Detector Challenges of the strong-field QED experiment LUXE at the European XFEL

Adrián Irles* for the LUXE Collaboration

57th Rencontres de Moriond, La Thuile, 22nd March 2023

*AITANA group at IFIC - CSIC/UV

QED in strong fields: SFQED

de Moriond

- For large values of EM field € → the Schwinger critical field is surpassed and the vacuum becomes unstable to pair production
 - during the fluctuation, $E>2m_{e}$ is supplied

$$\mathcal{E}_{crit} = \frac{m_e^2 c^3}{\hbar e} = 1.32 \times 10^{18} V/m.$$

Perturbative QED breaks down in the presence of strong fields

- Such fields have not been reached experimentally in laboratories although they are expected to exist:
- On surface of neutron stars
- In bunches of **future linear e+e- colliders**.
- Can be reached by colliding high intensity laser beams with a high-energy electron beam
 - Lasers powerful enough don't exist yet
 - A high energy e- beam is required: The EM field strength is boosted

LUXE: Laser Und XFEL Experiment

Experiment based at DESY-XFEL

Strong EM field: 30-350TW **laser** & 16.5 GeV **e**⁻ **beam**

- e^{\cdot} / laser interaction mode $% \gamma$ and γ /laser interaction mode
- Ambitious time-scale (start data taking in 2026)
- **CDR** published, TDR to appear during 2023

First experiment to try this E144 @ SLAC in 1990s. Nowadays experiments : SLAC-E320 (US), Astra Gemini (UK), ELI-NP (RO)

Detector challenges

- > Vast range of multiplicities per beam bunch depending on the mode of operation
- Physics-driven detector technologies at each location

Rencontres

de Moriond

Detector challenges

- > Vast range of multiplicities per beam bunch depending on the mode of operation
- Physics-driven detector technologies at each location

Rencontres

de Moriond

Electron side (electron-laser mode)

- Very large rates of electrons (10°)
 - Measurement of the non linear Compton spectrum

Scintillator screen

- Used by the AWAKE collaboration at CERN
- Camera takes pictures of the scintillation light. Resolution ~ 500 μm.
- Signal/Background ~100 & Radiation hard (100 MGy)

Cherenkov gas detector

- Ar gas developed for ILC polarimeter
- Low refractive index gas helps to reduce light yield (Cherenkov threshold 20 MeV)
- Signal/background>1000

Positron side (electron-laser mode)

- Tracker based on ALPIDE sensors (developed by ALICE for phase 1 upgrade)
 - 5um spatial resolution
- Multilayer high granular calorimeters based on linear collider prototypes (FCAL and SiWECAL-CALICE)
 - $20X_0$, 5.5x5.5 mm² sensors (silicon and GaAs under study)
 - Ultra compact to ensure minimal Molière Radius of about R_M~3.5 mm
 - 1 mm between tungsten planes
- Dedicated algorithms for high multiplicity events

Thanks !

- Collaboration webpage: <u>https://luxe.desy.de/</u>
- LUXE CDR
- Collaboration <u>talks and documents</u>
- A LUXE review (A. Levy, DIS2022)
- **BSM direct searches (ALPs)** with an optical dump at LUXE. <u>The LUXE-NPOD</u>

Thanks to Ruth Jacobs, Yan Benhammou and many others for material and feedback

Interested? Join us !

back-up

Operation modes

Rencontres

de Moriond

1

SFQED at LUXE

Rencontres de Moriond

Charge field coupling → work done by the EM field over electron Compton wavelenght in units of EM field

~ number of laser photons interacting with the electron beam at a given time

```
Laser photon density ~ \xi^2
```

	Theory Parameter	Definition	Range acc phase-0	essed in LUXE phase-1	
ξ	Classical non-linearity parameter	$\xi = rac{m_e}{\omega_L} rac{\mathscr{E}_{ m L}}{\mathscr{E}_{ m cr}}$	≤ 6	≤ 19	
η_i	Energy parameter	$\eta_i = \frac{\omega_L \varepsilon_i}{m_e^2} (1 + \beta \cos \theta)$	η_i	$_i \leq 0.2$	
Xi	Quantum non-linearity parameter	$\chi_i = \frac{\varepsilon_i}{m_e} \frac{\mathscr{E}_{\rm L}}{\mathscr{E}_{\rm cr}} (1 + \beta \cos \theta)$	≤ 1	≤ 3	

How much the QED deviates from the classical limit

SFQED at LUXE: non-linear Compton Scattering

ξ< 1

The probability to produce one Compton photon is proportional to the density

Still the electron can collide with n laser photons (non-linear compton). The process is still perturbative if $\xi < 1$

ξ> 1

There are no more leading order processes and we are require to resum all higher order contributions in $\boldsymbol{\xi}$

The non-perturbative resulting expression can be expressed as an effective larger electron mass:

$$m_e(eff) \!=\! m_e \sqrt{1\!+\!\xi^2}$$

SFQED at LUXE: non-linear Compton Scattering

SFQED at LUXE: non-linear Breit-Wheeler

ξ< 1		ξ> 1
One photon colliding with one laser photon (linear)	Still the photon can collide with n* laser photons (non-linear BW). The process is still perturbative if $\xi < 1$	Sum of all orders of ξ resulting in a non-linear non-perturbative BW process

SFQED at LUXE: non-linear Breit-Wheeler

Rencontres de Moriond

1

Electron side (electron-laser mode)

Very large rates of electrons (10°)

• Measurement of the non linear Compton spectrum

Scintillator screen

- Used by the AWAKE collaboration at CERN
- Camera takes pictures of the scintillation light. Resolution ~ 500 μm.
- Signal/Background ~100 & Radiation hard (100 MGy)

Cherenkov gas detector

- Ar gas developed for ILC polarimeter
- Low refractive index gas helps to reduce light yield (Cherenkov threshold 20 MeV)
- Signal/background>1000

LUXE detectors test beam setup photo. 1 - collimator, 2 - cameras, 3 -Cherenkov detector straws, 4 - scintillator screen, 5 lead glass

LUXE in SFQED parameter space

- E144: SLAC experiment in 1990's, using 46.6 GeV electron beam [Bamber et al. (SLAC 144) '99]
 → reached χ ≤ 0.25, ξ<0.4, observed e⁻ + nγ_L → e⁻e⁺e⁻ process
 - \rightarrow observed start of the ξ^{2n} power law
- LUXE: good chance to be first to enter ξ>1 and χ>1 regime!
 directly study collisions between LASER and real GeV photons

Rencontres de Moriond

BSM direct searches with LUXE

► High intensyt photon beam produced → dumped in a wall

Could be competitive with other experiments

• Estimations for 1 year of data taking with no background. WIP.

2

Rencontres

LUXE and LHC light-by-light scattering

2

- LHC: photon-photon interaction in ultra-peropherial heavy-ion collissions (UPC)
- ▶ UPD: fields above the Schwinger limit can be reached in the lab
 - Main difference to LUXE: in UPC, EM fiel is extremely short-lived (not travelling macroscopics distances)
 - This regime is still covered by linear perturbative QED

Slide from R. Jacobs

