Faithful uncertainties in Machine Learning

Luigi Favaro

57th Rencontres de Moriond (EW) - La Thuile 23/03/2023

UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

Preliminaries

Luigi Favaro - Faithful uncertainties in Machine Learning

As you know, analyses are challenging...

Preliminaries

Luigi Favaro - Faithful uncertainties in Machine Learning

As you know, analyses are challenging...

23/03/2023

23/03/2023

Preliminaries

 $\alpha_{s}(m_{z})$ distribution at NNLO

23/03/2023

Single value per weight \longrightarrow distribution

Approximate $p(\theta | x)$ then learned during training

Variational approximation:

$$p(\theta \,|\, x) \approx q_{\phi}(x) = \prod_{i} \mathcal{N}(\mu_{i}, \sigma_{i}^{2})$$

Evaluation: sample from $p(\theta | x)$ and estimate uncertainties

Pros:

- active learning
- fast posterior sampling
- uncertainties estimation from NN
- built-in regularization

Yarin Gal thesis and related work

- twice the training time
- twice # parameters
- local in loss landscape

Perfect regression example

Leading example: **NNPDF**

Closure test of the fit:

Test fitting procedure on data with known statistical properties

Future test, validate uncertainties in subsets of data

- extrapolation (pre-HERA and pre-LHC)
- interpolation (NNPDF3.1 4.0)

Luigi Favaro - Faithful uncertainties in Machine Learning

NNPDF collaboration, arXiv:2109.02653

Neural Networks

PDF fits

pre-HERA	pre-LHC
$\chi^2_{exp} (\chi^2_{exp})$	(p+pdf)
27.20 (1.23)	1.22
5.52 (1.02)	0.99
18.91 (1.31)	2.63~(1.58)
20.01 (1.06)	1.30 (0.87)
2.69 (0.98)	2.12 (1.10)
19.48 (1.16)	2.10 (1.15)

23/03/2023

Perfect regression example

Luigi Favaro - Faithful uncertainties in Machine Learning

Use a Neural Network to perform an analyses

Input X: Jet observables POI Y: $p_{T.GEN}$

Use a set of Neural Networks T(x) to approximate:

- conditional likelihood ratio
- prior-independent MLE estimate
- Gaussian uncertainties

ML(E) for Jet energy reco

Use a Neural Network to perform an analyses

Input X: Jet observables POI Z: $p_{T.GEN}$

Use a set of Neural Networks T(x) to approximate:

- conditional likelihood ratio
- prior-independent MLE estimate
- Gaussian uncertainties

Possible with BNNs as well:

- non-Gaussian uncertainties
- prior (in)dependence

Gambhir R., Nachman B., Thaler J., arXiv:2205.03413 Kasieczka G., Plehn T. et al., arXiv:2003.11099

23/03/2023

ML(E) for Jet energy reco

Use a Neural Network to perform an analyses

Input X: Jet observables POI Z: $p_{T.GEN}$

Use a set of Neural Networks T(x) to approximate:

- conditional likelihood ratio
- prior-independent MLE estimate
- Gaussian uncertainties

Possible with BNNs as well:

- non-Gaussian uncertainties
- prior (in)dependence

Gambhir R., Nachman B., Thaler J., arXiv:2205.03413 Kasieczka G., Plehn T. et al., arXiv:2003.11099

23/03/2023

Classification

Extract summary statistic from input observables

optimal summary statistic for 2-mixture models:

• likelihood ratio $p_s(x)/p_b(x)$

dependence on Nuisance Parameters (NPs), uncertainty aware, and resilience are pivotal concepts

Landscape of Top taggers, arXiv:1902.09914

Studying systematics

Classifier output will depend on NPs, how to reduce this effect?

Introduce NPs information during training:

- Augment data with NPs
- Penalizing loss function
- Adversarial loss

$$dCorr^{2}(X, Y) = \frac{dCov^{2}(X, Y)}{dCov(X, Y) dCov(Y, Y)}$$

 $\mathscr{L} = L - \lambda L_{Adv}$

$$s(x) = \frac{\langle p(x | z, S) \rangle_{p_z}}{\langle p(x | z, S) \rangle_{p_z} + \langle p(x | z, B) \rangle_{p_z}}$$

Hinders optimality of the classifier

Simulation for each value of *z*

23/03/2023

Studying systematics

Classifier output will depend on NPs, how to reduce this effect?

Introduce NPs information during training:

- Augment data with NPs
- Penalizing loss function
- Adversarial loss

Hinders optimality of the classifier

$$dCorr^{2}(X, Y) = \frac{dCov^{2}(X, Y)}{dCov(X, Y) dCov(Y, Y)}$$

$$\mathscr{L} = L - \lambda L_{Adv}$$

Example: # of constituents in Quark/Gluon tagging

$$s(x) = \frac{\langle p(x | z, S) \rangle_{p_z}}{\langle p(x | z, S) \rangle_{p_z} + \langle p(x | z, B) \rangle_{p_z}}$$

23/03/2023

Uncertainty-aware classifier

- Introduce z as a network parameter: $f_{\theta}(x_1, x_2, ..., z)$
- NP can be varied during evaluation
- Tested on an analytic likelihood example
- Classifier is aware of possible values of z
- Final evaluation on Profiled Likelihood

23/03/2023

Uncertainty-aware classifier

Study resilience vs performance, training on simulations

Model: Bayesian classifier

Introduce a reweighing parameter r:

ľ

$$r = 0 \longrightarrow$$
 Herwig $r = 1 \longrightarrow$ Pythia
 $\mathscr{L} = -\frac{1}{M} \sum_{i=1}^{M} w(x_i)^r \log p(y_i | x_i, \omega) + KL$

Study uncertainties and performance as a function of *r*:

- Optimal value of r on the calibration dataset (sherpa), estimate uncertainties
- Check calibration of the interpolated training

Rencontres de Moriono

23/03/2023

Generation

"A Physics conference in the Alps in cartoon style" - stability.ai

"The" problem in ML

The power of ML has been shown outside Physics in the last years

ML community effort:

Natural Language Processing (NLP)

Implications in Particle Physics:

- event generation
- detector simulation
- unfolding
- anomaly detection

Images generation

"A Physics conference in the Alps in cartoon style" - stability.ai

Path to % precision in learning probability distributions?

Learn a bijective transformation parametrized by a NN:

$$p_X(x) = p_Z(f_{\theta}^{-1}(x)) \left| \det \frac{\partial f_{\theta}^{-1}(x)}{\partial x} \right|$$

e^+ calorimeter simulation

Luigi Favaro - Faithful uncertainties in Machine Learning

Favaro L., Plehn T., Krause C., Shih D., arXiv:23??.SOON CATHODE, arXiv:2109:00546

Generative networks

Task: learning $p_{data}(x)$ with (complex) NN models

Questions:

- Are there missing features?
- Is the density correctly estimated?
- $p_{true} \neq p_{data}$ are we overtraining?
- Do we gain statistics in generation?

\longrightarrow natural objective: minimize $\mathscr{L} = -\log p_{\theta}(x)$

23/03/2023

Generative networks

Task: learning $p_{data}(x)$ with (complex) NN models

Questions:

- Are there missing features?
- Is the density correctly estimated?
- $p_{true} \neq p_{data}$ are we overtraining?
- Do we gain statistics in generation?

23/03/2023

Density estimation - BNN

Model uncertainties in Generative networks:

control uncertainties on the density estimate

Generative Networks for Precision Enthusiasts, arXiv:2110.13632 Favaro L., Plehn T., Krause C., Shih D., arXiv:23??.SOON

23/03/2023

Density estimation - BNN

Model uncertainties in Generative networks:

control uncertainties on the density estimate

Generative Networks for Precision Enthusiasts, arXiv:2110.13632 Favaro L., Plehn T., Krause C., Shih D., arXiv:23??.SOON

23/03/2023

Density estimation - BNN

Generative Networks for Precision Enthusiasts, arXiv:2110.13632 Favaro L., Plehn T., Krause C., Shih D., arXiv:23??.SOON

23/03/2023

Learning from the model

Well known trick in Physics (and only in Physics): reweigthing Idea of a GAN: train a discriminator to classify samples define weights from classifier output: $w(x) = \frac{D(x)}{1 - D(x)}$

- Reweight according to w(x): works... but end up with **weighted samples**
- Add this information to training \longrightarrow improve NN generator cool idea... not fully understood (yet)

Example: Events generation, $Z \rightarrow \mu \mu + jets$ DiscFlow (CLS + NF) training

Improve (unweighted) mass peak generation

Generative Networks for Precision Enthusiasts, arXiv:2110.13632 DCTRGAN, arXiv:2009.03796

Learning from the model

Well known trick in Physics (and only in Physics): reweigthing Idea of a GAN: train a discriminator to classify samples w(x) =define weights from classifier output:

DiscFlow (CLS + NF) training

Improve (unweighted) mass peak generation

Generative Networks for Precision Enthusiasts, arXiv:2110.13632 DCTRGAN, arXiv:2009.03796

Summary

Estimating model uncertainties:

- deep ensembles: reliable, with an awful scaling
- Laplace approximation: local, applicable to trained models
- Bayesian Neural Networks: local, active learning, drop-in in most networks

Classification:

- Optimality
- Effect of nuisance parameters
- Preserving optimality
- performance vs resilience

Regression:

- closure tests
- prior independent analysis
- boosted training
- calibration

Generation:

- study reproduction of pd
- optimal metric
- uncertainties from the network
- "active reweighting"

Summary

Estimating model uncertainties:

- deep ensembles: reliable, with an awful scaling
- Laplace approximation: local, applicable to trained models
- Bayesian Neural Networks: local, active learning, drop-in in most networks

Fast moving field with a lot of new ideas... Stay tuned!

Classification:

- Optimality
- Effect of nuisance parameters
- Preserving optimality
- performance vs resilience

Regression:

- closure tests
- prior independent analysis
- boosted training
- calibration

Generation:

- study reproduction of pd
- optimal metric
- uncertainties from the network
- "active reweighting"

Backup

ML uncertainties lingo

Uncertainties

- aleatoric systematic: additional noise in the single measurement
- aleatoric stochastic: stochastic noise in the dataset
- epistemic (systematic): how much the model is uncertain of its prediction (fidelity)

aleatoric stochastic

systematic

aleatoric systematic

epistemic

Studying systematics

Classifier output will depend on NPs, how to reduce this effect?

Introduce NPs information during training:

- Augment data with NPs
- Penalizing loss function
- Adversarial loss

$$dCorr^{2}(X, Y) = \frac{dCov^{2}(X, Y)}{dCov(X, Y) dCov(Y, Y)}$$

$$\mathscr{L} = L - \lambda L_{Adv}$$

Cannot de-correlate if NPs are aligned with features

Example: # of constituents in Quark/Gluon tagging

Learning to Pivot, arXiv:1611.01046 DisCo Fever, arXiv:2001.05310

Studying systematics

Luigi Favaro - Faithful uncertainties in Machine Learning

23/03/2023

Rencontres de Moriond

Uncertainty-aware classifier

Luigi Favaro - Faithful uncertainties in Machine Learning

U-aware classifier, $H \rightarrow \tau \tau$

Physics example: Higgs decay to $\tau\tau$

Luigi Favaro - Faithful uncertainties in Machine Learning

23/03/2023

Looking for the optimal metric

Unbinned Profiled Unfolding

Train two reweighting functions:

 w_0 reweights from unfolded distribution to simulation

 $w_1 = \frac{p_{\theta}(R \mid T)}{p_{\theta_0}(R \mid T)}$ takes into account experimental NPs

Recent paper on un-binned profiled unfolding

Estimating model uncertainties:

- deep ensembles: faithful and reliable, with an awful scaling
- Laplace approximation: local, applicable to trained models
- Bayesian Neural Networks: local, active learning, drop-in in most networks

validation in a controlled environment

MLE with Neural Networks for POIs estimation

given reliable and unbiased data

Regression (e.g. NNPDF):

- closure tests
- prior independent analysis
- Bayesian regression
- boosted training
- calibration

Summary

Classification:

 Optimality 	opt
 Effect of nuisance parameters 	NP
 Preserving optimality 	
 performance vs resilience 	stud

timal summary statistic for 2-mixture models

's are under control and optimality is preserved

dy optimal performance/resilience in simulations vs data

Summary

Controlling generative networks is not easy open problem: optimal metric get an error on the density estimate use weights to improve generator

Generation:

- study reproduction of pd
- optimal metric
- uncertainties from the network
- "active reweighting"

