr : loop corrections

3

 Uncertainty from PDFs at LHCb is anticorrelated to that of ATLAS/CMS ⇒ LHC experiments can achieve a sensitivity closer to the global EW fit (~7 MeV)

m_W: Physics & Detector Modelling

- Measurements based on charged lepton $p_{\rm T}$
- m_W determination is highly sensitive to misalignments and miscalibrations of the detector

m_W at LHCb

• p_T^{μ} peaks at $\sim m_W/2$, extract m_W in a template fit to the q/p_T^{μ} distribution

m_W : Uncertainties

	<u>JHEP 01 (2022) 036</u>	
Source	Size (MeV)	
Parton distribution functions	9	ightarrow average of NNPDF31, CT18 and MS
Total theoretical syst. uncertainty (excluding PDFs)	17	
Transverse momentum model	11	ightarrow from five different models
Angular coefficients	10	\rightarrow scale variation
QED FSR model	7	\rightarrow envelope of the QED FSR from PYTI
Additional electroweak corrections	5	Herweig
Total experimental syst. uncertainty	10	
Momentum scale and resolution modelling	7	
Muon ID, tracking and trigger efficiencies	6	ightarrow statistical uncertainties, details of r
Isolation efficiency	4	binning, smoothing)
QCD background	2	
Statistical	23	
Total uncertainty	32	

SHT20

HIA8 Photos and

method (e.g.

m_W : Result

$m_W = 80354 \pm 23_{\text{stat.}} \pm 10_{\text{exp.}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$

- LHCb achieves a precision of ~ 32 MeV using roughly 1/3 of the Run-II dataset
- Further ~4 fb⁻¹ of Run-II data to add → statistical uncertainties ≈ 14 MeV
- Effort now on improving the modelling and reducing the systematic uncertainties
- An overall precision ~ 20 MeV is achievable with all existing LHCb data

LHCB-FIGURE-2022-003

Forward Z Production Cross-Section

- Single gauge boson production
 - Precision tests of the perturbative QCD predictions at NNLO with similar precision experiment/theory O(1%)
 - Measurements at LHCb are particularly important for constraining u/d quark PDFs at high x region
- Z boson production @13TeV at LHCb
 - Datasets: 2016, 2017 and 2018 data, $5.1 \pm 0.1 \text{ fb}^{-1}$
 - Very high purity, $N_{bkg}/N_{sig} \sim 1.5\%$

fiducial region

 $\frac{\mu}{p_{\rm T} > 20 \,\text{GeV}/c} \quad 60 < M_{\mu^+\mu^-} < 120 \,\text{GeV}/c^2$ $2 < \eta < 4.5$ $\sigma_P/P < 10\%$

 γ^*/Z

Forward Z Differential Cross-Section

Corrected to the **Born** level in QED ٠

JHEP 07 (2022) 26

Forward Z Integrated Cross-Section

• The most precise measurement in the forward region @ 13TeV

 $\sigma(Z \rightarrow \mu^+ \mu^-) = 195.3 \pm 0.23 \text{ (stat.)} \pm 1.5 \text{ (sys.)} \pm 3.9 \text{ (lumi.) pb}$

Z Angular Coefficient Measurement

<u>Phys. Lett. B259 (1991) 151</u> Nucl. Phys. B Proc. Suppl. 23 (1991) 9

- The kinematic distribution of the final-state leptons provides a direct probe of the **polarization** of the intermediate gauge boson
- Study done using LHCb data from 2016, 2017 and 2018

A_i - p_T Dependent

- Measurements are at **Born level**
- The uncertainty is **dominated by statistical uncertainty**
- Interesting violation Lam-Tung relation, $A_0 = A_2$, in agreement with ATLAS [JHEP08(2016)159] and CMS [Phys. Lett. B 750 (2015) 154] results

12

2023-03-23

A₂ - Boer-Mulders TMD

TMD: transvers momentum dependent

- A_2 is sensitive to the TMD PDF, with measurements in multiple mass regions adding sensitivity to the evolution of the TMD PDF with the hard scale
- No phenomenological calculations are available

2023-03-23

W and Z Rare Decays

- Provide stringent tests of the QCD factorization formalism
- Until now, no hadronic-radiative decay has been observed, the current best limit is $\mathcal{B}(Z \to \phi \gamma) < 9 \times 10^{-7}$
- Search $W^+ \to D_s^+ (\to K^+ K^- \pi^+) \gamma$ and $Z \to D^0 (\to K^- \pi^+) \gamma$ at LHCb
 - Excellent tracking performance and good particle identification
 - With better resolution of photon angle compared to the energy measurement, pseudomass has better performance than invariant mass

W and Z Rare Decays - Results

- No significant signal is observed above background
- $\mathcal{B}(W^+ \to D_s^+ \gamma) < 6.5 \times 10^{-4}$ at 95% C.L., the **best limit** to date
- $\mathcal{B}(Z \to D^0 \gamma) < 2.1 \times 10^{-3}$ at 95% C.L., the first search

Summary

- LHCb has an extensive program on EW precision measurement, only a list of the most recent results are shown here, the whole list can be seen at this <u>link</u>
- LHCb can provide very useful data to further tune the generators, understand QCD and EW effects and provide important and unique information to the PDFs global fitting
- What can be expected (soon?)
 - Weak mixing angle with full Run-II dataset
 - W boson mass with full Run-II dataset
 - Test of lepton universality with $\frac{B(W \to \tau \nu_{\tau})}{B(W \to \mu \nu_{\mu})}$

Back Up

Bore-Mulders TMD PDF

- Bore-Mulders function Phys. Rev. D 57 (1998), 5780
 - Describes a correlation between a transversely polarized quark (antiquark) in an unpolarized proton and the quarks' own nonperturbative momentum with the proton
 - Lead to an azimuthal $\cos(2\theta)$ dependence in Drell-Yan

- Transvers Momentum Dependent PDFs: TMD
 - The general PDFs describes the parton inside a proton
 - Admit a finite quark transverse momentum k_T
 - Correlation between parton momentum and hadron spin

Z Double Differential Cross-Section

- The first double differential crosssection measurement in the forward region
- No significant deviations are seen between measurements and the theoretical predictions

2023-03-23

A_i at LHCb - y Dependent

- Reasonable agreement between the measurements and ResBos calculations for A_0 to ΔA_4
- $A_0 A_2$: differences between measurements and predictions, especially in the highest y region
 - Indicate a y dependence in the QCD resummation or higher-order effects

W and Z Rare Decays - Fitting

arXiv:2212.07120

2023-03-23

W and Z Rare Decays - Uncertainties

arXiv:2212.07120

Source	$Z \rightarrow D^0 \gamma ~(\%)$	$W^+ \rightarrow D_s^+ \gamma \ (\%)$	_
Meson BF	0.76	1.86	_
Normalization	0.96	3.08	$\mathcal{R}(Z) < 6.4 \times 10^{-2} \text{ at } 95\% \text{ C.L.},$
Dalitz	-	0.24	$\mathcal{R}(W) < 6.1 \times 10^{-3} \text{ at } 95\% \text{ C.L.}$
MC sample size	0.11	0.09	\mathbf{r}
PID	0.09	0.17	$\mathcal{B}(Z \to D^{5}\gamma) < 2.1 \times 10^{-3} \text{ at } 95\% \text{ C.L.},$
Photon ID	2.32	0.95 \mathcal{B}	$(W^+ \to D_s^+ \gamma) < 6.5 \times 10^{-4} \text{ at } 95\% \text{ C.L.},$
Calorimeter saturation	3.00	3.10	
Background	0.08	0.36	
Acceptance	0.57	0.82	Prediction:
PV association	0.57	0.29	• $\mathcal{B}(W^+ \rightarrow D_s^+ \gamma) < 3.7 \times 10^{-8}$
Resolution	0.20	0.09	$\circ \mathcal{B}(Z \to D^0 \gamma) \sim \mathcal{O}(10^{-5})$
Total	4.04	4.88	