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• How much does it cost?

‣ Experimentalists: a precise measurement of W and Z 
polarizations
‣ Theoreticians: pen(s), paper(s) and patience



What are you talking about anyway?!?

Consider a bipartite quantum system comprising two subsystems of equal dimensionality, A and B,
described by a normalized pure state | i and density matrix | ih |. The concurrence of the system
is then defined as [27]

C[| i] =
q

2
�
1� Tr

⇥
(⇢r)2

⇤�
, r = A or B , (2.1)

where ⇢r is the reduced density matrix obtained by tracing over the degrees of freedom of either
subsystem: e.g. for r = A one has ⇢A = TrB

⇥
| ih |

⇤
. Any mixed state ⇢ of the bipartite system can

be decomposed into a set of pure states {| ii},

⇢ =
X

i

pi | iih i| , pi � 0 ,
X

i

pi = 1 (2.2)

its concurrence is then defined by means of the concurrence of the pure states appearing in the
decomposition through an optimization process:

C[⇢] = inf
{| i}

X

i

pi C[| ii] , (2.3)

where the infimum is taken over all the possible decompositions of ⇢ into pure states. Clearly, for a pure
state (2.1) the concurrence vanishes if and only if the state is separable, that is: | i = | Ai ⌦ | Bi.
As the same holds for mixed states [28], the concurrence appears to be a good entanglement detector.
Unfortunately, the optimization problem appearing in (2.3) makes the evaluation of the concurrence a
very hard mathematical task with a simple analytic solution only when A and B are two-level systems.
Any approximation or numerical computation of C[⇢] only holds as an upper bound and thus cannot
serve to reliably distinguish between entangled and separable states, or to give an estimate of a state
entanglement content.

Lower bounds on C[⇢] for a generic density matrix ⇢ can be analytically computed and, if non-
vanishing, unequivocally signal the presence of entanglement. One of these bounds is easily com-
putable, yielding [29] �

C[⇢]
�2 � C2[⇢] , (2.4)

where

C2[⇢] = 2max
⇣
0, Tr [⇢2]� Tr [(⇢A)

2], Tr [⇢2]� Tr [(⇢B)
2]
⌘
, (2.5)

with ⇢A = TrB[⇢] and ⇢B = TrA[⇢] being the reduced density matrices. A non-vanishing value of C2

then implies a concurrence larger than zero, thus witnessing the entanglement of the density matrix
⇢.

Interestingly enough, an upper bound for C[⇢] has also been obtained [30]; explicitly, one finds

�
C[⇢]

�2  2min
⇣
1� Tr [(⇢A)

2], 1� Tr [(⇢B)
2]
⌘
. (2.6)

The maximum value for the concurrence is obtained for a totally symmetric and maximally entangled
pure state. For two qutrits this is

| +i =
1p
3

3X

i=1

|ii ⌦ |ii , (2.7)

with {|ii} an orthonormal basis in the A- orB-Hilbert space, resulting in C[| +i] = 2/
p
3. Accordingly,

C2 is at most equal to 4/3.

5
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• Given a density operator 𝜌 and an observable O, we compute 
expectation values/ensemble averages as:
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where the infimum is taken over all the possible decompositions of ⇢ into pure states. Clearly, for a pure
state (2.1) the concurrence vanishes if and only if the state is separable, that is: | i = | Ai ⌦ | Bi.
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Unfortunately, the optimization problem appearing in (2.3) makes the evaluation of the concurrence a
very hard mathematical task with a simple analytic solution only when A and B are two-level systems.
Any approximation or numerical computation of C[⇢] only holds as an upper bound and thus cannot
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then implies a concurrence larger than zero, thus witnessing the entanglement of the density matrix
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hOi = Tr(⇢O)

• The density operator of a qubit is a 2x2 matrix, of a qutrit a 3x3 and for 
2 qutrits a 9x9 —plenty to compute, plenty to measure.
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Real life problems
• How do we measure 𝜌? W and Z are kind enough to act as their own 

polarimeters when looking at leptonic decays. For example, WW: 
W+ e+𝜈

• So from the processes                                                                         
with cross section 𝜎, we need to measure

All the terms computed via Eq. (2.38) are Lorentz scalars which depend only on the energy E, the
velocity � and the scattering angle ⇥ in the CM frame.

It is possible to compute the observable quantifying the entanglement in the gauge boson system
once the coe�cients fa, ga and hab are known. The lower bound C2, introduced in Section 2.1 as an
entanglement witness, can be written in terms of the coe�cients in Eq. (2.38) as

C2 = 2max
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i
, (2.39)

which is the expression we use throughout this work.
Likewise, the observable I3 can be written in terms of the coe�cients hab as

I3 = 4
⇣
h44 + h55

⌘
� 4

p
3

3

h
h61 + h66 + h72 + h77 + h11 + h16 + h22 + h27

i
. (2.40)

Eq. (2.40) is valid prior to performing the unitary rotation in Eq. (2.13) of the B matrix that maximizes
the value of the corresponding expectation value. Such a rotation might bring a dependence also on
the coe�cients fa and ga, beside changing the number and the weights of the various coe�cients hab.

2.4 Reconstructing the correlation coe�cients from the data

The actual processes observed at colliders are

p p ! V1 + V2 +X ! `+`� + jets + Emiss
T (or `+`�) , (2.41)

with missing energy Emiss
T

due to the possible presence of neutrinos in the final state. These processes
include the production of the gauge bosons through the resonant Higgs boson channel, as well as via
quark fusion, and include the consequent decays into the final lepton state of interest—plus the jets
originating from X spectator quarks.

The spin 1 gauge bosons act as their own polarimeters. For instance, in the decay W+ ! `+⌫` the
lepton `+ is produced in the positive helicity state while the neutrino ⌫` in the negative helicity state.
The polarization of the W+ is therefore measured to be +1 in the direction of the lepton `+. The
opposite holds for the decay W� ! `�⌫̄` and the polarization of the W� is therefore measured to be
�1 in the direction of the lepton `�. In both the cases, the momenta of the final leptons (see Fig.1)
provide a measurement of the gauge boson polarizations. These momenta are the only information
that we need to extract from the numerical simulation or the actual data.

How do we go about reconstructing the correlation coe�cients hab, fa and ga of the density matrix
starting from the momenta of the final leptons? This problem has been recently discussed in [15],
which we mostly follow in the remainder of this section.

The cross section we are interested in can be written as [34]
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◆2

Tr
h
⇢V1V2 (⇧+ ⌦⇧�)

i
, (2.42)

in which the angular volumes d⌦± = sin ✓±d✓± d�± are written in terms of the spherical coordinates
(with independent polar axes) for the momenta of the final charged leptons in the respective rest
frames of the decaying particles. The dependence on the invariant mass mV V and scattering angle

12

⇥ in Eq. (2.42) is implied. The density matrix ⇢V1V2 in Eq. (2.42) is that for the production of two
gauge bosons given in Eq. (2.37).

The density matrices ⇧± describe the polarization of the decaying gauge bosons. The final leptons
are taken to be massless—for their masses are negligible with respect to that of the gauge boson. They
are projectors in the case of the W -bosons because of their chiral coupling to leptons. These matrices
can be computed by rotating to an arbitrary polar axis the spin ±1 states of the weak gauge bosons
taken in the z direction and are given, in the Gell-Mann basis, as

⇧± =
1

3
1 +

8X

i=1

qa± T a , (2.43)

where the functions qa± can be written in terms of the respective spherical coordinates, as reported in
Eq. (B.1) of Appendix B, for the decay of W -bosons.4

We can define another set of functions

pn± =
X

m

(m�1
± )nm qm± (2.44)

orthogonal to those in Eq. (B.1):
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pn± qm± d⌦± = �nm . (2.45)

In Eq. (B.2), m�1 is the inverse of the matrix

(m±)
nm =

✓
3

8⇡

◆Z
qn± qm± d⌦± , (2.46)

which is assumed to exist. The explicit form of the functions pn± are given in Appendix B Eq. (B.2) .
The functions in Eq. (B.2) can be used to extract the correlation coe�cients hab from the bi-

di↵erential cross section in Eq. (2.42) through the projection
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The density matrices ⇧± are not projectors in the case of the Z-bosons because the coupling
between Z-bosons and leptons

L � �i
g

cos ✓W

h
gL(1� �5)�µ + gR(1 + �5)�µ

i
Zµ (2.49)

4The functions in Eq. (B.1), are the Wigner’s Q symbols for the case of a spin 1 particle.
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⇥ in Eq. (2.42) is implied. The density matrix ⇢V1V2 in Eq. (2.42) is that for the production of two
gauge bosons given in Eq. (2.37).

The density matrices ⇧± describe the polarization of the decaying gauge bosons. The final leptons
are taken to be massless—for their masses are negligible with respect to that of the gauge boson. They
are projectors in the case of the W -bosons because of their chiral coupling to leptons. These matrices
can be computed by rotating to an arbitrary polar axis the spin ±1 states of the weak gauge bosons
taken in the z direction and are given, in the Gell-Mann basis, as

⇧± =
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1 +
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qa± T a , (2.43)

where the functions qa± can be written in terms of the respective spherical coordinates, as reported in
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where                                 are the spherical angles with polar axes 
defined by the charged lepton momenta in the rest frames of the W+ and 
W-. The indices a,b=1…8 and 𝔭a(b) are known functions of the angles

All the terms computed via Eq. (2.38) are Lorentz scalars which depend only on the energy E, the
velocity � and the scattering angle ⇥ in the CM frame.

It is possible to compute the observable quantifying the entanglement in the gauge boson system
once the coe�cients fa, ga and hab are known. The lower bound C2, introduced in Section 2.1 as an
entanglement witness, can be written in terms of the coe�cients in Eq. (2.38) as

C2 = 2max
h
� 2

9
� 12

X

a

f2
a + 6

X

a

g2a + 4
X

ab

h2
ab
,

� 2

9
� 12

X

a

g2a + 6
X

a

f2
a + 4

X

ab

h2
ab
, 0

i
, (2.39)

which is the expression we use throughout this work.
Likewise, the observable I3 can be written in terms of the coe�cients hab as

I3 = 4
⇣
h44 + h55

⌘
� 4

p
3

3

h
h61 + h66 + h72 + h77 + h11 + h16 + h22 + h27

i
. (2.40)

Eq. (2.40) is valid prior to performing the unitary rotation in Eq. (2.13) of the B matrix that maximizes
the value of the corresponding expectation value. Such a rotation might bring a dependence also on
the coe�cients fa and ga, beside changing the number and the weights of the various coe�cients hab.

2.4 Reconstructing the correlation coe�cients from the data

The actual processes observed at colliders are

p p ! V1 + V2 +X ! `+`� + jets + Emiss
T (or `+`�) , (2.41)

with missing energy Emiss
T

due to the possible presence of neutrinos in the final state. These processes
include the production of the gauge bosons through the resonant Higgs boson channel, as well as via
quark fusion, and include the consequent decays into the final lepton state of interest—plus the jets
originating from X spectator quarks.

The spin 1 gauge bosons act as their own polarimeters. For instance, in the decay W+ ! `+⌫` the
lepton `+ is produced in the positive helicity state while the neutrino ⌫` in the negative helicity state.
The polarization of the W+ is therefore measured to be +1 in the direction of the lepton `+. The
opposite holds for the decay W� ! `�⌫̄` and the polarization of the W� is therefore measured to be
�1 in the direction of the lepton `�. In both the cases, the momenta of the final leptons (see Fig.1)
provide a measurement of the gauge boson polarizations. These momenta are the only information
that we need to extract from the numerical simulation or the actual data.

How do we go about reconstructing the correlation coe�cients hab, fa and ga of the density matrix
starting from the momenta of the final leptons? This problem has been recently discussed in [15],
which we mostly follow in the remainder of this section.

The cross section we are interested in can be written as [34]

1

�

d�

d⌦+ d⌦� =

✓
3

4⇡

◆2

Tr
h
⇢V1V2 (⇧+ ⌦⇧�)

i
, (2.42)

in which the angular volumes d⌦± = sin ✓±d✓± d�± are written in terms of the spherical coordinates
(with independent polar axes) for the momenta of the final charged leptons in the respective rest
frames of the decaying particles. The dependence on the invariant mass mV V and scattering angle
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which is the expression we use throughout this work.
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the value of the corresponding expectation value. Such a rotation might bring a dependence also on
the coe�cients fa and ga, beside changing the number and the weights of the various coe�cients hab.
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T (or `+`�) , (2.41)

with missing energy Emiss
T

due to the possible presence of neutrinos in the final state. These processes
include the production of the gauge bosons through the resonant Higgs boson channel, as well as via
quark fusion, and include the consequent decays into the final lepton state of interest—plus the jets
originating from X spectator quarks.

The spin 1 gauge bosons act as their own polarimeters. For instance, in the decay W+ ! `+⌫` the
lepton `+ is produced in the positive helicity state while the neutrino ⌫` in the negative helicity state.
The polarization of the W+ is therefore measured to be +1 in the direction of the lepton `+. The
opposite holds for the decay W� ! `�⌫̄` and the polarization of the W� is therefore measured to be
�1 in the direction of the lepton `�. In both the cases, the momenta of the final leptons (see Fig.1)
provide a measurement of the gauge boson polarizations. These momenta are the only information
that we need to extract from the numerical simulation or the actual data.

How do we go about reconstructing the correlation coe�cients hab, fa and ga of the density matrix
starting from the momenta of the final leptons? This problem has been recently discussed in [15],
which we mostly follow in the remainder of this section.

The cross section we are interested in can be written as [34]

1

�

d�

d⌦+ d⌦� =

✓
3

4⇡

◆2

Tr
h
⇢V1V2 (⇧+ ⌦⇧�)

i
, (2.42)

in which the angular volumes d⌦± = sin ✓±d✓± d�± are written in terms of the spherical coordinates
(with independent polar axes) for the momenta of the final charged leptons in the respective rest
frames of the decaying particles. The dependence on the invariant mass mV V and scattering angle
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⇥ in Eq. (2.42) is implied. The density matrix ⇢V1V2 in Eq. (2.42) is that for the production of two
gauge bosons given in Eq. (2.37).

The density matrices ⇧± describe the polarization of the decaying gauge bosons. The final leptons
are taken to be massless—for their masses are negligible with respect to that of the gauge boson. They
are projectors in the case of the W -bosons because of their chiral coupling to leptons. These matrices
can be computed by rotating to an arbitrary polar axis the spin ±1 states of the weak gauge bosons
taken in the z direction and are given, in the Gell-Mann basis, as

⇧± =
1

3
1 +

8X

i=1

qa± T a , (2.43)

where the functions qa± can be written in terms of the respective spherical coordinates, as reported in
Eq. (B.1) of Appendix B, for the decay of W -bosons.4

We can define another set of functions

pn± =
X

m

(m�1
± )nm qm± (2.44)

orthogonal to those in Eq. (B.1):

✓
3

4⇡

◆Z
pn± qm± d⌦± = �nm . (2.45)

In Eq. (B.2), m�1 is the inverse of the matrix

(m±)
nm =

✓
3

8⇡

◆Z
qn± qm± d⌦± , (2.46)

which is assumed to exist. The explicit form of the functions pn± are given in Appendix B Eq. (B.2) .
The functions in Eq. (B.2) can be used to extract the correlation coe�cients hab from the bi-

di↵erential cross section in Eq. (2.42) through the projection

hab =
1

�

Z Z
d�

d⌦+ d⌦� pa+ pb� d⌦+d⌦� . (2.47)

The correlation coe�cients fa and ga can be obtained in similar fashion by projecting the single
di↵erential cross sections:

fa =
1

�

Z
d�

d⌦+
pa+ d⌦+ ,

ga =
1

�

Z
d�

d⌦� pa� d⌦� . (2.48)

The density matrices ⇧± are not projectors in the case of the Z-bosons because the coupling
between Z-bosons and leptons

L � �i
g

cos ✓W

h
gL(1� �5)�µ + gR(1 + �5)�µ

i
Zµ (2.49)

4The functions in Eq. (B.1), are the Wigner’s Q symbols for the case of a spin 1 particle.
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where                                 are the spherical angles with polar axes 
defined by the charged lepton momenta in the rest frames of the W+ and 
W-. The indices a,b=1…8 and 𝔭a(b) are known functions of the angles

All the terms computed via Eq. (2.38) are Lorentz scalars which depend only on the energy E, the
velocity � and the scattering angle ⇥ in the CM frame.

It is possible to compute the observable quantifying the entanglement in the gauge boson system
once the coe�cients fa, ga and hab are known. The lower bound C2, introduced in Section 2.1 as an
entanglement witness, can be written in terms of the coe�cients in Eq. (2.38) as

C2 = 2max
h
� 2
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� 12

X

a

f2
a + 6

X

a

g2a + 4
X

ab

h2
ab
,

� 2
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X
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g2a + 6
X

a

f2
a + 4

X

ab

h2
ab
, 0

i
, (2.39)

which is the expression we use throughout this work.
Likewise, the observable I3 can be written in terms of the coe�cients hab as

I3 = 4
⇣
h44 + h55

⌘
� 4

p
3

3

h
h61 + h66 + h72 + h77 + h11 + h16 + h22 + h27

i
. (2.40)

Eq. (2.40) is valid prior to performing the unitary rotation in Eq. (2.13) of the B matrix that maximizes
the value of the corresponding expectation value. Such a rotation might bring a dependence also on
the coe�cients fa and ga, beside changing the number and the weights of the various coe�cients hab.

2.4 Reconstructing the correlation coe�cients from the data

The actual processes observed at colliders are

p p ! V1 + V2 +X ! `+`� + jets + Emiss
T (or `+`�) , (2.41)

with missing energy Emiss
T

due to the possible presence of neutrinos in the final state. These processes
include the production of the gauge bosons through the resonant Higgs boson channel, as well as via
quark fusion, and include the consequent decays into the final lepton state of interest—plus the jets
originating from X spectator quarks.

The spin 1 gauge bosons act as their own polarimeters. For instance, in the decay W+ ! `+⌫` the
lepton `+ is produced in the positive helicity state while the neutrino ⌫` in the negative helicity state.
The polarization of the W+ is therefore measured to be +1 in the direction of the lepton `+. The
opposite holds for the decay W� ! `�⌫̄` and the polarization of the W� is therefore measured to be
�1 in the direction of the lepton `�. In both the cases, the momenta of the final leptons (see Fig.1)
provide a measurement of the gauge boson polarizations. These momenta are the only information
that we need to extract from the numerical simulation or the actual data.

How do we go about reconstructing the correlation coe�cients hab, fa and ga of the density matrix
starting from the momenta of the final leptons? This problem has been recently discussed in [15],
which we mostly follow in the remainder of this section.

The cross section we are interested in can be written as [34]
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4⇡

◆2

Tr
h
⇢V1V2 (⇧+ ⌦⇧�)

i
, (2.42)

in which the angular volumes d⌦± = sin ✓±d✓± d�± are written in terms of the spherical coordinates
(with independent polar axes) for the momenta of the final charged leptons in the respective rest
frames of the decaying particles. The dependence on the invariant mass mV V and scattering angle
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where

k =
1

2
p
s

p
s2 � 2(1 + f2)sM2 + (1� f2)2M4 ,

E1 =

p
s

2


1 + (1� f2)

M2

s

�
, E2 =

p
s

2


1� (1� f2)

M2

s

�
, (2.31)

with corresponding velocities �1,2 = k/E1,2. The expression of the vectors nµ

1,2(1) and nµ

1,2(2) remain
the same as in Eq. (2.28), while here

nµ

3 (1) = �1 (�1, k̂) , nµ

3 (2) = �2 (��2, k̂) , (2.32)

where �1,2 = 1/
q
1� �2

1,2 are the corresponding Lorentz factors. The normalization conditions remain

the same as in the degenerate case, Eq. (2.29), bar the scalar product

nµ

3 (1)n3µ(2) = ��1�2 (�1�2 + 1) . (2.33)

Turning now to the computation of the polarization density matrix for two spin-1 bosons of arbi-
trary non vanishing masses, the matrix element M(�1,�2) for the related production amplitude can
be written as

M(�1,�2) = Mµ⌫"
µ?(k1,�1)"

⌫?(k2,�2) . (2.34)

The polarization density matrix is accordingly defined as

⇢(�1,�
0
1,�2,�

0
2) =

M(�1,�2)M†(�0
1,�

0
2)

|M|2
, (2.35)

where, as usual, |M|2 stands for the unpolarized square amplitude and a sum over the possible internal
degrees of freedoms of initial state particles is understood.

By using the covariant expression for the spin-1 projectors Pµ⌫

��0(k) defined in Eq. (2.17), we can
rewrite the the density matrix in Eq. (2.35) as

⇢(�1,�
0
1,�2,�

0
2) =

Mµ⌫M†
µ0⌫0P

µ⌫

�1�
0
1
(k1)P

µ⌫

�2�
0
2
(k2)

|M|2
. (2.36)

In the case at hand, ⇢(�1,�0
1,�2,�0

2) can be decomposed on the basis of the 9⇥9 matrices formed
by the tensor products3 {1⌦1, 1⌦T a, T a⌦1, T a⌦T b}, with T a again the 3⇥3 Gell-Mann matrices.
In particular, we have

⇢(�1,�
0
1,�2,�

0
2) =

⇣1
9
[1 ⌦ 1] +

X

a

fa [1 ⌦ T a] +
X

a

ga [T
a ⌦ 1] +

X

ab

hab
h
T a ⌦ T b

i ⌘

�1�
0
1,�2�

0
2

.(2.37)

The eight components of fa and ga, as well as the 64 elements of hab, can be obtained by projecting
⇢ on the desired subspace basis via

fa =
1

6
Tr [⇢ (1 ⌦ T a)] , fb =
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6
Tr [⇢ (T a ⌦ 1)] , hab =
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4
Tr

h
⇢
⇣
T a ⌦ T b

⌘i
. (2.38)

3The matrix elements of a tensor product of two arbitrary matrices, A and B, is given by the Kronecker product of
the matrix representations: [A⌦B]ii0jj0 = Aii0Bjj0 .
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• Once fa, ga, and hab are inferred from data:

where Ta(b) are the Gell-Mann matrices



How do you compute this?

having chosen the k̂ direction as the direction of quantization.
In order to describe the helicity of the spin-1 particle in a more general reference frame and in a

covariant manner, we first promote the three basis vectors to four-vectors by extending them with a
null temporal component and then perform a Lorentz boost along the �k̂ direction. As a result, in the
new frame the spin-1 particle acquires a velocity � =

p
1�M2/E2 along the positive k̂ direction and

possesses a 4-momentum pµ = E(1, k̂�), where E is the particle energy in this frame. By construction,
the boosted basis vectors

nµ

1 = (0, n̂) , nµ

2 = (0, r̂) , nµ

3 =
E

M
(�, k̂) , (2.15)

are orthogonal to the four-vector nµ

0 = E/M(1, k̂�) (proportional to the particle momentum) and with
it form an orthonormal vierbein nµ

m. The label m 2 {0, 1, 2, 3} indicates the vector: gµ⌫ n
µ
mn⌫

n = ��mn

with gµ⌫ = diag(1,�1,�1,�1) being the Minkowski metric.
The wave vector "µ(p,�) of a spin-1 particle can then be expressed in a covariant form as a linear

combination of the three reference vectors (nµ

1 , n
µ

2 , n
µ

3 ) orthogonal to the particle momentum

"µ(p,�) = � 1p
2
|�| (�nµ

1 + i nµ

2 ) +
⇣
1� |�|

⌘
nµ

3 , (2.16)

giving the standard representation of the spin-1 wave vector in the helicity � basis. It can be easily
checked that in the particle rest frame, where (� ! 0), the equation above reduces to Eq. (2.14).

From Eq. (2.16) we can construct the covariant helicity projector operator of a spin-1 particle with
four-momentum p, mass M and polarization "µ(p,�) [33]

Pµ⌫

��0(p) = "µ(p,�)?"⌫(p,�0)

=
1

3

✓
�gµ⌫ +

pµp⌫

M2

◆
���0 � i

2M
✏µ⌫↵�p↵n

i

�
(Si)��0 �

1

2
nµ

i
n⌫

j (Sij)��0 , (2.17)

where Si, i 2 {1, 2, 3}, are the spin-1 representations1 of the SU(2) generators and ✏µ⌫↵� is the fully
antisymmetric Levi-Civita tensor with "0123 = 1. The matrices Sij are defined as

Sij = SiSj + SjSi �
4

3
1 �ij , (2.19)

with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix. The covariant relation (2.17) can be verified
by substituting the expression for "µ(p,�) in Eq. (2.16) with nµ

i
given as in Eq. (2.15) and the (Si)��0

and (Sij)��0 matrix elements as provided in Appendix C.
Consider now the probability amplitude M for the production of a massive spin-1 particle of

momentum p and helicity �, given by
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µ?(p,�) . (2.20)

Then, the polarization density matrix of a massive spin-1 particle can be written in the helicity basis
as

⇢(�,�0) =
M(�)M†(�0)

|M|2
(2.21)

1Explicit matrix representations are given in Appendix A on the basis where the eigenstates of S3 read

|+i =

0

@
1
0
0

1

A , |0i =

0

@
0
1
0

1

A , |�i =

0

@
0
0
1

1

A , (2.18)

corresponding to the eigenvalues +1, 0 and �1, respectively.
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• Wave vector of a spin-boson of mass M momentum p and helicity λ:

where niμ track the 3 polarization directions as seen from the CoM 
frame of the process.

(λ=0,+1,-1)
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with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix. The covariant relation (2.17) can be verified
by substituting the expression for "µ(p,�) in Eq. (2.16) with nµ
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given as in Eq. (2.15) and the (Si)��0

and (Sij)��0 matrix elements as provided in Appendix C.
Consider now the probability amplitude M for the production of a massive spin-1 particle of

momentum p and helicity �, given by

M(�) = Mµ"
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Then, the polarization density matrix of a massive spin-1 particle can be written in the helicity basis
as
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giving the standard representation of the spin-1 wave vector in the helicity � basis. It can be easily
checked that in the particle rest frame, where (� ! 0), the equation above reduces to Eq. (2.14).

From Eq. (2.16) we can construct the covariant helicity projector operator of a spin-1 particle with
four-momentum p, mass M and polarization "µ(p,�) [33]
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=
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where Si, i 2 {1, 2, 3}, are the spin-1 representations1 of the SU(2) generators and ✏µ⌫↵� is the fully
antisymmetric Levi-Civita tensor with "0123 = 1. The matrices Sij are defined as

Sij = SiSj + SjSi �
4

3
1 �ij , (2.19)

with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix. The covariant relation (2.17) can be verified
by substituting the expression for "µ(p,�) in Eq. (2.16) with nµ

i
given as in Eq. (2.15) and the (Si)��0

and (Sij)��0 matrix elements as provided in Appendix C.
Consider now the probability amplitude M for the production of a massive spin-1 particle of

momentum p and helicity �, given by

M(�) = Mµ"
µ?(p,�) . (2.20)

Then, the polarization density matrix of a massive spin-1 particle can be written in the helicity basis
as

⇢(�,�0) =
M(�)M†(�0)

|M|2
(2.21)

1Explicit matrix representations are given in Appendix A on the basis where the eigenstates of S3 read
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0
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corresponding to the eigenvalues +1, 0 and �1, respectively.
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having chosen the k̂ direction as the direction of quantization.
In order to describe the helicity of the spin-1 particle in a more general reference frame and in a

covariant manner, we first promote the three basis vectors to four-vectors by extending them with a
null temporal component and then perform a Lorentz boost along the �k̂ direction. As a result, in the
new frame the spin-1 particle acquires a velocity � =

p
1�M2/E2 along the positive k̂ direction and

possesses a 4-momentum pµ = E(1, k̂�), where E is the particle energy in this frame. By construction,
the boosted basis vectors

nµ

1 = (0, n̂) , nµ

2 = (0, r̂) , nµ

3 =
E

M
(�, k̂) , (2.15)

are orthogonal to the four-vector nµ

0 = E/M(1, k̂�) (proportional to the particle momentum) and with
it form an orthonormal vierbein nµ

m. The label m 2 {0, 1, 2, 3} indicates the vector: gµ⌫ n
µ
mn⌫

n = ��mn

with gµ⌫ = diag(1,�1,�1,�1) being the Minkowski metric.
The wave vector "µ(p,�) of a spin-1 particle can then be expressed in a covariant form as a linear

combination of the three reference vectors (nµ

1 , n
µ

2 , n
µ

3 ) orthogonal to the particle momentum

"µ(p,�) = � 1p
2
|�| (�nµ

1 + i nµ

2 ) +
⇣
1� |�|

⌘
nµ

3 , (2.16)

giving the standard representation of the spin-1 wave vector in the helicity � basis. It can be easily
checked that in the particle rest frame, where (� ! 0), the equation above reduces to Eq. (2.14).

From Eq. (2.16) we can construct the covariant helicity projector operator of a spin-1 particle with
four-momentum p, mass M and polarization "µ(p,�) [33]

Pµ⌫

��0(p) = "µ(p,�)?"⌫(p,�0)

=
1

3
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�gµ⌫ +
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✏µ⌫↵�p↵n
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(Si)��0 �
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j (Sij)��0 , (2.17)

where Si, i 2 {1, 2, 3}, are the spin-1 representations1 of the SU(2) generators and ✏µ⌫↵� is the fully
antisymmetric Levi-Civita tensor with "0123 = 1. The matrices Sij are defined as

Sij = SiSj + SjSi �
4

3
1 �ij , (2.19)

with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix. The covariant relation (2.17) can be verified
by substituting the expression for "µ(p,�) in Eq. (2.16) with nµ

i
given as in Eq. (2.15) and the (Si)��0

and (Sij)��0 matrix elements as provided in Appendix C.
Consider now the probability amplitude M for the production of a massive spin-1 particle of

momentum p and helicity �, given by

M(�) = Mµ"
µ?(p,�) . (2.20)

Then, the polarization density matrix of a massive spin-1 particle can be written in the helicity basis
as

⇢(�,�0) =
M(�)M†(�0)

|M|2
(2.21)

1Explicit matrix representations are given in Appendix A on the basis where the eigenstates of S3 read

|+i =

0
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1
0
0

1

A , |0i =

0
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A , (2.18)

corresponding to the eigenvalues +1, 0 and �1, respectively.

8

• The density matrix of one spin-boson is then

with Si being the 3x3 spin matrices and 

(λ=0,+1,-1)
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1 = (0, n̂) , nµ
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3 =
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(�, k̂) , (2.15)

are orthogonal to the four-vector nµ

0 = E/M(1, k̂�) (proportional to the particle momentum) and with
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with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix. The covariant relation (2.17) can be verified
by substituting the expression for "µ(p,�) in Eq. (2.16) with nµ
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given as in Eq. (2.15) and the (Si)��0

and (Sij)��0 matrix elements as provided in Appendix C.
Consider now the probability amplitude M for the production of a massive spin-1 particle of

momentum p and helicity �, given by

M(�) = Mµ"
µ?(p,�) . (2.20)

Then, the polarization density matrix of a massive spin-1 particle can be written in the helicity basis
as
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• Wave vector of a spin-boson of mass M momentum p and helicity λ:

where niμ track the 3 polarization directions as seen from the CoM 
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M(�) = Mµ"
µ?(p,�) . (2.20)

Then, the polarization density matrix of a massive spin-1 particle can be written in the helicity basis
as
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null temporal component and then perform a Lorentz boost along the �k̂ direction. As a result, in the
new frame the spin-1 particle acquires a velocity � =
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1�M2/E2 along the positive k̂ direction and

possesses a 4-momentum pµ = E(1, k̂�), where E is the particle energy in this frame. By construction,
the boosted basis vectors
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1 = (0, n̂) , nµ

2 = (0, r̂) , nµ

3 =
E

M
(�, k̂) , (2.15)

are orthogonal to the four-vector nµ

0 = E/M(1, k̂�) (proportional to the particle momentum) and with
it form an orthonormal vierbein nµ

m. The label m 2 {0, 1, 2, 3} indicates the vector: gµ⌫ n
µ
mn⌫

n = ��mn

with gµ⌫ = diag(1,�1,�1,�1) being the Minkowski metric.
The wave vector "µ(p,�) of a spin-1 particle can then be expressed in a covariant form as a linear

combination of the three reference vectors (nµ
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2
|�| (�nµ

1 + i nµ

2 ) +
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3 , (2.16)

giving the standard representation of the spin-1 wave vector in the helicity � basis. It can be easily
checked that in the particle rest frame, where (� ! 0), the equation above reduces to Eq. (2.14).
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i
given as in Eq. (2.15) and the (Si)��0

and (Sij)��0 matrix elements as provided in Appendix C.
Consider now the probability amplitude M for the production of a massive spin-1 particle of

momentum p and helicity �, given by

M(�) = Mµ"
µ?(p,�) . (2.20)

Then, the polarization density matrix of a massive spin-1 particle can be written in the helicity basis
as

⇢(�,�0) =
M(�)M†(�0)

|M|2
(2.21)

1Explicit matrix representations are given in Appendix A on the basis where the eigenstates of S3 read
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1
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0
1
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0
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corresponding to the eigenvalues +1, 0 and �1, respectively.
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• The density matrix of one spin-boson is then

with Si being the 3x3 spin matrices and 
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How do you compute this?

having chosen the k̂ direction as the direction of quantization.
In order to describe the helicity of the spin-1 particle in a more general reference frame and in a

covariant manner, we first promote the three basis vectors to four-vectors by extending them with a
null temporal component and then perform a Lorentz boost along the �k̂ direction. As a result, in the
new frame the spin-1 particle acquires a velocity � =

p
1�M2/E2 along the positive k̂ direction and

possesses a 4-momentum pµ = E(1, k̂�), where E is the particle energy in this frame. By construction,
the boosted basis vectors

nµ

1 = (0, n̂) , nµ

2 = (0, r̂) , nµ

3 =
E

M
(�, k̂) , (2.15)

are orthogonal to the four-vector nµ

0 = E/M(1, k̂�) (proportional to the particle momentum) and with
it form an orthonormal vierbein nµ

m. The label m 2 {0, 1, 2, 3} indicates the vector: gµ⌫ n
µ
mn⌫

n = ��mn

with gµ⌫ = diag(1,�1,�1,�1) being the Minkowski metric.
The wave vector "µ(p,�) of a spin-1 particle can then be expressed in a covariant form as a linear

combination of the three reference vectors (nµ

1 , n
µ

2 , n
µ

3 ) orthogonal to the particle momentum

"µ(p,�) = � 1p
2
|�| (�nµ

1 + i nµ

2 ) +
⇣
1� |�|

⌘
nµ

3 , (2.16)

giving the standard representation of the spin-1 wave vector in the helicity � basis. It can be easily
checked that in the particle rest frame, where (� ! 0), the equation above reduces to Eq. (2.14).

From Eq. (2.16) we can construct the covariant helicity projector operator of a spin-1 particle with
four-momentum p, mass M and polarization "µ(p,�) [33]

Pµ⌫

��0(p) = "µ(p,�)?"⌫(p,�0)

=
1

3

✓
�gµ⌫ +

pµp⌫

M2

◆
���0 � i

2M
✏µ⌫↵�p↵n

i

�
(Si)��0 �

1

2
nµ

i
n⌫

j (Sij)��0 , (2.17)

where Si, i 2 {1, 2, 3}, are the spin-1 representations1 of the SU(2) generators and ✏µ⌫↵� is the fully
antisymmetric Levi-Civita tensor with "0123 = 1. The matrices Sij are defined as

Sij = SiSj + SjSi �
4

3
1 �ij , (2.19)

with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix. The covariant relation (2.17) can be verified
by substituting the expression for "µ(p,�) in Eq. (2.16) with nµ

i
given as in Eq. (2.15) and the (Si)��0

and (Sij)��0 matrix elements as provided in Appendix C.
Consider now the probability amplitude M for the production of a massive spin-1 particle of

momentum p and helicity �, given by

M(�) = Mµ"
µ?(p,�) . (2.20)

Then, the polarization density matrix of a massive spin-1 particle can be written in the helicity basis
as

⇢(�,�0) =
M(�)M†(�0)

|M|2
(2.21)

1Explicit matrix representations are given in Appendix A on the basis where the eigenstates of S3 read

|+i =

0

@
1
0
0

1

A , |0i =

0

@
0
1
0

1

A , |�i =

0

@
0
0
1

1

A , (2.18)

corresponding to the eigenvalues +1, 0 and �1, respectively.
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where niμ track the 3 polarization directions as seen from the CoM 
frame of the process.

having chosen the k̂ direction as the direction of quantization.
In order to describe the helicity of the spin-1 particle in a more general reference frame and in a

covariant manner, we first promote the three basis vectors to four-vectors by extending them with a
null temporal component and then perform a Lorentz boost along the �k̂ direction. As a result, in the
new frame the spin-1 particle acquires a velocity � =

p
1�M2/E2 along the positive k̂ direction and

possesses a 4-momentum pµ = E(1, k̂�), where E is the particle energy in this frame. By construction,
the boosted basis vectors

nµ

1 = (0, n̂) , nµ

2 = (0, r̂) , nµ

3 =
E

M
(�, k̂) , (2.15)

are orthogonal to the four-vector nµ

0 = E/M(1, k̂�) (proportional to the particle momentum) and with
it form an orthonormal vierbein nµ

m. The label m 2 {0, 1, 2, 3} indicates the vector: gµ⌫ n
µ
mn⌫

n = ��mn

with gµ⌫ = diag(1,�1,�1,�1) being the Minkowski metric.
The wave vector "µ(p,�) of a spin-1 particle can then be expressed in a covariant form as a linear

combination of the three reference vectors (nµ

1 , n
µ

2 , n
µ

3 ) orthogonal to the particle momentum

"µ(p,�) = � 1p
2
|�| (�nµ

1 + i nµ

2 ) +
⇣
1� |�|

⌘
nµ

3 , (2.16)

giving the standard representation of the spin-1 wave vector in the helicity � basis. It can be easily
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where Si, i 2 {1, 2, 3}, are the spin-1 representations1 of the SU(2) generators and ✏µ⌫↵� is the fully
antisymmetric Levi-Civita tensor with "0123 = 1. The matrices Sij are defined as

Sij = SiSj + SjSi �
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3
1 �ij , (2.19)

with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix. The covariant relation (2.17) can be verified
by substituting the expression for "µ(p,�) in Eq. (2.16) with nµ

i
given as in Eq. (2.15) and the (Si)��0

and (Sij)��0 matrix elements as provided in Appendix C.
Consider now the probability amplitude M for the production of a massive spin-1 particle of

momentum p and helicity �, given by

M(�) = Mµ"
µ?(p,�) . (2.20)

Then, the polarization density matrix of a massive spin-1 particle can be written in the helicity basis
as

⇢(�,�0) =
M(�)M†(�0)
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1Explicit matrix representations are given in Appendix A on the basis where the eigenstates of S3 read
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giving the standard representation of the spin-1 wave vector in the helicity � basis. It can be easily
checked that in the particle rest frame, where (� ! 0), the equation above reduces to Eq. (2.14).
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where Si, i 2 {1, 2, 3}, are the spin-1 representations1 of the SU(2) generators and ✏µ⌫↵� is the fully
antisymmetric Levi-Civita tensor with "0123 = 1. The matrices Sij are defined as
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with i, j 2 {1, 2, 3} and 1 being the 3 ⇥ 3 unit matrix. The covariant relation (2.17) can be verified
by substituting the expression for "µ(p,�) in Eq. (2.16) with nµ
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given as in Eq. (2.15) and the (Si)��0

and (Sij)��0 matrix elements as provided in Appendix C.
Consider now the probability amplitude M for the production of a massive spin-1 particle of

momentum p and helicity �, given by

M(�) = Mµ"
µ?(p,�) . (2.20)

Then, the polarization density matrix of a massive spin-1 particle can be written in the helicity basis
as

⇢(�,�0) =
M(�)M†(�0)

|M|2
(2.21)

1Explicit matrix representations are given in Appendix A on the basis where the eigenstates of S3 read
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• The density matrix of one spin-boson is then

with Si being the 3x3 spin matrices and 
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⇢(�1,�
0
1,�2,�

0
2) =

X

µ,µ0,⌫,⌫0

Mµ⌫M†
µ0⌫0��M̄2
�� Pµµ0

�1�0
1
(p1)P

⌫⌫0

�2�0
2
(p2)

• To obtain the density matrix for a sample of gauge boson pairs 
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M

where        is the squared amplitude summed over the polarizations
<latexit sha1_base64="zGdXi8JcobSl1ZA3PLESpw8i+dw=">AAACOHicbVDLSsNAFJ3UR2t9tboSN4NFcFWS4mtZdONGqGBboanlZjpph04ezEyEEIJf41b3/ok7d+LWL3DSZmFbD1w4nHMvnHuckDOpTPPDKKysrq0XSxvlza3tnd1Kda8jg0gQ2iYBD8SDA5Jy5tO2YorTh1BQ8BxOu87kOvO7T1RIFvj3Kg5p34ORz1xGQGlpUDmwwZGJ7YBIbA/UmABPbtP0sZEOKjWzbk6Bl4mVkxrK0RpUjaI9DEjkUV8RDlL2LDNU/QSEYoTTtGxHkoZAJjCiPU198KjsJ9MfUnyslSF2A6HHV3iq/r1IwJMy9hy9meWUi14m/uuF41gyIrWXszk32xfS1fZ8POVe9hPmh5GiPpmlcyOOVYCzFvGQCUoUjzUBIph+EJMxCCBKd13W1VmLRS2TTqNundfP7k5rzau8xBI6REfoBFnoAjXRDWqhNiLoGb2gV/RmvBufxpfxPVstGPnNPpqD8fMLYoWs0w==</latexit>��M̄2

��

(convex combination of 2 𝜌)

• Finally:

where

k =
1

2
p
s

p
s2 � 2(1 + f2)sM2 + (1� f2)2M4 ,

E1 =

p
s

2


1 + (1� f2)

M2

s

�
, E2 =

p
s

2


1� (1� f2)

M2

s

�
, (2.31)

with corresponding velocities �1,2 = k/E1,2. The expression of the vectors nµ

1,2(1) and nµ

1,2(2) remain
the same as in Eq. (2.28), while here

nµ

3 (1) = �1 (�1, k̂) , nµ

3 (2) = �2 (��2, k̂) , (2.32)

where �1,2 = 1/
q
1� �2

1,2 are the corresponding Lorentz factors. The normalization conditions remain

the same as in the degenerate case, Eq. (2.29), bar the scalar product

nµ

3 (1)n3µ(2) = ��1�2 (�1�2 + 1) . (2.33)

Turning now to the computation of the polarization density matrix for two spin-1 bosons of arbi-
trary non vanishing masses, the matrix element M(�1,�2) for the related production amplitude can
be written as

M(�1,�2) = Mµ⌫"
µ?(k1,�1)"

⌫?(k2,�2) . (2.34)

The polarization density matrix is accordingly defined as

⇢(�1,�
0
1,�2,�

0
2) =

M(�1,�2)M†(�0
1,�

0
2)

|M|2
, (2.35)

where, as usual, |M|2 stands for the unpolarized square amplitude and a sum over the possible internal
degrees of freedoms of initial state particles is understood.

By using the covariant expression for the spin-1 projectors Pµ⌫

��0(k) defined in Eq. (2.17), we can
rewrite the the density matrix in Eq. (2.35) as

⇢(�1,�
0
1,�2,�

0
2) =

Mµ⌫M†
µ0⌫0P

µ⌫

�1�
0
1
(k1)P

µ⌫

�2�
0
2
(k2)

|M|2
. (2.36)

In the case at hand, ⇢(�1,�0
1,�2,�0

2) can be decomposed on the basis of the 9⇥9 matrices formed
by the tensor products3 {1⌦1, 1⌦T a, T a⌦1, T a⌦T b}, with T a again the 3⇥3 Gell-Mann matrices.
In particular, we have

⇢(�1,�
0
1,�2,�

0
2) =

⇣1
9
[1 ⌦ 1] +

X

a

fa [1 ⌦ T a] +
X

a

ga [T
a ⌦ 1] +

X

ab

hab
h
T a ⌦ T b

i ⌘

�1�
0
1,�2�

0
2

.(2.37)

The eight components of fa and ga, as well as the 64 elements of hab, can be obtained by projecting
⇢ on the desired subspace basis via

fa =
1

6
Tr [⇢ (1 ⌦ T a)] , fb =

1

6
Tr [⇢ (T a ⌦ 1)] , hab =

1

4
Tr

h
⇢
⇣
T a ⌦ T b

⌘i
. (2.38)

3The matrix elements of a tensor product of two arbitrary matrices, A and B, is given by the Kronecker product of
the matrix representations: [A⌦B]ii0jj0 = Aii0Bjj0 .
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Ok, and then?
• We test a suitable instance of Bell inequality tailored to qutrits—Collins-

Gisin-Linden-Massar-Popescu inequality 

The concurrence lower bound (2.5) will play the role of entanglement witness in our study of the
spin polarization states formed with two massive gauge bosons.

If the bipartite state of interest is a pure state, it is possible to quantify its entanglement by
computing the entropy of entanglement :

E [⇢] = �Tr [⇢A log ⇢A] = �Tr [⇢B log ⇢B] , (2.8)

given by the von Neumann entropy [1] of either of the two component subsystems A or B with
reduced density matrix ⇢A and ⇢B, respectively. Whereas the concurrence of a bipartite pure state is
only an entanglement monotone, the von Neumann entropy is a true entanglement measure satisfying
0  E [⇢]  ln d, where d = 3 for a two-qutrit system. The first equality holds if and only if the bipartite
state is separable, the second inequality saturates if the bipartite state is maximally entangled.

2.1.2 Bell inequalities

Local deterministic theories provide descriptions of a physical system that match the results of quan-
tum mechanics for the averages of relevant system observables. Yet, in view of the deterministic and
locality assumptions, these stochastic classical models are bound to satisfy a set of inequalities known
as Bell inequalities [18–22], which are instead violated by the statistical predictions of quantum me-
chanics. An experimental determination of any Bell inequality is thus able to discriminate between
these classical local models and quantum mechanics.

Whereas an essentially unique Bell inequality can be formulated [31] in the case of a bipartite
system made of two qubits, di↵erent Bell inequalities can be found in the literature for systems of
higher dimensionality. Among these, the CGLMP inequality [23, 24] is an optimal generalization of
the qubit inequality for systems made of two qutrits.

In order to explicitly write this inequality, consider again the two components A and B of the two
qutrit system. For the qutrit A, select two spin measurement settings, Â1 and Â2, which correspond
to the projective measurement of two spin-1 observables having each three possible outcomes {0, 1, 2}.
Similarly, the measurement settings and corresponding observables for the other qutrit B are B̂1 and
B̂2. Then, denote by P (Ai = Bj + k) the probability that the outcome Ai for the measurement of
Âi and Bj for the measurement of B̂j , with i, j either 1 or 2, di↵er by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2) + P (B2 = A1)

�P (A1 = B1 � 1)� P (A1 = B2)� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (2.9)

For deterministic local models, this quantity satisfies the following generalized Bell inequality,

I3  2 , (2.10)

which instead can be violated by computing the above joint probabilities using the rules of quantum
mechanics. Given a state ⇢ of the two-qutrit system, the above probabilities are computed in quantum
mechanics as expectation values of suitable projector operators; for instance, the probability of the
outcome A1 = B1 = 1, when measuring Â1 and B̂1, is given by P (A1 = B1 = 1) = Tr[⇢ (PA1=1 ⌦
PB1=1)], where e.g. PA1=1 projects onto the subspace of the A-Hilbert space where Â1 assumes the
value 1. Therefore, in quantum mechanics, I3 in (2.9) can be similarly expressed as an expectation
value of a suitable Bell operator B:
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The explicit form of B depends on the choice of the four measured operators Âi, B̂i, i 2 {1, 2}. Hence,
given the two-qutrit state ⇢, it is possible to enhance the violation of the Bell inequality (2.10) through
a specific choice of these operators. We remark that the numerical value of the observable is bound
to be less than or equal to 4.

For the case of the maximally entangled state in (2.7), ⇢ = | +ih +|, the problem of finding an
optimal choice of measurements has been solved [23]. By working in the single spin-1 basis formed by
the eigenstates of the S3 spin operator (A.2) with eigenvalues {1, 0,�1}, the Bell operator takes the
following explicit form (see [32], though there it is written in the so-called computational basis):
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It should be noticed that, perhaps surprisingly, the maximal violation of (2.10) obtained with B is for
a density matrix which is not maximally entangled [32], making it evident that entanglement theory
in higher dimensions is rather intricate.

Within the choice of measurements leading to the Bell operator in (2.12), there is still the free-
dom of modifying the measured observables through local unitary transformations, which e↵ectively
corresponds to local changes of basis. Correspondingly, the Bell operator undergoes the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) , (2.13)

where U and V are independent three-dimensional unitary matrices. In the following we make use
of this freedom to maximize the value of I3 for any given density matrix ⇢; as the gauge boson
polarization states depend on the relevant kinematic variables, this optimization procedure is to be
performed independently for each point in phase space. We give the explicit forms of the matrices
that maximize the observable I3 for the processes analyzed as they can be useful in future numerical
simulations.

2.2 Density matrix for one spin-1 particle

Let us start by defining the reference frame we use to describe the polarization of a spin-1 particle

at rest. To this purpose we introduce a set of three orthonormal (three-)vectors,
n
n̂, r̂, k̂

o
, forming

a right-handed system: n̂ = r̂ ⇥ k̂. The normalized helicity eigenvectors  ±,0 of the massive spin-1
particle of mass M , corresponding respectively to eigenvalues � = ±1, 0, are

 ± = � 1p
2
(±n̂+ i r̂) and  0 = k̂ , (2.14)
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Ok, and then?
• We test a suitable instance of Bell inequality tailored to qutrits—Collins-
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The concurrence lower bound (2.5) will play the role of entanglement witness in our study of the
spin polarization states formed with two massive gauge bosons.

If the bipartite state of interest is a pure state, it is possible to quantify its entanglement by
computing the entropy of entanglement :

E [⇢] = �Tr [⇢A log ⇢A] = �Tr [⇢B log ⇢B] , (2.8)

given by the von Neumann entropy [1] of either of the two component subsystems A or B with
reduced density matrix ⇢A and ⇢B, respectively. Whereas the concurrence of a bipartite pure state is
only an entanglement monotone, the von Neumann entropy is a true entanglement measure satisfying
0  E [⇢]  ln d, where d = 3 for a two-qutrit system. The first equality holds if and only if the bipartite
state is separable, the second inequality saturates if the bipartite state is maximally entangled.
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Local deterministic theories provide descriptions of a physical system that match the results of quan-
tum mechanics for the averages of relevant system observables. Yet, in view of the deterministic and
locality assumptions, these stochastic classical models are bound to satisfy a set of inequalities known
as Bell inequalities [18–22], which are instead violated by the statistical predictions of quantum me-
chanics. An experimental determination of any Bell inequality is thus able to discriminate between
these classical local models and quantum mechanics.

Whereas an essentially unique Bell inequality can be formulated [31] in the case of a bipartite
system made of two qubits, di↵erent Bell inequalities can be found in the literature for systems of
higher dimensionality. Among these, the CGLMP inequality [23, 24] is an optimal generalization of
the qubit inequality for systems made of two qutrits.

In order to explicitly write this inequality, consider again the two components A and B of the two
qutrit system. For the qutrit A, select two spin measurement settings, Â1 and Â2, which correspond
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Similarly, the measurement settings and corresponding observables for the other qutrit B are B̂1 and
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Âi and Bj for the measurement of B̂j , with i, j either 1 or 2, di↵er by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2) + P (B2 = A1)

�P (A1 = B1 � 1)� P (A1 = B2)� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (2.9)

For deterministic local models, this quantity satisfies the following generalized Bell inequality,

I3  2 , (2.10)

which instead can be violated by computing the above joint probabilities using the rules of quantum
mechanics. Given a state ⇢ of the two-qutrit system, the above probabilities are computed in quantum
mechanics as expectation values of suitable projector operators; for instance, the probability of the
outcome A1 = B1 = 1, when measuring Â1 and B̂1, is given by P (A1 = B1 = 1) = Tr[⇢ (PA1=1 ⌦
PB1=1)], where e.g. PA1=1 projects onto the subspace of the A-Hilbert space where Â1 assumes the
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to be less than or equal to 4.
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optimal choice of measurements has been solved [23]. By working in the single spin-1 basis formed by
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simulations.

2.2 Density matrix for one spin-1 particle

Let us start by defining the reference frame we use to describe the polarization of a spin-1 particle

at rest. To this purpose we introduce a set of three orthonormal (three-)vectors,
n
n̂, r̂, k̂

o
, forming

a right-handed system: n̂ = r̂ ⇥ k̂. The normalized helicity eigenvectors  ±,0 of the massive spin-1
particle of mass M , corresponding respectively to eigenvalues � = ±1, 0, are
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2
(±n̂+ i r̂) and  0 = k̂ , (2.14)
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Ok, and then?
• We test a suitable instance of Bell inequality tailored to qutrits—Collins-

Gisin-Linden-Massar-Popescu inequality 

The concurrence lower bound (2.5) will play the role of entanglement witness in our study of the
spin polarization states formed with two massive gauge bosons.

If the bipartite state of interest is a pure state, it is possible to quantify its entanglement by
computing the entropy of entanglement :
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⇥
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⇤
. (2.11)
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The explicit form of B depends on the choice of the four measured operators Âi, B̂i, i 2 {1, 2}. Hence,
given the two-qutrit state ⇢, it is possible to enhance the violation of the Bell inequality (2.10) through
a specific choice of these operators. We remark that the numerical value of the observable is bound
to be less than or equal to 4.

For the case of the maximally entangled state in (2.7), ⇢ = | +ih +|, the problem of finding an
optimal choice of measurements has been solved [23]. By working in the single spin-1 basis formed by
the eigenstates of the S3 spin operator (A.2) with eigenvalues {1, 0,�1}, the Bell operator takes the
following explicit form (see [32], though there it is written in the so-called computational basis):
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It should be noticed that, perhaps surprisingly, the maximal violation of (2.10) obtained with B is for
a density matrix which is not maximally entangled [32], making it evident that entanglement theory
in higher dimensions is rather intricate.

Within the choice of measurements leading to the Bell operator in (2.12), there is still the free-
dom of modifying the measured observables through local unitary transformations, which e↵ectively
corresponds to local changes of basis. Correspondingly, the Bell operator undergoes the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) , (2.13)

where U and V are independent three-dimensional unitary matrices. In the following we make use
of this freedom to maximize the value of I3 for any given density matrix ⇢; as the gauge boson
polarization states depend on the relevant kinematic variables, this optimization procedure is to be
performed independently for each point in phase space. We give the explicit forms of the matrices
that maximize the observable I3 for the processes analyzed as they can be useful in future numerical
simulations.

2.2 Density matrix for one spin-1 particle
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, forming
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particle of mass M , corresponding respectively to eigenvalues � = ±1, 0, are

 ± = � 1p
2
(±n̂+ i r̂) and  0 = k̂ , (2.14)

7

A. Acin, T. Durt, N. Gisin and J. I. Latorre, 
Phys. Rev. A 65, 052325 (2002) 

‣Deterministic local theory: always    <latexit sha1_base64="gwMKCom71M4ui3JxrliGuqIegjU=">AAACMnicbVA7T8MwGLR5tZRXS0cWiwqJqUrKc6xgga1I9CE1UeW4TmvVcYLtIEVRfwsr7PwZ2BArPwKnzUBbTrJ0urtPOp8Xcaa0ZX3AtfWNza1Ccbu0s7u3f1CuHHZUGEtC2yTkoex5WFHOBG1rpjntRZLiwOO0601uM7/7TKVioXjUSUTdAI8E8xnB2kiDctUJsB4TzNP76eDM4fQJNQblmlW3ZkCrxM5JDeRoDSqw4AxDEgdUaMKxUn3birSbYqkZ4XRacmJFI0wmeET7hgocUOWms/ZTdGKUIfJDaZ7QaKb+vUhxoFQSeCaZdVXLXib+60XjRDGijJezBTfLS+Ube7Ge9q/dlIko1lSQeTs/5kiHKNsPDZmkRPPEEEwkMx9EZIwlJtqsXDLT2ctDrZJOo25f1i8ezmvNm3zEIjgCx+AU2OAKNMEdaIE2ICABL+AVvMF3+Am/4Pc8ugbzmypYAPz5Bd19qXI=</latexit>I3  2

‣Quantum mechanics: it can be <latexit sha1_base64="WcbVywpABGCKtvB2cPjFk1hUSbg=">AAACNnicbVDLTsJAFJ3iA8QX6MKFm4nExBVpER8rQ3SjO0wESWhDpsMUJkyndWZq0jT9Gre691fcuDNu/QSn0IWAJ7nJyTn3JuceN2RUKtP8MAorq2vrxdJGeXNre2e3Ut3ryiASmHRwwALRc5EkjHLSUVQx0gsFQb7LyKM7ucn8x2ciJA34g4pD4vhoxKlHMVJaGlQOmvaIPEHbR2qMEUvu0sEpvIKNQaVm1s0p4DKxclIDOdqDqlG0hwGOfMIVZkjKvmWGykmQUBQzkpbtSJIQ4Qkakb6mHPlEOsn0gxQea2UIvUDo4QpO1b8XCfKljH1Xb2ZJ5aKXif964TiWFEvt5WzOzfaF9LQ9H095l05CeRgpwvEsnRcxqAKYdQiHVBCsWKwJwoLqByEeI4Gw0k2XdXXWYlHLpNuoW+f1s/tmrXWdl1gCh+AInAALXIAWuAVt0AEYpOAFvII34934NL6M79lqwchv9sEcjJ9ftKuqRw==</latexit>

4 � I3 > 2

D.Collins, N. Gisin, N. Linden, S. Massar and S. Popescu, 
Phys. Rev. Lett. 88, 040404 (2002) 

• As for entanglement: what is entanglement? 
Entanglement is a property of entangled states: states that are NOT 
separable. For instance, bipartite qubit states:

<latexit sha1_base64="RIiFYImFT7klEvgvv0u7siNzzqk="></latexit>

| i = 1

2
(|0 0i � |0 1i+ |1 0i � |1 1i) = 1p

2
(|0i+ |1i)⌦ 1p

2
(|0i � |1i) not entangled

very entangled
<latexit sha1_base64="3bUl2Ybz5xE3Ls8Xj6V6iDTXJ+w="></latexit>

| 0i = 1p
2
(|0 0i+ |1 1i)

Measuring the entanglement is generally very complicated!

The explicit form of B depends on the choice of the four measured operators Âi, B̂i, i 2 {1, 2}. Hence,
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• For bipartite pure states it’s easy: use the entropy of entanglement 

The concurrence lower bound (2.5) will play the role of entanglement witness in our study of the
spin polarization states formed with two massive gauge bosons.

If the bipartite state of interest is a pure state, it is possible to quantify its entanglement by
computing the entropy of entanglement :

E [⇢] = �Tr [⇢A log ⇢A] = �Tr [⇢B log ⇢B] , (2.8)

given by the von Neumann entropy [1] of either of the two component subsystems A or B with
reduced density matrix ⇢A and ⇢B, respectively. Whereas the concurrence of a bipartite pure state is
only an entanglement monotone, the von Neumann entropy is a true entanglement measure satisfying
0  E [⇢]  ln d, where d = 3 for a two-qutrit system. The first equality holds if and only if the bipartite
state is separable, the second inequality saturates if the bipartite state is maximally entangled.

2.1.2 Bell inequalities

Local deterministic theories provide descriptions of a physical system that match the results of quan-
tum mechanics for the averages of relevant system observables. Yet, in view of the deterministic and
locality assumptions, these stochastic classical models are bound to satisfy a set of inequalities known
as Bell inequalities [18–22], which are instead violated by the statistical predictions of quantum me-
chanics. An experimental determination of any Bell inequality is thus able to discriminate between
these classical local models and quantum mechanics.

Whereas an essentially unique Bell inequality can be formulated [31] in the case of a bipartite
system made of two qubits, di↵erent Bell inequalities can be found in the literature for systems of
higher dimensionality. Among these, the CGLMP inequality [23, 24] is an optimal generalization of
the qubit inequality for systems made of two qutrits.

In order to explicitly write this inequality, consider again the two components A and B of the two
qutrit system. For the qutrit A, select two spin measurement settings, Â1 and Â2, which correspond
to the projective measurement of two spin-1 observables having each three possible outcomes {0, 1, 2}.
Similarly, the measurement settings and corresponding observables for the other qutrit B are B̂1 and
B̂2. Then, denote by P (Ai = Bj + k) the probability that the outcome Ai for the measurement of
Âi and Bj for the measurement of B̂j , with i, j either 1 or 2, di↵er by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2) + P (B2 = A1)

�P (A1 = B1 � 1)� P (A1 = B2)� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (2.9)

For deterministic local models, this quantity satisfies the following generalized Bell inequality,

I3  2 , (2.10)

which instead can be violated by computing the above joint probabilities using the rules of quantum
mechanics. Given a state ⇢ of the two-qutrit system, the above probabilities are computed in quantum
mechanics as expectation values of suitable projector operators; for instance, the probability of the
outcome A1 = B1 = 1, when measuring Â1 and B̂1, is given by P (A1 = B1 = 1) = Tr[⇢ (PA1=1 ⌦
PB1=1)], where e.g. PA1=1 projects onto the subspace of the A-Hilbert space where Â1 assumes the
value 1. Therefore, in quantum mechanics, I3 in (2.9) can be similarly expressed as an expectation
value of a suitable Bell operator B:

I3 = Tr
⇥
⇢B

⇤
. (2.11)
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(A, B are the two subsystems with 
reduced density matrices 𝝆A and 𝝆B)

The entropy of entanglement is an entanglement measure



• For bipartite pure states it’s easy: use the entropy of entanglement 

The concurrence lower bound (2.5) will play the role of entanglement witness in our study of the
spin polarization states formed with two massive gauge bosons.

If the bipartite state of interest is a pure state, it is possible to quantify its entanglement by
computing the entropy of entanglement :

E [⇢] = �Tr [⇢A log ⇢A] = �Tr [⇢B log ⇢B] , (2.8)

given by the von Neumann entropy [1] of either of the two component subsystems A or B with
reduced density matrix ⇢A and ⇢B, respectively. Whereas the concurrence of a bipartite pure state is
only an entanglement monotone, the von Neumann entropy is a true entanglement measure satisfying
0  E [⇢]  ln d, where d = 3 for a two-qutrit system. The first equality holds if and only if the bipartite
state is separable, the second inequality saturates if the bipartite state is maximally entangled.

2.1.2 Bell inequalities

Local deterministic theories provide descriptions of a physical system that match the results of quan-
tum mechanics for the averages of relevant system observables. Yet, in view of the deterministic and
locality assumptions, these stochastic classical models are bound to satisfy a set of inequalities known
as Bell inequalities [18–22], which are instead violated by the statistical predictions of quantum me-
chanics. An experimental determination of any Bell inequality is thus able to discriminate between
these classical local models and quantum mechanics.

Whereas an essentially unique Bell inequality can be formulated [31] in the case of a bipartite
system made of two qubits, di↵erent Bell inequalities can be found in the literature for systems of
higher dimensionality. Among these, the CGLMP inequality [23, 24] is an optimal generalization of
the qubit inequality for systems made of two qutrits.

In order to explicitly write this inequality, consider again the two components A and B of the two
qutrit system. For the qutrit A, select two spin measurement settings, Â1 and Â2, which correspond
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• For bipartite mixed states: use the concurrence, if you can… 

The entropy of entanglement is an entanglement measure

‣ This is only an entanglement witness (says yes/no but not how much)
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• For bipartite mixed states: use the concurrence, if you can… 

The entropy of entanglement is an entanglement measure

‣ This is only an entanglement witness (says yes/no but not how much)
Consider a bipartite quantum system comprising two subsystems of equal dimensionality, A and B,

described by a normalized pure state | i and density matrix | ih |. The concurrence of the system
is then defined as [27]

C[| i] =
q

2
�
1� Tr

⇥
(⇢r)2

⇤�
, r = A or B , (2.1)

where ⇢r is the reduced density matrix obtained by tracing over the degrees of freedom of either
subsystem: e.g. for r = A one has ⇢A = TrB

⇥
| ih |

⇤
. Any mixed state ⇢ of the bipartite system can

be decomposed into a set of pure states {| ii},

⇢ =
X

i

pi | iih i| , pi � 0 ,
X

i

pi = 1 (2.2)

its concurrence is then defined by means of the concurrence of the pure states appearing in the
decomposition through an optimization process:

C[⇢] = inf
{| i}

X

i

pi C[| ii] , (2.3)

where the infimum is taken over all the possible decompositions of ⇢ into pure states. Clearly, for a pure
state (2.1) the concurrence vanishes if and only if the state is separable, that is: | i = | Ai ⌦ | Bi.
As the same holds for mixed states [28], the concurrence appears to be a good entanglement detector.
Unfortunately, the optimization problem appearing in (2.3) makes the evaluation of the concurrence a
very hard mathematical task with a simple analytic solution only when A and B are two-level systems.
Any approximation or numerical computation of C[⇢] only holds as an upper bound and thus cannot
serve to reliably distinguish between entangled and separable states, or to give an estimate of a state
entanglement content.

Lower bounds on C[⇢] for a generic density matrix ⇢ can be analytically computed and, if non-
vanishing, unequivocally signal the presence of entanglement. One of these bounds is easily com-
putable, yielding [29] �

C[⇢]
�2 � C2[⇢] , (2.4)

where

C2[⇢] = 2max
⇣
0, Tr [⇢2]� Tr [(⇢A)

2], Tr [⇢2]� Tr [(⇢B)
2]
⌘
, (2.5)

with ⇢A = TrB[⇢] and ⇢B = TrA[⇢] being the reduced density matrices. A non-vanishing value of C2

then implies a concurrence larger than zero, thus witnessing the entanglement of the density matrix
⇢.

Interestingly enough, an upper bound for C[⇢] has also been obtained [30]; explicitly, one finds

�
C[⇢]

�2  2min
⇣
1� Tr [(⇢A)

2], 1� Tr [(⇢B)
2]
⌘
. (2.6)

The maximum value for the concurrence is obtained for a totally symmetric and maximally entangled
pure state. For two qutrits this is

| +i =
1p
3

3X

i=1

|ii ⌦ |ii , (2.7)

with {|ii} an orthonormal basis in the A- orB-Hilbert space, resulting in C[| +i] = 2/
p
3. Accordingly,

C2 is at most equal to 4/3.
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C2 is at most equal to 4/3.
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• For bipartite pure states it’s easy: use the entropy of entanglement 

The concurrence lower bound (2.5) will play the role of entanglement witness in our study of the
spin polarization states formed with two massive gauge bosons.

If the bipartite state of interest is a pure state, it is possible to quantify its entanglement by
computing the entropy of entanglement :

E [⇢] = �Tr [⇢A log ⇢A] = �Tr [⇢B log ⇢B] , (2.8)

given by the von Neumann entropy [1] of either of the two component subsystems A or B with
reduced density matrix ⇢A and ⇢B, respectively. Whereas the concurrence of a bipartite pure state is
only an entanglement monotone, the von Neumann entropy is a true entanglement measure satisfying
0  E [⇢]  ln d, where d = 3 for a two-qutrit system. The first equality holds if and only if the bipartite
state is separable, the second inequality saturates if the bipartite state is maximally entangled.

2.1.2 Bell inequalities

Local deterministic theories provide descriptions of a physical system that match the results of quan-
tum mechanics for the averages of relevant system observables. Yet, in view of the deterministic and
locality assumptions, these stochastic classical models are bound to satisfy a set of inequalities known
as Bell inequalities [18–22], which are instead violated by the statistical predictions of quantum me-
chanics. An experimental determination of any Bell inequality is thus able to discriminate between
these classical local models and quantum mechanics.

Whereas an essentially unique Bell inequality can be formulated [31] in the case of a bipartite
system made of two qubits, di↵erent Bell inequalities can be found in the literature for systems of
higher dimensionality. Among these, the CGLMP inequality [23, 24] is an optimal generalization of
the qubit inequality for systems made of two qutrits.

In order to explicitly write this inequality, consider again the two components A and B of the two
qutrit system. For the qutrit A, select two spin measurement settings, Â1 and Â2, which correspond
to the projective measurement of two spin-1 observables having each three possible outcomes {0, 1, 2}.
Similarly, the measurement settings and corresponding observables for the other qutrit B are B̂1 and
B̂2. Then, denote by P (Ai = Bj + k) the probability that the outcome Ai for the measurement of
Âi and Bj for the measurement of B̂j , with i, j either 1 or 2, di↵er by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2) + P (B2 = A1)

�P (A1 = B1 � 1)� P (A1 = B2)� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (2.9)

For deterministic local models, this quantity satisfies the following generalized Bell inequality,

I3  2 , (2.10)

which instead can be violated by computing the above joint probabilities using the rules of quantum
mechanics. Given a state ⇢ of the two-qutrit system, the above probabilities are computed in quantum
mechanics as expectation values of suitable projector operators; for instance, the probability of the
outcome A1 = B1 = 1, when measuring Â1 and B̂1, is given by P (A1 = B1 = 1) = Tr[⇢ (PA1=1 ⌦
PB1=1)], where e.g. PA1=1 projects onto the subspace of the A-Hilbert space where Â1 assumes the
value 1. Therefore, in quantum mechanics, I3 in (2.9) can be similarly expressed as an expectation
value of a suitable Bell operator B:

I3 = Tr
⇥
⇢B

⇤
. (2.11)
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(A, B are the two subsystems with 
reduced density matrices 𝝆A and 𝝆B)

• For bipartite mixed states: use the concurrence, if you can… 

The entropy of entanglement is an entanglement measure

‣ This is only an entanglement witness (says yes/no but not how much)
Consider a bipartite quantum system comprising two subsystems of equal dimensionality, A and B,

described by a normalized pure state | i and density matrix | ih |. The concurrence of the system
is then defined as [27]
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where the infimum is taken over all the possible decompositions of ⇢ into pure states. Clearly, for a pure
state (2.1) the concurrence vanishes if and only if the state is separable, that is: | i = | Ai ⌦ | Bi.
As the same holds for mixed states [28], the concurrence appears to be a good entanglement detector.
Unfortunately, the optimization problem appearing in (2.3) makes the evaluation of the concurrence a
very hard mathematical task with a simple analytic solution only when A and B are two-level systems.
Any approximation or numerical computation of C[⇢] only holds as an upper bound and thus cannot
serve to reliably distinguish between entangled and separable states, or to give an estimate of a state
entanglement content.

Lower bounds on C[⇢] for a generic density matrix ⇢ can be analytically computed and, if non-
vanishing, unequivocally signal the presence of entanglement. One of these bounds is easily com-
putable, yielding [29] �
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then implies a concurrence larger than zero, thus witnessing the entanglement of the density matrix
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3. Accordingly,

C2 is at most equal to 4/3.
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C2 is at most equal to 4/3.
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• For bipartite pure states it’s easy: use the entropy of entanglement 

The concurrence lower bound (2.5) will play the role of entanglement witness in our study of the
spin polarization states formed with two massive gauge bosons.

If the bipartite state of interest is a pure state, it is possible to quantify its entanglement by
computing the entropy of entanglement :

E [⇢] = �Tr [⇢A log ⇢A] = �Tr [⇢B log ⇢B] , (2.8)

given by the von Neumann entropy [1] of either of the two component subsystems A or B with
reduced density matrix ⇢A and ⇢B, respectively. Whereas the concurrence of a bipartite pure state is
only an entanglement monotone, the von Neumann entropy is a true entanglement measure satisfying
0  E [⇢]  ln d, where d = 3 for a two-qutrit system. The first equality holds if and only if the bipartite
state is separable, the second inequality saturates if the bipartite state is maximally entangled.

2.1.2 Bell inequalities

Local deterministic theories provide descriptions of a physical system that match the results of quan-
tum mechanics for the averages of relevant system observables. Yet, in view of the deterministic and
locality assumptions, these stochastic classical models are bound to satisfy a set of inequalities known
as Bell inequalities [18–22], which are instead violated by the statistical predictions of quantum me-
chanics. An experimental determination of any Bell inequality is thus able to discriminate between
these classical local models and quantum mechanics.

Whereas an essentially unique Bell inequality can be formulated [31] in the case of a bipartite
system made of two qubits, di↵erent Bell inequalities can be found in the literature for systems of
higher dimensionality. Among these, the CGLMP inequality [23, 24] is an optimal generalization of
the qubit inequality for systems made of two qutrits.

In order to explicitly write this inequality, consider again the two components A and B of the two
qutrit system. For the qutrit A, select two spin measurement settings, Â1 and Â2, which correspond
to the projective measurement of two spin-1 observables having each three possible outcomes {0, 1, 2}.
Similarly, the measurement settings and corresponding observables for the other qutrit B are B̂1 and
B̂2. Then, denote by P (Ai = Bj + k) the probability that the outcome Ai for the measurement of
Âi and Bj for the measurement of B̂j , with i, j either 1 or 2, di↵er by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2) + P (B2 = A1)

�P (A1 = B1 � 1)� P (A1 = B2)� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (2.9)

For deterministic local models, this quantity satisfies the following generalized Bell inequality,

I3  2 , (2.10)

which instead can be violated by computing the above joint probabilities using the rules of quantum
mechanics. Given a state ⇢ of the two-qutrit system, the above probabilities are computed in quantum
mechanics as expectation values of suitable projector operators; for instance, the probability of the
outcome A1 = B1 = 1, when measuring Â1 and B̂1, is given by P (A1 = B1 = 1) = Tr[⇢ (PA1=1 ⌦
PB1=1)], where e.g. PA1=1 projects onto the subspace of the A-Hilbert space where Â1 assumes the
value 1. Therefore, in quantum mechanics, I3 in (2.9) can be similarly expressed as an expectation
value of a suitable Bell operator B:

I3 = Tr
⇥
⇢B

⇤
. (2.11)
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(A, B are the two subsystems with 
reduced density matrices 𝝆A and 𝝆B)

• For bipartite mixed states: use the concurrence, if you can… 

The entropy of entanglement is an entanglement measure

‣ This is only an entanglement witness (says yes/no but not how much)
Consider a bipartite quantum system comprising two subsystems of equal dimensionality, A and B,

described by a normalized pure state | i and density matrix | ih |. The concurrence of the system
is then defined as [27]

C[| i] =
q

2
�
1� Tr

⇥
(⇢r)2

⇤�
, r = A or B , (2.1)

where ⇢r is the reduced density matrix obtained by tracing over the degrees of freedom of either
subsystem: e.g. for r = A one has ⇢A = TrB

⇥
| ih |

⇤
. Any mixed state ⇢ of the bipartite system can

be decomposed into a set of pure states {| ii},

⇢ =
X

i

pi | iih i| , pi � 0 ,
X

i

pi = 1 (2.2)

its concurrence is then defined by means of the concurrence of the pure states appearing in the
decomposition through an optimization process:

C[⇢] = inf
{| i}

X

i

pi C[| ii] , (2.3)

where the infimum is taken over all the possible decompositions of ⇢ into pure states. Clearly, for a pure
state (2.1) the concurrence vanishes if and only if the state is separable, that is: | i = | Ai ⌦ | Bi.
As the same holds for mixed states [28], the concurrence appears to be a good entanglement detector.
Unfortunately, the optimization problem appearing in (2.3) makes the evaluation of the concurrence a
very hard mathematical task with a simple analytic solution only when A and B are two-level systems.
Any approximation or numerical computation of C[⇢] only holds as an upper bound and thus cannot
serve to reliably distinguish between entangled and separable states, or to give an estimate of a state
entanglement content.

Lower bounds on C[⇢] for a generic density matrix ⇢ can be analytically computed and, if non-
vanishing, unequivocally signal the presence of entanglement. One of these bounds is easily com-
putable, yielding [29] �

C[⇢]
�2 � C2[⇢] , (2.4)

where

C2[⇢] = 2max
⇣
0, Tr [⇢2]� Tr [(⇢A)

2], Tr [⇢2]� Tr [(⇢B)
2]
⌘
, (2.5)

with ⇢A = TrB[⇢] and ⇢B = TrA[⇢] being the reduced density matrices. A non-vanishing value of C2

then implies a concurrence larger than zero, thus witnessing the entanglement of the density matrix
⇢.

Interestingly enough, an upper bound for C[⇢] has also been obtained [30]; explicitly, one finds

�
C[⇢]

�2  2min
⇣
1� Tr [(⇢A)

2], 1� Tr [(⇢B)
2]
⌘
. (2.6)

The maximum value for the concurrence is obtained for a totally symmetric and maximally entangled
pure state. For two qutrits this is

| +i =
1p
3

3X

i=1

|ii ⌦ |ii , (2.7)

with {|ii} an orthonormal basis in the A- orB-Hilbert space, resulting in C[| +i] = 2/
p
3. Accordingly,

C2 is at most equal to 4/3.
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• To cut it short:
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Consider a bipartite quantum system comprising two subsystems of equal dimensionality, A and B,
described by a normalized pure state | i and density matrix | ih |. The concurrence of the system
is then defined as [27]

C[| i] =
q

2
�
1� Tr

⇥
(⇢r)2

⇤�
, r = A or B , (2.1)

where ⇢r is the reduced density matrix obtained by tracing over the degrees of freedom of either
subsystem: e.g. for r = A one has ⇢A = TrB

⇥
| ih |

⇤
. Any mixed state ⇢ of the bipartite system can

be decomposed into a set of pure states {| ii},

⇢ =
X

i

pi | iih i| , pi � 0 ,
X

i

pi = 1 (2.2)

its concurrence is then defined by means of the concurrence of the pure states appearing in the
decomposition through an optimization process:

C[⇢] = inf
{| i}

X

i

pi C[| ii] , (2.3)

where the infimum is taken over all the possible decompositions of ⇢ into pure states. Clearly, for a pure
state (2.1) the concurrence vanishes if and only if the state is separable, that is: | i = | Ai ⌦ | Bi.
As the same holds for mixed states [28], the concurrence appears to be a good entanglement detector.
Unfortunately, the optimization problem appearing in (2.3) makes the evaluation of the concurrence a
very hard mathematical task with a simple analytic solution only when A and B are two-level systems.
Any approximation or numerical computation of C[⇢] only holds as an upper bound and thus cannot
serve to reliably distinguish between entangled and separable states, or to give an estimate of a state
entanglement content.

Lower bounds on C[⇢] for a generic density matrix ⇢ can be analytically computed and, if non-
vanishing, unequivocally signal the presence of entanglement. One of these bounds is easily com-
putable, yielding [29] �

C[⇢]
�2 � C2[⇢] , (2.4)

where

C2[⇢] = 2max
⇣
0, Tr [⇢2]� Tr [(⇢A)

2], Tr [⇢2]� Tr [(⇢B)
2]
⌘
, (2.5)

with ⇢A = TrB[⇢] and ⇢B = TrA[⇢] being the reduced density matrices. A non-vanishing value of C2

then implies a concurrence larger than zero, thus witnessing the entanglement of the density matrix
⇢.

Interestingly enough, an upper bound for C[⇢] has also been obtained [30]; explicitly, one finds

�
C[⇢]

�2  2min
⇣
1� Tr [(⇢A)

2], 1� Tr [(⇢B)
2]
⌘
. (2.6)

The maximum value for the concurrence is obtained for a totally symmetric and maximally entangled
pure state. For two qutrits this is

| +i =
1p
3

3X

i=1

|ii ⌦ |ii , (2.7)

with {|ii} an orthonormal basis in the A- orB-Hilbert space, resulting in C[| +i] = 2/
p
3. Accordingly,

C2 is at most equal to 4/3.
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3 Di-boson production in Higgs boson decays

Consider the decay
H ! V (k1,�1)V

⇤(k2,�2) , (3.1)

with V 2 {W,Z}, and V ⇤ regarded as an o↵-shell vector boson. In the following, we treat the latter
as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . The amplitude of the Higgs

Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons.

boson decay (3.1) is given by

MH(�1,�2) = gMV ⇠V gµ⌫"
µ?(k1,�1)"

⌫?(k2,�2) , (3.3)

where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain

MH(�1,�2)MH(�0
1,�

0
2)

† = g2M2
V ⇠2V gµ⌫gµ0⌫0P

µµ
0

�1�
0
1
(k1)P

⌫⌫
0

�2�
0
2
(k2) . (3.4)

where Pµ⌫

��0(k) is given in Eq. (2.17) with M = MV or M = M⇤
V

for the on-shell and o↵-shell boson,
respectively.

Following the procedure explained in Section 2.3 for a CM energy
p
s = mH , we obtain the

coe�cients fa, ga, and hab (a, b 2 {1, . . . , 8}) reported below. There is no dependence on the scattering
angle ⇥ because we are considering the decay of the Higgs boson at rest.

The non-vanishing fa elements are

f3 =
1

6

�m4
H
+ 2(1 + f2)m2

H
M2

V
� (1� f2)2M4

V

m4
H
� 2(1 + f2)m2

H
M2

V
+ (1 + 10f2 + f4)M4

V

,

f8 = � 1p
3
f3 , (3.5)
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A Higgs boson walks into a bar and…
…decays to WW* or ZZ*:

 We model the off-shell fields as having a mass 
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where 0<f<1 and MV is the on-shell mass

and we find ga = fa for a 2 {1, . . . , 8}. The non-vanishing hab elements are
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The unpolarized squared amplitude |M|2 of the process instead reads

|MH |2 =
g2⇠2

V

4f2M2
V

h
m4

H � 2(1 + f2)m2
HM2

V + (1 + 10f2 + f4)M4
V

i
. (3.7)

The main theoretical uncertainty a↵ecting the correlation coe�cients in Eq. (3.6) is due to higher
order corrections to the tree-level values. To estimate the size of these contributions, we take as
guidance the results in [35]—in which the NLO corrections have been computed—and assume that
the error induced by these missing corrections yields approximately 1% of uncertainty on the main
entanglement observables in the relevant kinematic regions.

We then compute through Eq. (2.37) the polarization density matrix ⇢H for the two vector bosons
emitted in the decay of the Higgs boson

⇢H = 2

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 h44 0 h16 0 h44 0 0
0 0 0 0 0 0 0 0 0
0 0 h16 0 2h33 0 h16 0 0
0 0 0 0 0 0 0 0 0
0 0 h44 0 h16 0 h44 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, (3.8)

with the condition Tr [⇢H ] = 1 following from the relation 4(h33 + h44) = 1.
We remark that although some fa and ga are non vanishing, the dependence of ⇢H on these

quantities cancels in the final expression. Furthermore, due to the following identity among the
correlation coe�cients

h44 = 2
�
h216 + 2h244

�
, (3.9)

the above polarization density matrix is idempotent

⇢2H = ⇢H , (3.10)
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3 Di-boson production in Higgs boson decays

Consider the decay
H ! V (k1,�1)V

⇤(k2,�2) , (3.1)

with V 2 {W,Z}, and V ⇤ regarded as an o↵-shell vector boson. In the following, we treat the latter
as an on-shell particle characterized by a mass

M⇤
V = fMV (3.2)

reduced by a factor 0 < f < 1 with respect to the original mass MV . The amplitude of the Higgs

Figure 2: Feynman diagrams for the decay of the Higgs boson into a pair of gauge bosons.

boson decay (3.1) is given by

MH(�1,�2) = gMV ⇠V gµ⌫"
µ?(k1,�1)"

⌫?(k2,�2) , (3.3)

where g is the weak coupling, ⇠W = 1, and ⇠Z = 1/(2cW ), with cW = cos ✓W and ✓W the Weinberg
angle. From the amplitude in Eq. (3.3) we obtain
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where Pµ⌫

��0(k) is given in Eq. (2.17) with M = MV or M = M⇤
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for the on-shell and o↵-shell boson,
respectively.

Following the procedure explained in Section 2.3 for a CM energy
p
s = mH , we obtain the

coe�cients fa, ga, and hab (a, b 2 {1, . . . , 8}) reported below. There is no dependence on the scattering
angle ⇥ because we are considering the decay of the Higgs boson at rest.

The non-vanishing fa elements are
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The unpolarized squared amplitude |M|2 of the process instead reads
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The main theoretical uncertainty a↵ecting the correlation coe�cients in Eq. (3.6) is due to higher
order corrections to the tree-level values. To estimate the size of these contributions, we take as
guidance the results in [35]—in which the NLO corrections have been computed—and assume that
the error induced by these missing corrections yields approximately 1% of uncertainty on the main
entanglement observables in the relevant kinematic regions.

We then compute through Eq. (2.37) the polarization density matrix ⇢H for the two vector bosons
emitted in the decay of the Higgs boson

⇢H = 2
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with the condition Tr [⇢H ] = 1 following from the relation 4(h33 + h44) = 1.
We remark that although some fa and ga are non vanishing, the dependence of ⇢H on these

quantities cancels in the final expression. Furthermore, due to the following identity among the
correlation coe�cients

h44 = 2
�
h216 + 2h244

�
, (3.9)

the above polarization density matrix is idempotent

⇢2H = ⇢H , (3.10)
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…and this pure state explicitly is:

Figure 3: The entropy of entanglement (left plot for H ! WW ⇤ and right plot for H ! ZZ⇤) as functions of
the virtual mass of one of the two weak gauge bosons. The dashed line marks the maximum value log 3.

signaling that the final V V ⇤ state is a pure state. The density matrix in Eq. (3.8) can then be
written [12]

⇢H = | Hih H | , (3.11)

where (in the basis |��0i = |�i ⌦ |�0i with �,�0 2 {+, 0,�})

| Hi = 1p
2 + {2

[|+�i � { |0 0i+ |�+i] (3.12)

with

{ = 1 +
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and { = 1 corresponding to the production of two gauge bosons at rest.
Because the di-boson system is described by a pure state, we can measure its entanglement through

the entropy of entanglement defined in Eq. (2.8). This quantity is plotted in Fig. 3 as a function of the
of the mass of virtual W or Z boson and reaches the theoretical maximum at the kinematic threshold,
signaling a maximally entangled state.

In Figs. 4 and 5 we show the results for the main observables targeting quantum entanglement, I3
(left panel) and C2 (right panel), in the H ! WW ⇤ and H ! ZZ⇤ decays. The plots are for di↵erent
values of the virtual gauge boson masses M⇤

W
and M⇤

Z
, respectively.

The maximization of the I3 observable, which depends in this case only on the M⇤
V

mass, is
obtained through the rotation

B ! (UV ⌦ VV )
† · B · (UV ⌦ VV ) , (3.14)

by unitary matrices UV , VV (with index V 2 {W,Z}), as defined in Section 2.1. The maximization
must be performed point by point as the density matrix varies with M⇤

V
.

We provide in Eqs. (3.15)–(3.16) the expressions for the unitary matrices U and V that maximizes
the I3 observable in the last bins (in which M⇤

W
= 40 GeV and M⇤

Z
= 32 GeV) for the H ! WW ⇤
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We can see that the polarizations of the two gauge bosons are entangled 
barring for the case where the off-shell boson is effectively massless. The 
entanglement reaches the maximally allowed value (ln3) for gauge bosons 
produced at rest. 



1 Introduction

T he decay of the Higgs boson into gauge bosons is an ideal laboratory for a systematic
study of their polarization density matrix. As the Higgs boson has spin 0, the system closely

resembles the emission of two photons by atomic levels with zero angular momentum. Unfortunately
the detection of the polarization of high-energy photons is not yet available and one has to rely on
the massive weak gauge bosons instead. Massive spin 1 bosons act as their own polarimeters and
their spin polarizations can be reconstructed from the angular distribution of the final leptons. On
the down side, they represents quantum states with three possible values, qutrits, which are more
difficult to deal with than the simpler qubits. Be that as it may, the angular distributions of the
momenta of the final leptons make it possible to reconstruct, within the inherent uncertainties of the
procedure, the full polarization density matrix in what has been dubbed quantum tomography.

This opportunity has indeed been explored in a series of papers [1–4] in which the polarization
density matrix has been computed and observables quantifying the entanglement [5] of the bipartite
system of the two weak gauge bosons and the violation of the Bell inequalities [6] analyzed.

In this Letter, we utilize the polarization density matrix of the processes and
(where and denote off-shell states) to study the effect of the presence of anomalous couplings
between the Higgs boson and the weak gauge bosons. We are particularly interested in the CP nature
of these couplings and the related question of the parity of the Higgs boson, that is, whether it is a
scalar or a pseudo-scalar particle.

The most general Lagrangian for the process can be written as

H.c.

(1.1)

which defines three possible anomalous couplings: , and for each of the two gauge bosons
or . In Eq. (1.1), is the coupling, are the field strength and .

The first line in Eq. (1.1) gives the Standard Model (SM) Lagrangian. The couplings and stand
for a departure of the fundamental interaction from that of the SM. A non-vanishing coupling
signals the pseudo-scalar nature of the Higgs boson and CP violation in the interference with the SM
vertex. All couplings in Eq. (1.1) are real. Imaginary parts can only develop as the couplings become
form factors after loop contributions are taken into account but these vanish for an on-shell process
as the Higgs decay we consider.

Numerous works have studied the anomalous couplings in Eq. (1.1) by means of dedicated observ-
ables [7–16] and in the framework of effective field theories [17–19]—even though most of the references
only consider observables that are combinations of the the final lepton momenta and energies. The
structure of the helicity amplitudes of the gauge bosons has been been considered in [20–26].

We introduce a new strategy that makes use of the full polarization density matrix. Knowledge of
the density matrix gives a bird’s-eye view of the possible observables available for a given process,
some of them untested yet, like those linked to the entanglement, others already well-known and
utilized, like products of momenta and polarizations or the cross section, the simplest of them all.

Polarizations are more difficult to measure than momenta. The reconstruction of the polarization
density matrix from the data is challenging, in particular for the case of because of
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entanglement (and 𝝆 in general) as a new observable for new physics???



• Back to reality: Bell inequalities

Figure 4: The observables I3 (left plot) and C2 (right plot) for the pair production of W bosons in Higgs boson
decays as functions of the virtual W ⇤ mass in the range 0 < M⇤

W < 40 GeV. The dashed horizontal line in the
left-hand side plot marks the Bell-inequality violation condition I3 > 2. The dashed line in the right-hand side
plot illustrates for the maximum value 4/3 corresponding to a pure state.
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left plot stands for the Bell-inequality violation condition I3 > 2. The dashed line in the right plot denotes the
maximum value 4/3 corresponding to a pure state.
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Violation of the CGLMP inequality in both channels! 
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• Let’s see if we see it. Madgraph tells us the cross sections of
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The matrices in Eq. (3.15) and Eq. (3.16) are given in terms of rational numbers which approximate
the corresponding real values with a 1% precision. The unitary condition is satisfied barring O(10�2)
factors. These matrices cannot be directly compared with the similar expressions given in [12] because
of the di↵erent assumptions in the utilized optimization procedure.

The C2 observable admits here a simple analytical expression
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The plots on the right-hand side in Figs. 4 and 5 nicely show that the value of C2 decreases as the
pure state in Eq. (3.8) becomes less and less entangled, for decreasing values of M⇤

V
.

3.1 Events and sensitivity

In order to evaluate the sensitivity of current experiments to the observables I3 and C2, we estimate
the number of suitable events available. These are given in Table 1 for the run2 at the LHC.

`+⌫` `�⌫̄` `�`+`�`+

LHC run2 (L = 140 fb�1) 4571 28

Hi-Lumi (L = 3 ab�1) 9.8⇥ 103 589

Table 1: Number of expected events for the Higgs boson decays into WW ⇤ and ZZ⇤ assuming a luminosity
L = 140 fb�1 for the run2 at the LHC. The cut in invariant mass is at 30 and 40 GeV respectively for the WW
and ZZ channels. A benchmark e�ciency of 70% is assumed in the identification of each charged lepton.

The cross sections for p p ! H ! W+`�⌫̄` and p p ! H ! Z`+`� utilized in the estimates are com-
puted with MADGRAPH5 [40] at the LO and then corrected by the -factor given at the N3LO+N3LL [41].
Only fully leptonic decays can be used, as explained in Section 1. We have reduced the number of
events to account for the e�ciency in the identification of the final charged leptons—which we take
conservatively to be 70% for each of them.

The irreducible background for the H ! W+`�⌫̄` signal comes from the continuum electroweak
production of the W+W� pairs [42]. It can be removed by considering the topology of the final states.
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• All very nice but a true estimate of the significance requires a dedicated full 
simulation! ….just sayin’….
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Other processes?
• We looked also at pp→…

Figure 8: Feynman diagrams for the processes p p ! W+W� (first row), p p ! ZZ (second row) and
p p ! W+Z (third row) at the parton level for the first quark generation. We neglect diagrams mediated by the
Higgs boson considering the limit of massless quarks. The arrows on the fermion lines indicate the momentum
flow.

The main source of theoretical uncertainty in the determination of the correlation coe�cients
comes from higher order QCD corrections. Taking as a guidance the results in [45], we assume that
the error induced by these missing corrections yields approximately a 10% uncertainty on the main
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where

fZZ =
8↵2⇡2Nc

DZZc4Ws4W
, and DZZ = 1 + �4

Z + 2�2
Z(1� 2c2⇥) , (4.26)

with �Z =
q
1� 4M2

Z
/m2

ZZ . The angle ⇥ is here defined as the angle between the anti-quark momen-

tum and k1 in the CM frame. The orientation of the latter coincides with that of the k̂ unit vector of
the basis in Eq. (2.26).

Figure 12: The observables I3 (left plot) and C2 (right plot) for the process p p ! ZZ as functions of the
invariant mass and scattering angle in the CM frame. The hatched area in the plot on the left indicates the bin
in which the observable is to be evaluated.

The Eq. (4.24) makes it possible through Eq. (2.38) to compute the correlation coe�cients f̃a, g̃a,
and h̃ab (given in Appendix C) of the density matrix for the process at hand and consequently, the
value of the operators I3 and C2.

In Fig. 12 we present our results for the entanglement observables. The violation of the Bell
inequalities takes place only in a limited range of the kinematic variables. The bin in which I3 > 2 is
shown as a hatched area in the left panel.

The observable C2 follows the pattern of I3—as it does in the case of the W+W� final states—and
reaches the largest values in the upper-left quadrant. In this region it witnesses the presence of states
more entangled than in the rest of the kinematic space.

4.2.1 Events and sensitivity

The number of expected events at the LHC is given in Table 3. As before, the relevant cross sec-
tions were computed with MADGRAPH5 [40] at the LO and then corrected by the -factor given at
the NNLO [46]. Only fully leptonic decays can be used, as explained in Section 1. We reduce the
number of events thus found by the e�ciency in the identification of the final leptons—which we take
conservatively to be 70% for each of the identified leptons.

Though there are irreducible background events from the H ! ZZ decay, they are negligible in
the kinematic bin where the observables are to be estimated.

28

‣ The ZZ pair is always produced in a 
mixed state (Tr(𝜌2)<1)

(all true also for WW and WZ)

‣ We find 𝒞2>0 over all of the considered 
parameter space, witnessing that the two 
Z bosons are always entangled
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with
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s = 13 TeV and luminosities L =140 fb�1, run2, and L = 3 ab�1 for Hi-lumi. A benchmark e�ciency

of 70% is assumed in the identification of each charged lepton.

Figure 13: Distribution of the events of the ZZ process at the LHC run 2 (left) and Hi-lumi (right). The
events have mean value I3 = 1.9 and 2.2, respectively. The threshold value of 2 for Bell inequality violation is
shown as a dashed red line.

We run 104 pseudo experiments as we vary the invariant mass and the scattering angle and compute
the observable I3. Fig. 13 shows the distribution which is obtained for LHC run2 and Hi-Lumi. The
distributions are skewed because the observable is computed near its maximum value and the random
variation can only reduce this value.

We find that run2 yields an average value of I3  2 that is below the threshold for Bell violation.
At Hi-Lumi the significance for rejecting the null hypothesis I3  2 (see Fig. 11) is more than 2.

The significance we quote is bound to decrease in a full simulation because of the reconstruction
from the final lepton angular distributions and the systematic uncertainties of the unfolding.

4.3 p p ! WZ

Let us consider the tree-level Feynman diagrams contributing to the process

d̄(p1)u(p2) ! W+(k1,�1)Z(k2,�2) , (4.27)

at the partonic level, shown in the last row of Fig. 8. We indicate the polarization vectors of the W+

and Z with "µ(k1,�1) and "⌫(k2,�2), respectively. The polarized amplitude of the process is
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where

fWZ =
8↵2⇡2Nc

9(3 + �2
V )

2DWZc2Ws4W
, DWZ = 1 + �4

V + 2�2
V (1� 2c2⇥) , (4.32)

with �V =
q
1� 4M2

V
/mVV . The angle ⇥ is here implied by the momenta of anti-down quark and

W in the CM frame. As before, our convention for the polarization density matrix for the WZ
production is that the momentum of W is along k̂, cf. Eq. (2.26). Analogous results hold for the
process p p ! W�Z initiated by the ūd quarks.

We compute the correlation coe�cients f̃a, g̃a, and h̃ab (given explicitly in Appendix C) of the
density matrix by using Eqs. (4.30)–(2.38). Fig. 14 shows the values obtained for the observables I3
(left panel) and C2 (right panel) for the process p p ! WZ. By inspection, the observable I3 is less
than 2 regardless of the value of the kinematic variables. The final states are less entangled than in
the case of the weak gauge boson pairs and the observable C2 presents low values everywhere.

4.4 Lepton colliders

We consider now the charged di-boson production at e+e� and muon colliders, proceeding from the
process

`+(p1)`
�(p2) ! W+(k1,�1)W

�(k2,�2) , (4.33)

where ` 2 {e, µ}. We neglect the contribution of an intermediate Higgs boson regarding the leptons
as massless.

Figure 15: The observables I3 and C2 for the process `+`� ! W+W� as functions of the invariant mass and
scattering angle in the CM frame. The hatched area in the plot on the left represents the bin in which the
observable I3 is to be evaluated.

The analytical results for the amplitude and the polarization density matrix coe�cients can be
obtained from those given in Section 4.1 and Appendix C through the replacements ḡd

V,A
! ḡ`

V,A
.
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Figure 16: The observables I3 and C2 for the process `+`� ! ZZ as functions of the invariant mass and
scattering angle in the CM frame. The hatched area in the plot on the left represents the bin in which the
observable I3 is to be evaluated.

Because the initial state is unique, the total density matrix comprises only one contribution. For the
correlation coe�cients hab, fa, ga we then find

hab[mWW ,⇥] =
h̃`

¯̀
ab
[mWW ,⇥]

A`¯̀[mWW ,⇥]
,

fa[mWW ,⇥] =
f̃ `¯̀
a [mWW ,⇥]

A`¯̀[mWW ,⇥]
,

ga[mWW ,⇥] =
g̃`

¯̀
a [mWW ,⇥]

A`¯̀[mWW ,⇥]
, (4.34)

where the scattering angle ⇥ is defined as the angle between the anti-lepton and W+ momenta.
The results for the entanglement observables are shown in Fig. 15. The violation of the Bell

inequalities takes place in a range of the kinematic variables broader than in the LHC case. The
theoretical uncertainty of the result is negligible.

The same results for the ZZ di-bosons are shown in Fig. 16. The violation of the Bell inequalities
in this case takes place in a range of the kinematic variables more or less equivalent to that at the LHC
because the process is generated by only one kind of diagram (see Fig. 8) and the PDF factorization
takes place both at the LHC and at the lepton colliders.

4.4.1 Events and sensitivity

The bin in which I3 > 2 for lepton colliders is shown as a hatched area in Fig. 15. Having identified
the best region to confront the data, we can estimate the number of events expected at a muon
collider working at an energy of

p
s = 1 TeV and at the future circular collider (FCC) working at

an energy of
p
s = 368 GeV. These numbers are given in Table 4, where the relevant cross sections

32

were computed with MADGRAPH5 [40] at the LO. Only fully leptonic decays can be used, as explained
in Section 1. We reduce the number of events thus found by the e�ciency in the identification of the
final leptons—which we take conservatively to be 70% per lepton.

It is premature to discuss any background—except for stressing that at
p
s = 1 TeV the quark

initiated production is 10 times that of vector boson fusion (see, for example, [47]).

`+⌫` `�⌫̄` `�`+`�`+

muon (L = 1 ab�1) 3.6⇥ 103 44

FCC (L = 1.5 ab�1) 5.8⇥ 104 748

Table 4: Number of expected events in the kinematic region mWW > 200 GeV and cos⇥ < 0.25 for a muon
collider with

p
s = 1 TeV and luminosity L =1 ab�1 and FCC with

p
s = 364 GeV and luminosity L = 1.5

ab�1. A benchmark e�ciency of 70% is assumed in the identification of each charged lepton.

Figure 17: Distribution of the events (muon collider, left, FCC, right) in the W+W� process. The events have
mean value I3 = 2.6. The threshold value of 2 for Bell inequality violation is shown as a dashed red line.

Figure 18: Distribution of the events (muon collider, left, FCC, right) in the ZZ process. The events have
mean value I3 = 2.17. The threshold value of 2 for Bell inequality violation is shown as a dashed red line.

In the case of WW di-bosons, both the future muon collider and the FCC can provide a significance
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W in the CM frame. As before, our convention for the polarization density matrix for the WZ
production is that the momentum of W is along k̂, cf. Eq. (2.26). Analogous results hold for the
process p p ! W�Z initiated by the ūd quarks.

We compute the correlation coe�cients f̃a, g̃a, and h̃ab (given explicitly in Appendix C) of the
density matrix by using Eqs. (4.30)–(2.38). Fig. 14 shows the values obtained for the observables I3
(left panel) and C2 (right panel) for the process p p ! WZ. By inspection, the observable I3 is less
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where ` 2 {e, µ}. We neglect the contribution of an intermediate Higgs boson regarding the leptons
as massless.

Figure 15: The observables I3 and C2 for the process `+`� ! W+W� as functions of the invariant mass and
scattering angle in the CM frame. The hatched area in the plot on the left represents the bin in which the
observable I3 is to be evaluated.

The analytical results for the amplitude and the polarization density matrix coe�cients can be
obtained from those given in Section 4.1 and Appendix C through the replacements ḡd
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Figure 16: The observables I3 and C2 for the process `+`� ! ZZ as functions of the invariant mass and
scattering angle in the CM frame. The hatched area in the plot on the left represents the bin in which the
observable I3 is to be evaluated.

Because the initial state is unique, the total density matrix comprises only one contribution. For the
correlation coe�cients hab, fa, ga we then find
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,
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f̃ `¯̀
a [mWW ,⇥]

A`¯̀[mWW ,⇥]
,
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, (4.34)

where the scattering angle ⇥ is defined as the angle between the anti-lepton and W+ momenta.
The results for the entanglement observables are shown in Fig. 15. The violation of the Bell

inequalities takes place in a range of the kinematic variables broader than in the LHC case. The
theoretical uncertainty of the result is negligible.

The same results for the ZZ di-bosons are shown in Fig. 16. The violation of the Bell inequalities
in this case takes place in a range of the kinematic variables more or less equivalent to that at the LHC
because the process is generated by only one kind of diagram (see Fig. 8) and the PDF factorization
takes place both at the LHC and at the lepton colliders.
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were computed with MADGRAPH5 [40] at the LO. Only fully leptonic decays can be used, as explained
in Section 1. We reduce the number of events thus found by the e�ciency in the identification of the
final leptons—which we take conservatively to be 70% per lepton.
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p
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Figure 17: Distribution of the events (muon collider, left, FCC, right) in the W+W� process. The events have
mean value I3 = 2.6. The threshold value of 2 for Bell inequality violation is shown as a dashed red line.
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were computed with MADGRAPH5 [40] at the LO. Only fully leptonic decays can be used, as explained
in Section 1. We reduce the number of events thus found by the e�ciency in the identification of the
final leptons—which we take conservatively to be 70% per lepton.
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the resonant Higgs boson decay p p → H → ZZ. The WW channel could 
become competitive if progress in the reconstruction of neutrino 
momenta is made 

• Electroweak quark fusion yielding ZZ final states will become 
competitive only with LHC Hi-Lumi data. Future lepton colliders are able 
to probe Bell inequalities with WW and ZZ final states 

• The entanglement content of a di-boson state can be effectively probed 
by quantifying the entanglement entropy or the concurrence of the 
system. These observables could be employed for BSM searches. 

• Dear experimentalists, please:
‣ look into reconstructing the density matrix of these di-boson systems
‣ get better at dealing with neutrino momenta
‣ please please please perform full simulations of these processes so 

we learn the actual significances. 
Cheers!


