

Electroweak measurements at CMS and ATLAS

Tairan Xu

23.03.2023

W/Z measurements

Why the W/Z measurements?

- One of the best understood process in proton collider; cleanest final states
- The Extreme precision is achievable in LHC
 - EWK parameters measurements
 - Probing various QCD effects

Z boson invisible width

PLB accepted arXiv:2206.07110

23/03/2023

τ lepton polarization in Z boson decays

$$P_{\tau} = \frac{1}{\sigma} [\sigma(h_{\tau} = +1) - \sigma(h_{\tau} = -1)]$$

$$P_{\tau} = -A_{\tau} = -\frac{2v_{\tau}a_{\tau}}{v_{\tau}^2 + a_{\tau}^2} \approx -2 \cdot \frac{v_{\tau}}{a_{\tau}} = -2(1 - 4\sin^2\theta_W^{\text{eff}}).$$

SMP-18-010

Final state Trigger Lepton selection Additional selection Advanced MVA techniques exploited $p_{\rm T}^{\tau_{\rm h}} > 45(40) \,{\rm GeV}, \, |\eta^{\tau_{\rm h}}| < 2.1$ $\tau_{\rm h} (35 \,{\rm GeV}) \tau_{\rm h} (35 \,{\rm GeV})$ Med DeepTau iso $\tau_{\rm h}\tau_{\rm h}$ The DeepTau discriminator for $p_{\rm T}^{\mu} > 23 \,{\rm GeV}, \, |\eta^{\mu}| < 2.1$ $\mu(22 \, \text{GeV})$ $I_{rel}(\mu) < 0.15$ $m_T^{\mu} < 50 \,\mathrm{GeV}$ $\tau_{\mu}\tau_{h}$ $p_{\rm T}^{\mu}$ >20 GeV, $p_{\rm T}^{\tau_{\rm h}}$ > 30 GeV, $|\eta^{\tau_{\rm h}}|$ < 2.3 Med DeepTau iso or $\mu(19 \text{ GeV})\tau_{\rm h}$ (20 GeV) τ_h to reject fakes and improve $p_{\rm T}^e > 30 \,{
m GeV}, \, |\eta^e| < 2.1$ e(25 GeV) $I_{rel}(e) < 0.15$ $m_T^e < 50 \,\mathrm{GeV}$ $\tau_e \tau_h$ decay mode purity $p_{\rm Th}^{\tau_{\rm h}} > 30 \,{\rm GeV}, \, |\eta^{\tau_{\rm h}}| < 2.3$ Med DeepTau iso **Optimal Observables from previous** $\mu(8 \text{ GeV})e(23 \text{ GeV})$ $p_{\rm T}^e > 15 \,{\rm GeV}, \, |\eta^e| < 2.4$ $I_{rel}(e) < 0.15$ $\tau_e \tau_u$ or *µ*(23 GeV)e(12 GeV) $p_{\rm T}^{\mu} > 15 \,{\rm GeV}, \, |\eta^{\mu}| < 2.4$ $I_{rel}(\mu) < 0.20$ studies: $\omega_h = \cos \zeta_h$ $p_{\rm T}^{\ell} > 24 \,{\rm GeV}$ for lead trigger leg

23/03/2023

Moriond EW 2023

τ lepton polarization in Z boson decays

SMP-18-010

Multi-boson measurements

Test the standard model at TeV scale:

- Differential cross-section measurements in validation of current models
- Vector boson scattering/fusion (VBS/F) processes probe the mechanism of electroweak symmetry breaking
- Triple/Quartic Gauge Couplings (T/QGC):
 - Search for anomalous couplings
 - Probe new physics
- EFT interpretation:

23/03/2023

$$\mathcal{L}_{\text{SMEFT}} \approx \mathcal{L}_{\text{SM}}^{(4)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} O_{j}^{(8)}$$

Moriond EW 2023

6

$W^{\pm}Z$ polarization measurements

Observation of gauge boson joint-polarization states in W \pm Z production

- Measured in WZ rest frame: $W_L Z_L (W_0 Z_0)$, $W_T Z_L$, $W_L Z_T$, $W_T Z_T$ Signal:
- Polarized WZ with MadGraph @ LO \rightarrow train the DNN model
- Inclusive WZ with Powheg @ NLO + reweighted to polarized states DNN score as discriminator to separate the polarization states:

CMS: WZ single boson polarization <u>SMP-20-014</u>

PLB accepted

arXiv:2211.09435

7

$W^{\pm}Z$ polarization measurements

- First Observation of $W_L Z_L$ state: 7.1 (6.2) σ in observation (expectation)
- Different polarized states are measured and compared to prediction
- Differential cross sections are measured for polarization-sensitive variables.

 f_{00} =0.067±0.010, f_{0T} =0.110±0.029, f_{T0} =0.179±0.023 and f_{TT} =0.644±0.032

23/03/2023

$W^{\pm}W^{\pm}$ double parton scattering

PRL accepted arXiv:2206.02681

Double parton scattering:

- provides information on the transverse profile of the proton and its energy evolution
- allow the study of correlations among the partons
- Indirect measurement to σ_{eff} $\sigma_{AB}^{DPS} = \frac{n}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}}$,

Distinguish backgrounds from signal with BDT

Inclusive Leptonic-decay Xs (6.2 σ observed): 80.7 \pm 11.2 (stat)^{+9.5}_{-8.6} (syst) \pm 12.1 (model) fb

23/03/2023

EWK *Wγjj* measurement

 $mjj, m_{l\gamma}$ 2D-fit

PRD accepted arXiv:2212.12592

The EWK $W\gamma jj$ production is observed with 6.03 σ (6.79 σ expected).

Fiducial cross-section and differential cross-section are measured.

23/03/2023

EWK $W\gamma jj$ measurement

PRD accepted arXiv:2212.12592

The EWK $W\gamma jj$ production can probe the EFT model via anomalous quartic gauge coupling (aQGC) effect.

Strong constraints are set to EFT dim-8 parameters. Red rectangle contains the most stringent limits. **Operators:**

- SU(2) strength
- U(1) strength
- Higgs doublet field covariant derivative

	01 111	1.7
Expected limit	Observed limit	U _{bound}
$-5.1 < f_{M,0}/\Lambda^4 < 5.1$	$-5.6 < f_{M,0} / \Lambda^4 < 5.5$	1.7
$-7.1 < f_{M,1} / \Lambda^4 < 7.4$	$-7.8 < f_{M,1}/\Lambda^4 < 8.1$	2.1
$-1.8 < f_{M,2}/\Lambda^4 < 1.8$	$-1.9 < f_{M,2}/\Lambda^4 < 1.9$	2.0
$-2.5 < f_{M,3}/\Lambda^4 < 2.5$	$-2.7 < f_{M,3}/\Lambda^4 < 2.7$	2.7
$-3.3 < f_{M,4} / \Lambda^4 < 3.3$	$-3.7 < f_{M,4} / \Lambda^4 < 3.6$	2.3
$-3.4 < f_{M,5} / \Lambda^4 < 3.6$	$-3.9 < f_{M,5} / \Lambda^4 < 3.9$	2.7
$-13 < f_{M,7}/\Lambda^4 < 13$	$-14 < f_{M7}/\Lambda^4 < 14$	2.2
$-0.43 < f_{T,0} / \Lambda^4 < 0.51$	$-0.47 < f_{T,0}/\Lambda^4 < 0.51$	1.9
$-0.27 < f_{T,1}/\Lambda^4 < 0.31$	$-0.31 < f_{T,1}/\Lambda^4 < 0.34$	2.5
$-0.72 < f_{T,2}/\Lambda^4 < 0.92$	$-0.85 < f_{T,2}/\Lambda^4 < 1.0$	2.3
$-0.29 < f_{T,5}/\Lambda^4 < 0.31$	$-0.31 < f_{T,5}/\Lambda^4 < 0.33$	2.6
$-0.23 < f_{T,6}/\Lambda^4 < 0.25$	$-0.25 < f_{T,6}/\Lambda^4 < 0.27$	2.9
$-0.60 < f_{T,7} / \Lambda^4 < 0.68$	$-0.67 < f_{T,7} / \Lambda^4 < 0.73$	3.1

23/03/2023

WW inclusive measurement

ATLAS-CONF-2023-012

23/03/2023

Moriond EW 2023

$W\gamma\gamma/WZ\gamma$ observation

$WZ\gamma$: ATLAS-CONF-2023-014 $W\gamma\gamma$: ATLAS-CONF-2023-005

$WZ\gamma$ observation

Simultaneous fit with $\mu_{ZZ\gamma}$, μ_{ZZ} ;

 $WZ\gamma$ observed with 6.3 σ

$W\gamma\gamma$ observation

data-driven Fake estimated in control regions

 $WZ\gamma$ observed with 5.6 σ

$\sigma_{WZ\gamma} = 2.01 \pm 0.30$	$(stat.) \pm 0.16$	(syst.) f	b
-------------------------------------	--------------------	-----------	---

$\sigma_{fid} = 12.1^{+2.5}_{-2.2} \text{ fb}^{-1}$

	SR	TopCR
$W\gamma\gamma$	410 ± 60	28 ± 5
Non-prompt $j \to \gamma$	420 ± 50	42 ± 20
Misidentified $e \to \gamma$	155 ± 11	120 ± 9
Multiboson ($WH(\gamma\gamma), WW\gamma, Z\gamma\gamma$)	76 ± 13	5.2 ± 1.7
Non-prompt $j \to \ell$	35 ± 10	—
Top $(tt\gamma, tW\gamma, tq\gamma)$	30 ± 7	136 ± 32
Pileup	10 ± 5	—
Total	1136 ± 34	332 ± 18
Data	1136	333
TopCR TopVR	SR	
$ \begin{array}{c} s \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		$\begin{array}{c} \bullet \text{ Data} \\ \hline & W\gamma\gamma \\ \hline & j \rightarrow \gamma \\ \hline & e \rightarrow \gamma \\ \hline & j j \rightarrow l \\ \hline & Multiboson \\ \hline & Top \end{array}$
10		Pileup
		→ Data/Post-Fit Ratio Total Uncertainty Pre-Fit/Post-F Ratio
∠∪ 4∪ /∪ ∞/2∪ ∝	ο/ 20 ρ _τ ^γ ι	[GeV]

23/03/2023

GeV

Events / 20

Moriond EW 2023

EFT interpretation

WZjj and $W^{\pm}W^{\pm}jj$ combination using 2015+2016 data: <u>ATL-PHYS-PUB-2023-002</u>

• Dim-8 EFT operators are constrained

with :

First ATLAS EFT global Fit: ATL-PHYS-PUB-2022-037

SMEFT interpretation constraining dim-6 operators

Global EFT

ATL-PHYS-PUB-2022-037

No New Deviations from SM observed

23/03/2023

Summary

- New single- and multi-boson measurements at the LHC
 - Precision measurement of the Z boson invisible width
 - Measurement of the τ lepton polarization in Z boson decays
 - Polarization measurements in EWK WZ process
 - Azimuthal correlations in Z+jets events (backup)
- Observation of several rare multi-boson production processes:
 - $W^{\pm}W^{\pm}$ double parton scattering at CMS
 - W⁺W⁻jj process at CMS
 - W^+W^-jj at CMS (backup)
 - $W\gamma\gamma$ at ATLAS
 - $WZ\gamma$ at ATLAS
 - EW $Z(\rightarrow \nu\nu)\gamma jj$ with high p_T^{γ} process in at ATLAS (backup)
- New & Strong constraints on New Physics (EFT):
 - Including new rare processes;
 - Combinations

Challenges and opportunities ahead with more data and higher quality !

Backup

Observation of W^+W^-jj production

Phys.Lett.B accepted arXiv:2205.05711

q Vector boson scattering measurement: Probe the nature of Higgs sector Search for BSM effects DNN exploited to increase the sensitivity Large $\Delta \eta_{ii}$, m_{ii} , small Zeppenfeld q q $Z_{l1l2} = \frac{1}{2} \left| \left(\eta_{l1} - \frac{1}{2} (\eta_{j1} + \eta_{j1}) \right) + \left(\eta_{l1} - \frac{1}{2} (\eta_{j1} + \eta_{j1}) \right) \right|$ q'q 138 fb⁻¹ (13 TeV) CMS 138 fb⁻¹ (13 TeV) CMS 10⁵ Events Event Higas **Results:** Nonprompt 10⁵ QCD-induced WW QCD-induced WW **Observed** (expected) tW and t VBS 10⁴ $m_{ii} > 300 \text{ GeV} \quad Z_{11} < 1$ $Z_{11} < 1$ with 5.6 (5.2) σ $\Delta \eta_{ii} > 3.5$ 10 750 1000 1500 2000 GeV 10² Fiducial cross-section 10² 10 measured 10.2 \pm 2.0 fb 10 $(9.1 \pm 0.6 \text{ fb expected})$ 10 Data/MC Data/MC 1.4 1.2 1 C Uncertainties 1.5 Uncertainties 0.8 0.6 0.5 8 0.2 3 0.4 0.6 0.8 6 0 **DNN** output Bins

Azimuthal correlations in Z+jets

Measurement to the azimuthal correlation $\Delta \phi$ between Z and leading jet, and two leading jets in p_T^Z categories; compared to various theoretical predictions.

- Hard partonic radiation increases in high p_T^Z : probe QCD effects
- To study the NLO production with PS and hadronization as well as jet multiplicity

EW $Z(\rightarrow \nu\nu)\gamma jj$

Z(vv)γjj QCD

W(Iv)yjj EWK

f_{T0}/Λ⁴=0.084 TeV

f_{M0}/Λ⁴=4.6 TeV

1.2

ttγjj Zj, jj

Z(vv)yjj EWK

W(Iv)yjj QCD

W(ev)ii, tij, tīji

Z(II)yjj

1.6

1.8

 E_{T}^{γ} [TeV]

14

Uncertainty

- New measurement with extra $p_T^{\gamma} > 150 \text{ GeV}$ requirement to enrich the QGC events:
 - observed (expected): 3.2σ (3.7 σ)

BDT to separate signal from backgrounds

Events

 10^{3}

10²

10

10-1

0.5

0 0.2

0.4

0.6

0.8

Data/Pred.

ATLAS

s=13 TeV, 139 fb⁻¹

Coefficient	$E_{\rm c}$ [TeV]	Observed limit [TeV ⁻⁴]	Expected limit [TeV ⁻⁴]
f_{T0}/Λ^4	1.7	$[-8.7, 7.1] \times 10^{-1}$	$[-8.9, 7.3] \times 10^{-1}$
f_{T5}/Λ^4	2.4	$[-3.4, 4.2] \times 10^{-1}$	$[-3.5, 4.3] \times 10^{-1}$
f_{T8}/Λ^4	1.7	$[-5.2, 5.2] \times 10^{-1}$	$[-5.3, 5.3] \times 10^{-1}$
f_{T9}/Λ^4	1.9	$[-7.9, 7.9] \times 10^{-1}$	$[-8.1, 8.1] \times 10^{-1}$
f_{M0}/Λ^4	0.7	$[-1.6, 1.6] \times 10^2$	$[-1.5, 1.5] \times 10^2$
f_{M1}/Λ^4	1.0	$[-1.6, 1.5] \times 10^2$	$[-1.4, 1.4] \times 10^2$
f_{M2}/Λ^4	1.0	$[-3.3, 3.2] \times 10^{1}$	$[-3.0, 3.0] \times 10^{1}$