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Tired of waiting for S**Y*? Buy this now!

| am selling WW, WZ and ZZ final states because they can be used to
study interesting physics.

Why these? Massive spin-1 objects have 3 polarization modes, hence
are quantum 3-level systems — qutrits. These are rarer than qubits
which are commonly used in these studies (e, 7, t...)

What can you do with these? At least 3 things:

» Test guantum mechanics with Bell inequalities in a novel
setting

> Test the presence of/quantify entanglement in a novel setting

> Test the Standard Model through new observables®

How much does it cost?

» Experimentalists: a precise measurement of W and Z
polarizations

> Theoreticians: pen(s), paper(s) and patience

“preliminary results, use at your own risk
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e The density operator p is a positive operator such that Tr(p)=1. We can
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What are you talking about anyway?!?

e The density operator p is a positive operator such that Tr(p)=1. We can
always write

pV: ZPH%N%\ : pi >0, sz'zl

=

being a state of the Hilbert space ‘H on which p acts.

| ¢ Given a density operator p and an observable O, we compute
|  expectation values/ensemble averages as: (O) = Tr(pO)

\\ Now, p; = |¥;XV;| is by itself the density operator of the pure state |¥;)
\_(and also a projector), so:
> The convex\c:ombination of density matrices is a density matrix
> We can tell apart pure states from mixtures by looking at the
purity: 1
dim(H)

<Tr(p’) <1

 The density operator of a qubit is a 2x2 matrix, of a qutrit a 3x3 and for
2 qutrits a 9x9 —plenty to compute, plenty to measure.
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e How do we measure p? W and Z are kind enough to act as their own
polarimeters when looking at /eptonic decays. For example, WW:
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miss

e So from the processes pp — Vi + Vo + X — £74™ + jets + EF
with cross section g, we need to measure

1 do a 4+ _ l do a — _ l// do a b + —
Jao = E/dsz—+p+dQ Ja = a/dQ—p—dQ hap =7 d0+ qq- P p-dird®

where dO* =sin6*dd* d¢* are the spherical angles with polar axes
defined by the charged lepton momenta in the rest frames of the W+ and
W-. The indices a,b=1...8 and pal) are known functions of the angles

* Once fa, ga, and hap are inferred from data:

1
o M) = (=[1®1 1o T T @1 w|T* T
P(A1; AT, A2, Ag) (9[ ® ]+za:f[ ® Hza:g 7" ® ]+%;hb “ M A2,

where Tab) gre the Gell-Mann matrices
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* To obtain the density matrix for a sample of gauge boson pairs
produced in a repeated interaction with amplitude M use
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/
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where |[M?|is the squared amplitude summed over the polarizations




How do you compute this?

Wave vector of a spin-boson of mass M momentum p and helicity A:

1

£ (p, \) = \@|)\|()\n’f+in§)+(1—|>\|)n§‘, (A\=0,+1,-1)

where ni# track the 3 polarization directions as seen from the CoM
frame of the process.

The density matrix of one spin-boson is then

v 1 1 p,upy 2 176% 1 v
2 ) = p, N (p,N) = - (—g“ + )5»\/——6“ Bpanﬁ (Si)xn — z15 1Y (Sij)

3 M? 2M

DO | —

with Si being the 3x3 spin matrices and Si; = S:S; + S;S; — gn Oij

To obtain the density matrix for a sample of gauge boson pairs

produced in a repeated interaction with amplitude M use

MM,
Tkttt

/

p(A1, A}, Ag, A\S) = Z (p1) P55 x, (P2)  (convex combination of 2 p)

p,p’ v,
where |[M?|is the squared amplitude summed over the polarizations

Finally: — fo= T [p@aT)], ga= g Te[p(T* 0 1)), hy =T [o (170 T")]



Ok, and then?

e \We test a suitable instance of Bell inequality tailored to qutrits—Collins-

Gisin-Linden-Massar-Popescu inequality

I3 =Tr[pB] B (UeV)-B- (UaV)

(we optimize ‘B by using unitary matrices U, V)
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» Quantum mechanics: it can be 4 > T3 > 2

e As for entanglement: what is entanglement?

Entanglement is a property of entangled states: states that are NOT
separable. For instance, bipartite qubit states:

) =5 (00) = 101) +[10) = 11)) = Z=(10) + 1) & Z=(10) = 1)) not entangled
, 1
[47) = 7 (100) +[11)) very entangled

Measuring the entanglement is generally very complicated!
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The entropy of entanglement is an entanglement measure
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— — (A, B are the two subsystems with
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* For bipartite pure states it’s easy: use the entropy of entanglement

— — (A, B are the two subsystems with
6@['0 ] Ir [p 4 log P A] Ir ['0 B log p B] reduced density matrices pa and pg)

The entropy of entanglement is an entanglement measure

* For bipartite mixed states: use the concurrence, if you can...

> This is only an entanglement witness (says yes/no but not how much)

> Finding the concurrence of a mixed state involves an optimization
problem -

p= il (¥

Sopclu] v = /2 (1 - Te[(p)?])

— wﬂ i r=Aor B

too complicated to compute this for qutrits. We use instead the lower
bound %5

(Clo))* = Galp]  Galp] = 2max (0, Tr[p°] = Tr [(pa)?], Tr[p?] — Tr [(pB)2]) <

Q| >

e To cut it short:

> If &>0 or %5 >0 the two subsystems (i.e. bosons) are entangled
> If 73 >2 we disprove local deterministic models
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A Higgs boson walks into a bar and...

...decays to WW~* or ZZ*: H — V(k1, A1) V*(ka, A2)

We model the off-shell fields as having a mass

where O<f<1 and My is the on-shell mass

My = fMy

W

* We grind through the computations and obtain in both the cases

something like:

pPH = 2

0
0
0
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2
1 m2 — (1+ f2)ME]
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A Higgs boson walks into a bar and...

...decays to WW~* or ZZ*: H — V(k1, A1) V*(ka, A2)

kl kl
We model the off-shell fields as having a mass / /
M = fMy g - - H
where 0<f<1 and My is the on-shell mass kg\\ kx

* We grind through the computations and obtain in both the cases
something like:

00 0 0 0 0 0 00 - FME| = m¥ + (1 + )M ]
00 0 0 0 0 0 00 O 21 2)mE M2+ (1+ 1042 + fHME
00 hyy O hig O ha 0 0
00 0 0O O 0 0 00 5 v 212
mz — (1+ f2)M
pH=2 0 0O h16 0 2h33 0 h16 0 O h33:1 1 [2H2 5 V} 5 1 1
00 0 0 0 0 0 00 4 mi —2(1+ f2)ym%, MZ + (1 + 10f% + fHME
00 hygy O hig O hay 0 0
00 0 0 0 0 0 00 has — 2> My
\0 O 0 0 0O 0 0 0 0) my; — 2(1 4 f2)m3 Mg + (1 +10f2 + f4) My,

o Check purity: Tr(p7) =1 = pu = |¥u)¥y|, the bosons form a pure state!



...and this pure state explicitly is:

1
V2 + 32

Vh) = |+=) = >[00) + [—+)]




...and this pure state explicitly is:

B 1 o omy — (14 f)PME
|\IJH>—m[|+—>—%\OO>+|—+>] w=1+ -4 2T

e For pure states we can use entropy to quantify entanglement
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We can see that the polarizations of the two gauge bosons are entangled
barring for the case where the off-shell boson is effectively massless. The
entanglement reaches the maximally allowed value (In3) for gauge bosons
produced at rest.



* A touch of new physics: allow for anomalous HWW couplings
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and then check how the entanglement entropy changes. For instance let
AWvary and set the remaining deformations of the SM to vanish



e A touch of new physics: allow for anomalous HWW couplings

g H 9 )‘Il/v + 147 — KV W +V QU — XTC/JVP + 17 —pv
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and then check how the entanglement entropy changes. For instance let
AWvary and set the remaining deformations of the SM to vanish
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entanglement (and p in general) as a new observable for new physics???
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e | et’s see if we see it. Madgraph tells us the cross sections of
pp — H — Z0T0~

pp — H —

L@f%7€__i?g

and with a 70% efficiency for the identification of each charged lepton

we have: Az Y7 VYA A
LHC run2 (£ =140 fb™ 1) 4571 28
Hi-Lumi (£ =3ab ) 9.8 x 103 589
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o Statistical error: modeled in a gaussian distribution of the di-boson
invariant mass (meaning f) with dispersion controlled by #events

e For the WW channel, we add a 5 GeV systematic error in the
“reconstruction” of v momenta and propagate this to the di-boson

Invariant mass

e We then sample 75 and compute the significance to reject 75 < 2

Ze=7 | Hcrun2 | Hi-Lumi

The systematic error
dominates WW*

ZL* 1.3 5.6 ZZ* quite promising!

In line with the results obtained from MC analyses

e All very nice but a true estimate of the significance requires a dedicated full
simulation! ....just sayin’....



Other processes”

* We looked also at pp—...

(u,
1) U'}
ky’
vy
kQ\«
d) W
d) U}
ky’
Z

d

WZ

/7

(‘(l. d) Z;z

(u, d) Z,

(a, d) Z,

(u, d) Zy



Other processes”

* We looked also at pp—...

/7

(u, d) Zy,

(u, d) Zy,

(a, d) Zy

(u, d) Zy



Other processes”

* We looked also at pp—...

(u, d)

(u, d)

(a, d)

/7

(u, d)



Other processes”

e We looked also at pp—...
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(all true also for WW and WZ2)
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 The most promising process for testing Bell inequalities with qutrits is
the resonant Higgs boson decay p p = H = ZZ. The WW channel could
become competitive if progress in the reconstruction of neutrino
momenta is made

e Electroweak quark fusion yielding ZZ final states will become
competitive only with LHC Hi-Lumi data. Future lepton colliders are able
to probe Bell inequalities with WW and ZZ final states

* The entanglement content of a di-boson state can be effectively probed
by quantifying the entanglement entropy or the concurrence of the
system. These observables could be employed for BSM searches.

e Dear experimentalists, please:

> look into reconstructing the density matrix of these di-boson systems
> get better at dealing with neutrino momenta

> please please please perform full simulations of these processes so
we learn the actual significances.

cnee’®



