Testing Bell Inequalities and entanglement with diboson final states

Luca Marzola
luca.marzola@cern.ch

Based on: "Bell inequalities and quantum entanglement in weak gauge bosons production at the LHC and future colliders", M. Fabbrichesi, R. Floreanini, E. Gabrielli, LM. - arXiv: 2302.00683

Tired of waiting for $S^{\star *} Y$? Buy this now!

I am selling WW, WZ and ZZ final states because they can be used to study interesting physics.

Tired of waiting for $S^{* *} Y$? Buy this now!

I am selling WW, WZ and ZZ final states because they can be used to study interesting physics.

- Why these? Massive spin-1 objects have 3 polarization modes, hence are quantum 3 -level systems - qutrits. These are rarer than qubits which are commonly used in these studies (e, $\gamma, \mathrm{t} . .$.)

Tired of waiting for $S^{\star *} Y$? Buy this now!

I am selling WW, WZ and ZZ final states because they can be used to study interesting physics.

- Why these? Massive spin-1 objects have 3 polarization modes, hence are quantum 3-level systems - qutrits. These are rarer than qubits which are commonly used in these studies (e, $\gamma, \mathrm{t} . .$.)
- What can you do with these? At least 3 things:
- Test quantum mechanics with Bell inequalities in a novel setting

Tired of waiting for $S^{\star *} Y$? Buy this now!

I am selling WW, WZ and ZZ final states because they can be used to study interesting physics.

- Why these? Massive spin-1 objects have 3 polarization modes, hence are quantum 3-level systems - qutrits. These are rarer than qubits which are commonly used in these studies (e, $\gamma, \mathrm{t} . .$.)
- What can you do with these? At least 3 things:
- Test quantum mechanics with Bell inequalities in a novel setting
- Test the presence of/quantify entanglement in a novel setting

Tired of waiting for $S^{\star *} Y$? Buy this now!

I am selling WW, WZ and ZZ final states because they can be used to study interesting physics.

- Why these? Massive spin-1 objects have 3 polarization modes, hence are quantum 3-level systems - qutrits. These are rarer than qubits which are commonly used in these studies (e, $\gamma, \mathrm{t} . .$.)
- What can you do with these? At least 3 things:
- Test quantum mechanics with Bell inequalities in a novel setting
- Test the presence of/quantify entanglement in a novel setting
- Test the Standard Model through new observables*

Tired of waiting for $S^{\star *} Y$? Buy this now!

I am selling WW, WZ and ZZ final states because they can be used to study interesting physics.

- Why these? Massive spin-1 objects have 3 polarization modes, hence are quantum 3-level systems - qutrits. These are rarer than qubits which are commonly used in these studies (e, $\gamma, \mathrm{t} . .$.)
- What can you do with these? At least 3 things:
- Test quantum mechanics with Bell inequalities in a novel setting
- Test the presence of/quantify entanglement in a novel setting
- Test the Standard Model through new observables*
- How much does it cost?
- Experimentalists: a precise measurement of W and Z polarizations
- Theoreticians: pen(s), paper(s) and patience

What are you talking about anyway?!?

- The density operator ρ is a positive operator such that $\operatorname{Tr}(\rho)=1$. We can always write

$$
\rho=\sum_{i} p_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1
$$

with $\left|\Psi_{i}\right\rangle$ being a state of the Hilbert space \mathcal{H} on which ρ acts.

What are you talking about anyway?!?

- The density operator ρ is a positive operator such that $\operatorname{Tr}(\rho)=1$. We can always write

$$
\rho=\sum_{i} p_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1
$$

with $\left|\Psi_{i}\right\rangle$ being a state of the Hilbert space \mathcal{H} on which ρ acts.

- Given a density operator ρ and an observable O, we compute expectation values/ensemble averages as: $\langle O\rangle=\operatorname{Tr}(\rho O)$

What are you talking about anyway?!?

- The density operator ρ is a positive operator such that $\operatorname{Tr}(\rho)=1$. We can always write

$$
\rho=\sum_{i} p_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1
$$

with $\left|\Psi_{i}\right\rangle$ being a state of the Hilbert space \mathcal{H} on which ρ acts.

- Given a density operator ρ and an observable O, we compute expectation values/ensemble averages as: $\langle O\rangle=\operatorname{Tr}(\rho O)$
- Now, $\rho_{i}=\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|$ is by itself the density operator of the pure state $\left|\Psi_{i}\right\rangle$ (and also a projector), so:
- The convex combination of density matrices is a density matrix
- We can tell apart pure states from mixtures by looking at the purity:

$$
\frac{1}{\operatorname{dim}(\mathcal{H})} \leq \operatorname{Tr}\left(\rho^{2}\right) \leq 1
$$

What are you talking about anyway?!?

- The density operator ρ is a positive operator such that $\operatorname{Tr}(\rho)=1$. We can always write

$$
\rho=\sum_{i} p_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1
$$

with $\left|\Psi_{i}\right\rangle$ being a state of the Hilbert space \mathcal{H} on which ρ acts.

- Given a density operator ρ and an observable O, we compute expectation values/ensemble averages as: $\langle O\rangle=\operatorname{Tr}(\rho O)$
- Now, $\rho_{i}=\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|$ is by itself the density operator of the pure state $\left|\Psi_{i}\right\rangle$ (and also a projector), so:
- The convex combination of density matrices is a density matrix
- We can tell apart pure states from mixtures by looking at the purity:

$$
\frac{1}{\operatorname{dim}(\mathcal{H})} \leq \operatorname{Tr}\left(\rho^{2}\right) \leq 1
$$

- The density operator of a qubit is a 2×2 matrix, of a qutrit a 3×3 and for 2 qutrits a $9 x 9$ - plenty to compute, plenty to measure.

Real life problems

- How do we measure ρ ? W and Z are kind enough to act as their own polarimeters when looking at leptonic decays. For example, WW:

Real life problems

- How do we measure ρ ? W and Z are kind enough to act as their own polarimeters when looking at leptonic decays. For example, WW:

- So from the processes $p p \rightarrow V_{1}+V_{2}+X \rightarrow \ell^{+} \ell^{-}+$jets $+E_{T}^{\text {miss }}$ with cross section σ, we need to measure
$f_{a}=\frac{1}{\sigma} \int \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega^{+}} \mathfrak{p}_{+}^{a} \mathrm{~d} \Omega^{+} \quad g_{a}=\frac{1}{\sigma} \int \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega^{-}} \mathfrak{p}_{-}^{a} \mathrm{~d} \Omega^{-} \quad h_{a b}=\frac{1}{\sigma} \iint \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega^{+} \mathrm{d} \Omega^{-}} \mathfrak{p}_{+}^{a} \mathfrak{p}_{-}^{b} \mathrm{~d} \Omega^{+} \mathrm{d} \Omega^{-}$
where $\mathrm{d} \Omega^{ \pm}=\sin \theta^{ \pm} \mathrm{d} \theta^{ \pm} \mathrm{d} \phi^{ \pm}$are the spherical angles with polar axes defined by the charged lepton momenta in the rest frames of the W^{+}and W^{-}. The indices $a, b=1 \ldots 8$ and $\mathfrak{p}^{a(b)}$ are known functions of the angles

Real life problems

- How do we measure ρ ? W and Z are kind enough to act as their own polarimeters when looking at leptonic decays. For example, WW:

- So from the processes $p p \rightarrow V_{1}+V_{2}+X \rightarrow \ell^{+} \ell^{-}+$jets $+E_{T}^{\text {miss }}$ with cross section σ, we need to measure
$f_{a}=\frac{1}{\sigma} \int \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega^{+}} \mathfrak{p}_{+}^{a} \mathrm{~d} \Omega^{+} \quad g_{a}=\frac{1}{\sigma} \int \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega^{-}} \mathfrak{p}_{-}^{a} \mathrm{~d} \Omega^{-} \quad h_{a b}=\frac{1}{\sigma} \iint \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega^{+} \mathrm{d} \Omega^{-}} \mathfrak{p}_{+}^{a} \mathfrak{p}_{-}^{b} \mathrm{~d} \Omega^{+} \mathrm{d} \Omega^{-}$
where $\mathrm{d} \Omega^{ \pm}=\sin \theta^{ \pm} \mathrm{d} \theta^{ \pm} \mathrm{d} \phi^{ \pm}$are the spherical angles with polar axes defined by the charged lepton momenta in the rest frames of the W^{+}and W^{-}. The indices $a, b=1 \ldots 8$ and $\mathfrak{p}^{a(b)}$ are known functions of the angles
- Once f_{a}, g_{a}, and $h_{a b}$ are inferred from data:

$$
\rho\left(\lambda_{1}, \lambda_{1}^{\prime}, \lambda_{2}, \lambda_{2}^{\prime}\right)=\left(\frac{1}{9}[\mathbb{1} \otimes \mathbb{1}]+\sum_{a} f_{a}\left[\mathbb{1} \otimes T^{a}\right]+\sum_{a} g_{a}\left[T^{a} \otimes \mathbb{1}\right]+\sum_{a b} h_{a b}\left[T^{a} \otimes T^{b}\right]\right)_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}}
$$

where $T^{a(b)}$ are the Gell-Mann matrices

How do you compute this?

- Wave vector of a spin-boson of mass M momentum p and helicity λ :

$$
\varepsilon^{\mu}(p, \lambda)=-\frac{1}{\sqrt{2}}|\lambda|\left(\lambda n_{1}^{\mu}+i n_{2}^{\mu}\right)+(1-|\lambda|) n_{3}^{\mu}, \quad(\lambda=0,+1,-1)
$$

where $n_{i}{ }^{\mu}$ track the 3 polarization directions as seen from the CoM frame of the process.

How do you compute this?

- Wave vector of a spin-boson of mass M momentum p and helicity λ :

$$
\varepsilon^{\mu}(p, \lambda)=-\frac{1}{\sqrt{2}}|\lambda|\left(\lambda n_{1}^{\mu}+i n_{2}^{\mu}\right)+(1-|\lambda|) n_{3}^{\mu}, \quad(\lambda=0,+1,-1)
$$

where n_{j} track the 3 polarization directions as seen from the CoM frame of the process.

- The density matrix of one spin-boson is then
$\mathscr{P}_{\lambda \lambda^{\prime}}^{\mu \nu}(p)=\varepsilon^{\mu}(p, \lambda)^{\star} \varepsilon^{\nu}\left(p, \lambda^{\prime}\right)=\frac{1}{3}\left(-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{M^{2}}\right) \delta_{\lambda \lambda^{\prime}}-\frac{i}{2 M} \epsilon^{\mu \nu \alpha \beta} p_{\alpha} n_{\beta}^{i}\left(S_{i}\right)_{\lambda \lambda^{\prime}}-\frac{1}{2} n_{i}^{\mu} n_{j}^{\nu}\left(S_{i j}\right)_{\lambda \lambda^{\prime}}$
with S_{i} being the 3×3 spin matrices and $S_{i j}=S_{i} S_{j}+S_{j} S_{i}-\frac{4}{3} \mathbb{1} \delta_{i j}$

How do you compute this?

- Wave vector of a spin-boson of mass M momentum p and helicity λ :

$$
\varepsilon^{\mu}(p, \lambda)=-\frac{1}{\sqrt{2}}|\lambda|\left(\lambda n_{1}^{\mu}+i n_{2}^{\mu}\right)+(1-|\lambda|) n_{3}^{\mu}, \quad(\lambda=0,+1,-1)
$$

where n_{j} track the 3 polarization directions as seen from the CoM frame of the process.

- The density matrix of one spin-boson is then
$\mathscr{P}_{\lambda \lambda^{\prime}}^{\mu \nu}(p)=\varepsilon^{\mu}(p, \lambda)^{\star} \varepsilon^{\nu}\left(p, \lambda^{\prime}\right)=\frac{1}{3}\left(-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{M^{2}}\right) \delta_{\lambda \lambda^{\prime}}-\frac{i}{2 M} \epsilon^{\mu \nu \alpha \beta} p_{\alpha} n_{\beta}^{i}\left(S_{i}\right)_{\lambda \lambda^{\prime}}-\frac{1}{2} n_{i}^{\mu} n_{j}^{\nu}\left(S_{i j}\right)_{\lambda \lambda^{\prime}}$
with S_{i} being the 3×3 spin matrices and $S_{i j}=S_{i} S_{j}+S_{j} S_{i}-\frac{4}{3} \mathbb{1} \delta_{i j}$
- To obtain the density matrix for a sample of gauge boson pairs produced in a repeated interaction with amplitude \mathcal{M} use
where $\left|\overline{\mathcal{M}}^{2}\right|$ is the squared amplitude summed over the polarizations

How do you compute this?

- Wave vector of a spin-boson of mass M momentum p and helicity λ :

$$
\varepsilon^{\mu}(p, \lambda)=-\frac{1}{\sqrt{2}}|\lambda|\left(\lambda n_{1}^{\mu}+i n_{2}^{\mu}\right)+(1-|\lambda|) n_{3}^{\mu}, \quad(\lambda=0,+1,-1)
$$

where n_{j} track the 3 polarization directions as seen from the CoM frame of the process.

- The density matrix of one spin-boson is then
$\mathscr{P}_{\lambda \lambda^{\prime}}^{\mu \nu}(p)=\varepsilon^{\mu}(p, \lambda)^{\star} \varepsilon^{\nu}\left(p, \lambda^{\prime}\right)=\frac{1}{3}\left(-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{M^{2}}\right) \delta_{\lambda \lambda^{\prime}}-\frac{i}{2 M} \epsilon^{\mu \nu \alpha \beta} p_{\alpha} n_{\beta}^{i}\left(S_{i}\right)_{\lambda \lambda^{\prime}}-\frac{1}{2} n_{i}^{\mu} n_{j}^{\nu}\left(S_{i j}\right)_{\lambda \lambda^{\prime}}$
with S_{i} being the 3×3 spin matrices and $S_{i j}=S_{i} S_{j}+S_{j} S_{i}-\frac{4}{3} \mathbb{1} \delta_{i j}$
- To obtain the density matrix for a sample of gauge boson pairs produced in a repeated interaction with amplitude \mathcal{M} use
where $\left|\overline{\mathcal{M}}^{2}\right|$ is the squared amplitude summed over the polarizations
- Finally:

$$
f_{a}=\frac{1}{6} \operatorname{Tr}\left[\rho\left(\mathbb{1} \otimes T^{a}\right)\right], \quad g_{a}=\frac{1}{6} \operatorname{Tr}\left[\rho\left(T^{a} \otimes \mathbb{1}\right)\right], \quad h_{a b}=\frac{1}{4} \operatorname{Tr}\left[\rho\left(T^{a} \otimes T^{b}\right)\right]
$$

Ok, and then?

- We test a suitable instance of Bell inequality tailored to qutrits-Collins-Gisin-Linden-Massar-Popescu inequality
D. Collins, N. Gisin, N. Linden, S. Massar and S. Popescu,
Phys. Rev. Lett. 88, 040404 (2002)

$$
\mathcal{I}_{3}=\operatorname{Tr}[\rho \mathcal{B}] \quad \mathcal{B} \rightarrow(U \otimes V)^{\dagger} \cdot \mathcal{B} \cdot(U \otimes V)
$$

(we optimize \mathcal{B} by using unitary matrices U, V)

$$
\mathcal{B}=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 2 & 0 & 0 \\
0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 \\
0 & 0 & 2 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Ok, and then?

- We test a suitable instance of Bell inequality tailored to qutrits-Collins-Gisin-Linden-Massar-Popescu inequality
D.Collins, N. Gisin, N. Linden, S. Massar and S. Popescu,

Phys. Rev. Lett. 88, 040404 (2002)

$$
\mathcal{I}_{3}=\operatorname{Tr}[\rho \mathcal{B}] \quad \mathcal{B} \rightarrow(U \otimes V)^{\dagger} \cdot \mathcal{B} \cdot(U \otimes V)
$$

(we optimize \mathcal{B} by using unitary matrices U, V)

$$
\mathcal{B}=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 2 & 0 & 0 \\
0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 \\
0 & 0 & 2 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Ok, and then?

- We test a suitable instance of Bell inequality tailored to qutrits-Collins-Gisin-Linden-Massar-Popescu inequality
D.Collins, N. Gisin, N. Linden, S. Massar and S. Popescu,

Phys. Rev. Lett. 88, 040404 (2002)

$$
\mathcal{I}_{3}=\operatorname{Tr}[\rho \mathcal{B}] \quad \mathcal{B} \rightarrow(U \otimes V)^{\dagger} \cdot \mathcal{B} \cdot(U \otimes V)
$$

(we optimize \mathcal{B} by using unitary matrices U, V)

- Deterministic local theory: always $\mathcal{I}_{3} \leq 2$
- Quantum mechanics: it can be $4 \geq \mathcal{I}_{3}>2$

$$
\mathcal{B}=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 2 & 0 & 0 \\
0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 \\
0 & 0 & 2 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Ok, and then?

- We test a suitable instance of Bell inequality tailored to qutrits-Collins-Gisin-Linden-Massar-Popescu inequality
D.Collins, N. Gisin, N. Linden, S. Massar and S. Popescu,

Phys. Rev. Lett. 88, 040404 (2002)

$$
\mathcal{I}_{3}=\operatorname{Tr}[\rho \mathcal{B}] \quad \mathcal{B} \rightarrow(U \otimes V)^{\dagger} \cdot \mathcal{B} \cdot(U \otimes V)
$$

(we optimize \mathcal{B} by using unitary matrices U, V

- Deterministic local theory: always $\mathcal{I}_{3} \leq 2$
- Quantum mechanics: it can be $4 \geq \mathcal{I}_{3}>2$
$\mathcal{B}=\left(\begin{array}{ccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 2 & 0 & 0 \\ 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 \\ 0 & 0 & 2 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{2}{\sqrt{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
A. Acin, T. Durt, N. Gisin and J. I. Latorre,

Phys. Rev. A 65, 052325 (2002)

- As for entanglement: what is entanglement?

Entanglement is a property of entangled states: states that are NOT separable. For instance, bipartite qubit states:
$|\psi\rangle=\frac{1}{2}(|00\rangle-|01\rangle+|10\rangle-|11\rangle)=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$ not entangled
$\left|\psi^{\prime}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ very entangled
Measuring the entanglement is generally very complicated!

- For bipartite pure states it's easy: use the entropy of entanglement

$$
\mathscr{E}[\rho]=-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right]=-\operatorname{Tr}\left[\rho_{B} \log \rho_{B}\right] \quad \begin{gathered}
(A, B \text { are the two subsystems with } \\
\text { reduced densitv matrices } \left.\rho_{A} \text { and } \rho_{B}\right)
\end{gathered}
$$

The entropy of entanglement is an entanglement measure

- For bipartite pure states it's easy: use the entropy of entanglement

$$
\mathscr{E}[\rho]=-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right]=-\operatorname{Tr}\left[\rho_{B} \log \rho_{B}\right] \quad \begin{gathered}
(A, B \text { are the two subsystems with } \\
\text { reduced density matrices } \left.\rho_{A} \text { and } \rho_{B}\right)
\end{gathered}
$$

The entropy of entanglement is an entanglement measure

- For bipartite mixed states: use the concurrence, if you can...
- This is only an entanglement witness (says yes/no but not how much)
- For bipartite pure states it's easy: use the entropy of entanglement

$$
\mathscr{E}[\rho]=-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right]=-\operatorname{Tr}\left[\rho_{B} \log \rho_{B}\right] \quad \begin{gathered}
(A, B \text { are the two subsystems with } \\
\text { reduced density matrices } \left.\rho_{A} \text { and } \rho_{B}\right)
\end{gathered}
$$

The entropy of entanglement is an entanglement measure

- For bipartite mixed states: use the concurrence, if you can...
- This is only an entanglement witness (says yes/no but not how much)
- Finding the concurrence of a mixed state involves an optimization problem

$$
\left.\left.\rho=\sum_{i} p_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right| \quad \mathcal{C}[\rho]=\inf ^{\mathcal{C}}|\Psi\rangle\right\}\right\rangle \sum_{i} p_{i} \mathcal{C}\left[\left|\Psi_{i}\right\rangle\right]
$$

$$
\begin{array}{r}
\mathcal{C}[|\Psi\rangle]=\sqrt{2\left(1-\operatorname{Tr}\left[\left(\rho_{r}\right)^{2}\right]\right)} \\
r=A \text { or } B
\end{array}
$$

- For bipartite pure states it's easy: use the entropy of entanglement

$$
\mathscr{E}[\rho]=-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right]=-\operatorname{Tr}\left[\rho_{B} \log \rho_{B}\right] \quad \begin{gathered}
(A, B \text { are the two subsystems with } \\
\text { reduced density matrices } \left.\rho_{A} \text { and } \rho_{\mathrm{B}}\right)
\end{gathered}
$$

The entropy of entanglement is an entanglement measure

- For bipartite mixed states: use the concurrence, if you can...
- This is only an entanglement witness (says yes/no but not how much)
- Finding the concurrence of a mixed state involves an optimization problem

$$
\rho=\sum_{i} p_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right| \quad \mathcal{C}[\rho]=\inf _{\{|\Psi\rangle\}} \sum_{i} p_{i} \mathcal{C}\left[\left|\Psi_{i}\right\rangle\right]
$$

$$
\begin{array}{r}
\mathcal{C}[|\Psi\rangle]=\sqrt{2\left(1-\operatorname{Tr}\left[\left(\rho_{r}\right)^{2}\right]\right)} \\
r=A \text { or } B
\end{array}
$$

too complicated to compute this for qutrits. We use instead the lower bound \mathscr{C}_{2}

$$
(\mathcal{C}[\rho])^{2} \geq \mathscr{C}_{2}[\rho] \quad \mathscr{C}_{2}[\rho]=2 \max \left(0, \operatorname{Tr}\left[\rho^{2}\right]-\operatorname{Tr}\left[\left(\rho_{A}\right)^{2}\right], \operatorname{Tr}\left[\rho^{2}\right]-\operatorname{Tr}\left[\left(\rho_{B}\right)^{2}\right]\right) \leq \frac{4}{3}
$$

- For bipartite pure states it's easy: use the entropy of entanglement

$$
\mathscr{E}[\rho]=-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right]=-\operatorname{Tr}\left[\rho_{B} \log \rho_{B}\right] \quad \begin{gathered}
(A, B \text { are the two subsystems with } \\
\text { reduced density matrices } \left.\rho_{A} \text { and } \rho_{\mathrm{B}}\right)
\end{gathered}
$$

The entropy of entanglement is an entanglement measure

- For bipartite mixed states: use the concurrence, if you can...
- This is only an entanglement witness (says yes/no but not how much)
- Finding the concurrence of a mixed state involves an optimization problem

$$
\rho=\sum_{i} p_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right| \quad \mathcal{C}[\rho]=\inf _{\{|\Psi\rangle\}} \sum_{i} p_{i} \mathcal{C}\left[\left|\Psi_{i}\right\rangle\right]
$$

$$
\mathcal{C}[|\Psi\rangle]=\sqrt{2\left(1-\operatorname{Tr}\left[\left(\rho_{r}\right)^{2}\right]\right)}
$$

too complicated to compute this for qutrits. We use instead the lower bound \mathscr{C}_{2}

$$
(\mathcal{C}[\rho])^{2} \geq \mathscr{C}_{2}[\rho] \quad \mathscr{C}_{2}[\rho]=2 \max \left(0, \operatorname{Tr}\left[\rho^{2}\right]-\operatorname{Tr}\left[\left(\rho_{A}\right)^{2}\right], \operatorname{Tr}\left[\rho^{2}\right]-\operatorname{Tr}\left[\left(\rho_{B}\right)^{2}\right]\right) \leq \frac{4}{3}
$$

- To cut it short:
- If $\mathscr{E}>0$ or $\mathscr{C}_{2}>0$ the two subsystems (i.e. bosons) are entangled
- If $\mathcal{I}_{3}>2$ we disprove local deterministic models

A Higgs boson walks into a bar and...

...decays to $\mathbf{W W}^{*}$ or $\mathbf{Z Z}^{*}: ~ H \rightarrow V\left(k_{1}, \lambda_{1}\right) V^{*}\left(k_{2}, \lambda_{2}\right)$

We model the off-shell fields as having a mass

$$
M_{V}^{*}=f M_{V}
$$

where $0<f<1$ and $M v$ is the on-shell mass

A Higgs boson walks into a bar and...

...decays to $\mathbf{W W}^{*}$ or $\mathbf{Z Z}^{*}: ~ H \rightarrow V\left(k_{1}, \lambda_{1}\right) V^{*}\left(k_{2}, \lambda_{2}\right)$

We model the off-shell fields as having a mass

$$
M_{V}^{*}=f M_{V}
$$

where $0<f<1$ and M_{v} is the on-shell mass

- We grind through the computations and obtain in both the cases something like:

$$
\rho_{H}=2\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{44} & 0 & h_{16} & 0 & h_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{16} & 0 & 2 h_{33} & 0 & h_{16} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{44} & 0 & h_{16} & 0 & h_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& h_{16}=\frac{f M_{V}^{2}\left[-m_{H}^{2}+\left(1+f^{2}\right) M_{V}^{2}\right]}{m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+10 f^{2}+f^{4}\right) M_{V}^{4}} \\
& h_{33}=\frac{1}{4} \frac{\left[m_{H}^{2}-\left(1+f^{2}\right) M_{V}^{2}\right]^{2}}{m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+10 f^{2}+f^{4}\right) M_{V}^{4}} \\
& h_{44}=\frac{2 f^{2} M_{V}^{4}}{m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+10 f^{2}+f^{4}\right) M_{V}^{4}}
\end{aligned}
$$

A Higgs boson walks into a bar and...

...decays to $\mathbf{W W}^{\star}$ or $\mathbf{Z Z}^{*}: ~ H \rightarrow V\left(k_{1}, \lambda_{1}\right) V^{*}\left(k_{2}, \lambda_{2}\right)$

We model the off-shell fields as having a mass

$$
M_{V}^{*}=f M_{V}
$$

where $0<f<1$ and M_{v} is the on-shell mass

- We grind through the computations and obtain in both the cases something like:

$$
\rho_{H}=2\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{44} & 0 & h_{16} & 0 & h_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{16} & 0 & 2 h_{33} & 0 & h_{16} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{44} & 0 & h_{16} & 0 & h_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad h_{16}=\frac{f M_{V}^{2}\left[-m_{H}^{2}+\left(1+f^{2}\right) M_{V}^{2}\right]}{m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+10 f^{2}+f^{4}\right) M_{V}^{4}}
$$

- Check purity: $\operatorname{Tr}\left(\rho_{H}^{2}\right)=1 \Longrightarrow \rho_{H}=\left|\Psi_{H}\right\rangle\left\langle\Psi_{H}\right|$, the bosons form a pure state!
...and this pure state explicitly is:

$$
\left|\Psi_{H}\right\rangle=\frac{1}{\sqrt{2+\varkappa^{2}}}[|+-\rangle-\varkappa|00\rangle+|-+\rangle] \quad \varkappa=1+\frac{m_{H}^{2}-(1+f)^{2} M_{V}^{2}}{2 f M_{V}^{2}}
$$

....and this pure state explicitly is:

$$
\left|\Psi_{H}\right\rangle=\frac{1}{\sqrt{2+\varkappa^{2}}}[|+-\rangle-\varkappa|00\rangle+|-+\rangle] \quad \varkappa=1+\frac{m_{H}^{2}-(1+f)^{2} M_{V}^{2}}{2 f M_{V}^{2}}
$$

- For pure states we can use entropy to quantify entanglement

We can see that the polarizations of the two gauge bosons are entangled barring for the case where the off-shell boson is effectively massless. The entanglement reaches the maximally allowed value (In3) for gauge bosons produced at rest.

- A touch of new physics: allow for anomalous HWW couplings

$$
\begin{aligned}
\mathcal{L}_{H V V}= & g m_{W} W_{\mu}^{+} W^{-\mu} H+\frac{g}{2 \cos \theta_{W}} m_{Z} Z_{\mu} Z^{\mu} H-\frac{g}{m_{W}}\left[\frac{\lambda_{1}^{W}}{2} W_{\mu \nu}^{+} W^{-\mu \nu}+\lambda_{2}^{W}\left(W^{+\nu} \partial^{\mu} W_{\mu \nu}^{-}+\text {H.c. }\right)+\frac{\tilde{\lambda}_{C P}^{W}}{4} W_{\mu \nu}^{+} \widetilde{W}^{-\mu \nu}\right. \\
& \left.+\frac{\lambda_{1}^{Z}}{2} Z_{\mu \nu} Z^{\mu \nu}+\lambda_{2}^{Z} Z^{\nu} \partial^{\mu} Z_{\mu \nu}+\frac{\tilde{\lambda}_{C P}^{Z}}{4} Z_{\mu \nu} \widetilde{Z}^{\mu \nu}\right] H
\end{aligned}
$$

and then check how the entanglement entropy changes. For instance let $\lambda_{1}{ }^{W}$ vary and set the remaining deformations of the SM to vanish

- A touch of new physics: allow for anomalous HWW couplings

$$
\begin{aligned}
\mathcal{L}_{H V V}= & g m_{W} W_{\mu}^{+} W^{-\mu} H+\frac{g}{2 \cos \theta_{W}} m_{Z} Z_{\mu} Z^{\mu} H-\frac{g}{m_{W}}\left[\frac{\lambda_{1}^{W}}{2} W_{\mu \nu}^{+} W^{-\mu \nu}+\lambda_{2}^{W}\left(W^{+\nu} \partial^{\mu} W_{\mu \nu}^{-}+\text {H.c. }\right)+\frac{\widetilde{\lambda}_{C P}^{W}}{4} W_{\mu \nu}^{+} \widetilde{W}^{-\mu \nu}\right. \\
& \left.+\frac{\lambda_{1}^{Z}}{2} Z_{\mu \nu} Z^{\mu \nu}+\lambda_{2}^{Z} Z^{\nu} \partial^{\mu} Z_{\mu \nu}+\frac{\tilde{\lambda}_{C P}^{Z}}{4} Z_{\mu \nu} \widetilde{Z}^{\mu \nu}\right] H
\end{aligned}
$$

and then check how the entanglement entropy changes. For instance let $\lambda_{1}{ }^{w}$ vary and set the remaining deformations of the SM to vanish

entanglement (and p in general) as a new observable for new physics???

- Back to reality: Bell inequalities

Violation of the CGLMP inequality in both channels!

- Back to reality: Bell inequalities

Violation of the CGLMP inequality in both channels!

- Let's see if we see it. Madgraph tells us the cross sections of

$$
p p \rightarrow H \rightarrow W^{+} \ell^{-} \bar{\nu}_{\ell} \quad p p \rightarrow H \rightarrow Z \ell^{+} \ell^{-}
$$

and with a 70\% efficiency for the identification of each charged lepton we have:

$$
\ell^{+} \nu_{\ell} \ell^{-} \bar{\nu}_{\ell} \quad \ell^{-} \ell^{+} \ell^{-} \ell^{+}
$$

$\underline{\text { LHC run2 }}$	$\left(\mathcal{L}=140 \mathrm{fb}^{-1}\right)$	4571	28
$\underline{\text { Hi-Lumi }}$	$\left(\mathcal{L}=3 \mathrm{ab}^{-1}\right)$	9.8×10^{3}	589

- Statistical error: modeled in a gaussian distribution of the di-boson invariant mass (meaning f) with dispersion controlled by \#events
- Statistical error: modeled in a gaussian distribution of the di-boson invariant mass (meaning f) with dispersion controlled by \#events
- For the WW channel, we add a 5 GeV systematic error in the "reconstruction" of ν momenta and propagate this to the di-boson invariant mass
- Statistical error: modeled in a gaussian distribution of the di-boson invariant mass (meaning f) with dispersion controlled by \#events
- For the WW channel, we add a 5 GeV systematic error in the "reconstruction" of ν momenta and propagate this to the di-boson invariant mass
- We then sample \mathcal{I}_{3} and compute the significance to reject $\mathcal{I}_{3} \leq 2$

The systematic error dominates WW*

ZZ* quite promising!

In line with the results obtained from MC analyses

- Statistical error: modeled in a gaussian distribution of the di-boson invariant mass (meaning f) with dispersion controlled by \#events
- For the WW channel, we add a 5 GeV systematic error in the "reconstruction" of ν momenta and propagate this to the di-boson invariant mass
- We then sample \mathcal{I}_{3} and compute the significance to reject $\mathcal{I}_{3} \leq 2$

In line with the results obtained from MC analyses
Aguilar-Saavedra, Bernal, Casas, Moreno 2209.13441 [hep-ph]
A. Barr, PLB 825 (2022)

- All very nice but a true estimate of the significance requires a dedicated full simulation!just sayin'....

Other processes?

- We looked also at $\mathrm{pp} \rightarrow \ldots$

Other processes?

- We looked also at $\mathrm{pp} \rightarrow \ldots$

Other processes?

- We looked also at $\mathrm{pp} \rightarrow \ldots$

Other processes?

- We looked also at $\mathrm{pp} \rightarrow \ldots$

- The ZZ pair is always produced in a mixed state $\left(\operatorname{Tr}\left(\rho^{2}\right)<1\right)$
- We find $\mathcal{C}_{2}>0$ over all of the considered parameter space, witnessing that the two Z bosons are always entangled
(all true also for WW and WZ)

- The ZZ pair is always produced in a mixed state $\left(\operatorname{Tr}\left(\rho^{2}\right)<1\right)$
- We find $\mathrm{C}_{2}>0$ over all of the considered parameter space, witnessing that the two Z bosons are always entangled
(all true also for WW and WZ)

- The ZZ pair is always produced in a mixed state $\left(\operatorname{Tr}\left(\rho^{2}\right)<1\right)$
- We find $\mathrm{C}_{2}>0$ over all of the considered parameter space, witnessing that the two Z bosons are always entangled
(all true also for WW and WZ)

- The ZZ pair is always produced in a mixed state $\left(\operatorname{Tr}\left(\rho^{2}\right)<1\right)$
- We find $\mathrm{C}_{2}>0$ over all of the considered parameter space, witnessing that the two Z bosons are always entangled
(all true also for WW and WZ)

Bell inequalities @ future lepton colliders

Number of events after cuts and efficiency

		$\ell^{+} \nu_{\ell} \ell^{-} \bar{\nu}_{\ell}$	$\ell^{-} \ell^{+} \ell^{-} \ell^{+}$
muon	$\left(\mathcal{L}=1 \mathrm{ab}^{-1}\right)$	3.6×10^{3}	44
$\underline{\text { FCC }}$	$\left(\begin{array}{c}\mathcal{T e V}=1.5 \mathrm{ab}^{-1} \\ 364 \mathrm{GeV}\end{array}\right.$	5.8×10^{4}	748

Bell inequalities @ future lepton colliders

Number of events after cuts and efficiency

| | | $\ell^{+} \nu_{\ell} \ell^{-} \bar{\nu}_{\ell}$ |
| :---: | :---: | :---: |$\ell^{-} \ell^{+} \ell^{-} \ell^{+}$.

What to take home?

- The most promising process for testing Bell inequalities with qutrits is the resonant Higgs boson decay p p $\rightarrow H \rightarrow Z Z$. The WW channel could become competitive if progress in the reconstruction of neutrino momenta is made

What to take home?

- The most promising process for testing Bell inequalities with qutrits is the resonant Higgs boson decay p p $\rightarrow H \rightarrow Z Z$. The WW channel could become competitive if progress in the reconstruction of neutrino momenta is made
- Electroweak quark fusion yielding ZZ final states will become competitive only with LHC Hi-Lumi data. Future lepton colliders are able to probe Bell inequalities with WW and ZZ final states

What to take home?

- The most promising process for testing Bell inequalities with qutrits is the resonant Higgs boson decay p p $\rightarrow H \rightarrow Z Z$. The WW channel could become competitive if progress in the reconstruction of neutrino momenta is made
- Electroweak quark fusion yielding ZZ final states will become competitive only with LHC Hi-Lumi data. Future lepton colliders are able to probe Bell inequalities with WW and ZZ final states
- The entanglement content of a di-boson state can be effectively probed by quantifying the entanglement entropy or the concurrence of the system. These observables could be employed for BSM searches.

What to take home?

- The most promising process for testing Bell inequalities with qutrits is the resonant Higgs boson decay p p $\rightarrow H \rightarrow Z Z$. The WW channel could become competitive if progress in the reconstruction of neutrino momenta is made
- Electroweak quark fusion yielding ZZ final states will become competitive only with LHC Hi-Lumi data. Future lepton colliders are able to probe Bell inequalities with WW and ZZ final states
- The entanglement content of a di-boson state can be effectively probed by quantifying the entanglement entropy or the concurrence of the system. These observables could be employed for BSM searches.
- Dear experimentalists, please:
- look into reconstructing the density matrix of these di-boson systems
- get better at dealing with neutrino momenta
- please please please perform full simulations of these processes so we learn the actual significances.

