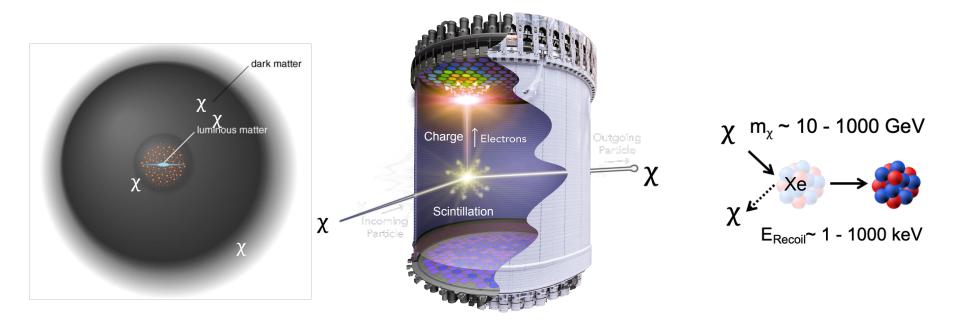
First Results of the LUX-ZEPLIN Experiment


57th Rencontre de Moriond 2023

Geertje Heuerman

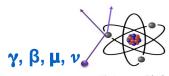
Direct detection of Dark Matter: The LZ Experiment

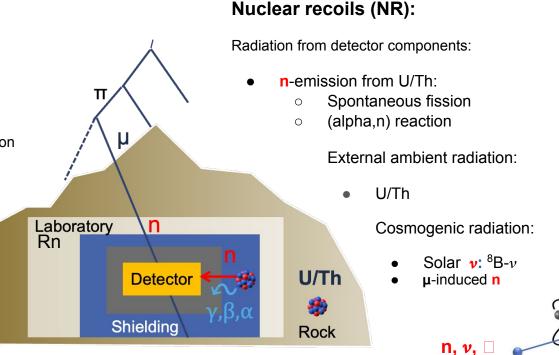
Motivation: Direct detection of dark matter particle (WIMP) via elastic scattering off xenon nucleus

Background Sources

Electronic Recoils (ER):

Radiation from detector components:


- γ from U, Th chain, K, Co
- Dissolved β: Rn-chain, Kr, Xe
- e- capture: Ar, Xe-isotopes
- Cosmogenically activated xenon

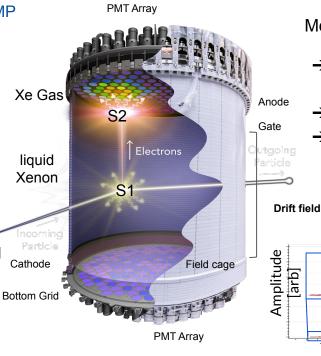

External ambient radiation:

• U, Th, K, Co, Rn

Cosmogenic radiation:

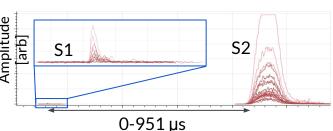
- Solar **v**: pp-v
- •

M


The Dual Phase Time Projection Chamber

Why Xenon:

- 1. Xe nucleon is sensitive to "vanilla" WIMP mass
- 2. It is quiet
- 3. Allows for particle ID
- 4. Self shielding
- 5. Provides numerous additional physics capabilities

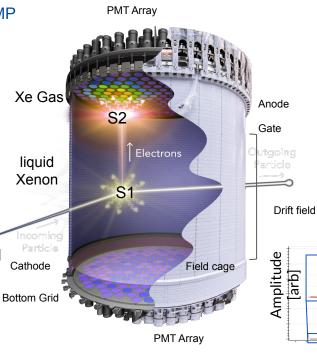

Particle detection:

- 1. **S1**: Prompt scintillation photons
- S2: Delayed scintillation:
 Ionization electrons drift up in drift field and produce electro-luminescence light in the gas region

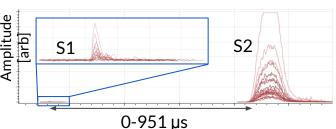
Measurement of S1 and S2 allows for:

- → Position reconstruction (PMT hit map)
- → Energy reconstruction (S1 + S2)
- → Particle ID (S2/S1):
 - Electron recoil
 - Nuclear recoil

First Results of the LZ-Experiment


The Dual Phase Time Projection Chamber

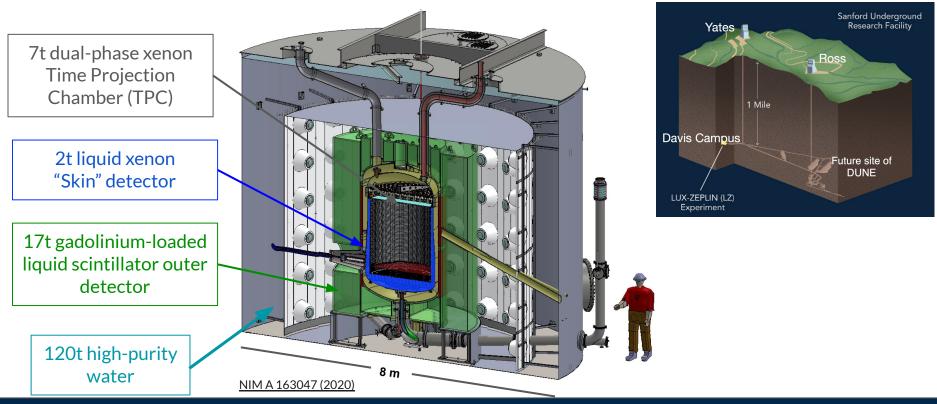
Why Xenon:


- 1. Xe nucleon is sensitive to "vanilla" WIMP mass
- 2. It is quiet
- 3. Allows for particle ID
- 4. Self shielding
- 5. Provides numerous additional physics capabilities

Particle detection:

- 1. **S1**: Prompt scintillation photons
- S2: Delayed scintillation:
 Ionization electrons drift up in drift field and produce electro-luminescence
 light in the gas region

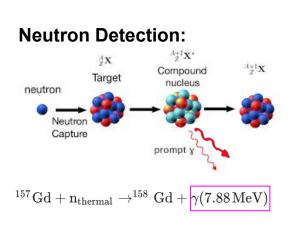
- 1.5 diameter x 1.5 m height
- 7 tonne of liquid xenon
- 494x 3" PMTs in two arrays
- 4-high voltage wire mesh electrodes:
 - Drift field
 - Extraction region
- PTFE Field cage
- PTFE coverage for increased light collection

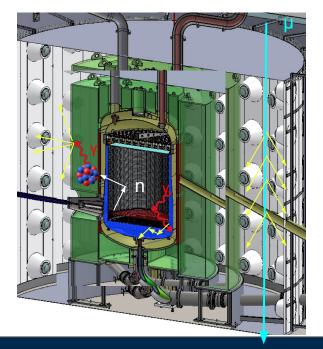


First Results of the LZ-Experiment

The LZ Detector

Located 4850 ft underground at Sanford Underground Research Facility (SURF) in South Dakota, USA



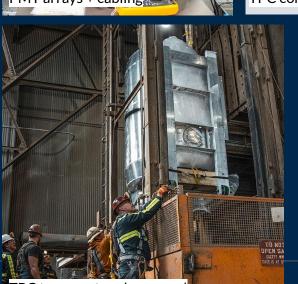

First Results of the LZ-Experiment

Geertje Heuermann heuerman@umich.edu

Gamma and Neutron Veto: Skin and Outer Detector (OD)

Motivation: tagging and subsequent reduction of neutron and gamma background to achieve projected WIMP sensitivity

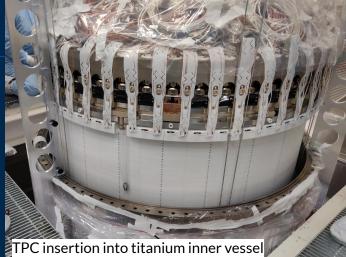
Skin: The gamma-ray veto

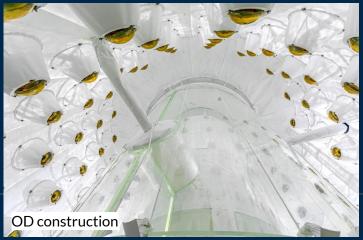

 2 t of Liquid Xenon surrounding TPC instrumented with 131 1" & 2" PMTs

Outer Detector: The neutron veto

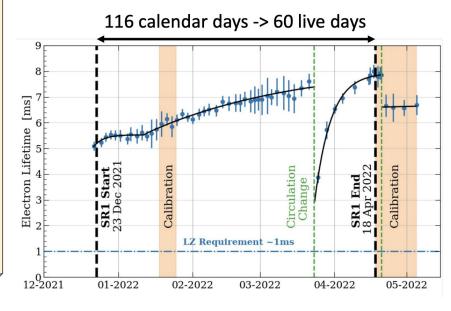
- 17 t Gd loaded liquid scintillator embedded in 120 t water, read out by 120 8" PMTs
- Neutron tagging efficiency: 88 %




PMT arrays + cabling 📰



TPC transport underground

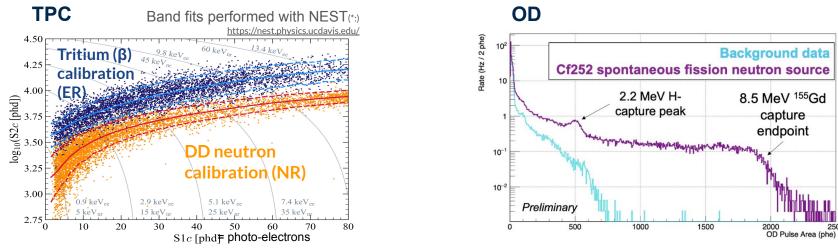


LZ's First Science Run

Motivation: Demonstration of detector readiness and competitive measurement of WIMP exclusion

Engineering run (unblinded):

- Stable detector conditions
 - Drift field: 193 V/cm
 - Extraction field: 7.3 kV/cm in gas
 - > 97 % of PMTs operational
 - Liquid temperature (174.1 K)
 - Gas Pressure (1.791 bar)
 - Liquid level stable within 10 microns
- Continuous purification of Xe
 - 3.3 t / day through hot getter system
- Electron lifetime: 5 8 ms

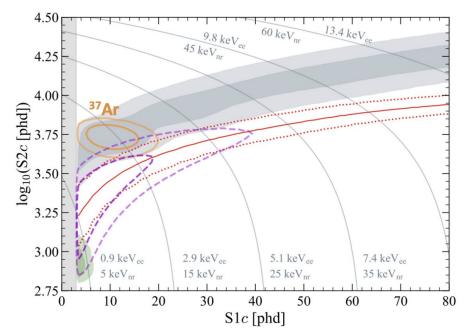


Date

First Science Run Detector Calibration

Motivation: Determination of Detector response to neutrons, electrons and gammas in TPC, OD & Skin using dispersed and externally deployed sources

- Photon collection efficiency: **g1 = 0.114** ± 0.002 phd/photon
- Charge gain: **g2 = 47.1** ± 1.1 phd/electron
- 99.9% rejection of ERs below the NR median


First Results of the LZ-Experiment

10

Light collection efficiency: 230 phd/MeV

First Science Run Background Model

Motivation: Assess likelihood of excess WIMP signal

Backgrounds simulation: energy deposit + detector response

ER-backgrounds expected in ROI: 276 events (+ [0, 291] from ³⁷Ar)

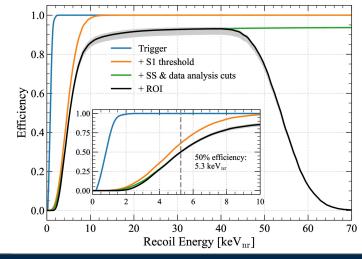
- **Dissolved** β **-emitter**: ²¹⁴Pb (²²²Rn daughter), ⁸⁵Kr, ¹³⁶Xe ($2\nu\beta\beta$)
- **Dissolved e-capture**:³⁷Ar, ¹²⁷Xe, ²⁴Xe (double e-capture)
- γ emitter: ²³⁸U chain, ²³²Th chain, ⁴⁰K, ⁶⁰Co
- **Solar** v: pp + ⁷Be + ¹³N

NR-backgrounds expected in ROI: 0.15 events

- Neutrons from spontaneous fission and (α,n) reactions
- ⁸B solar neutrinos

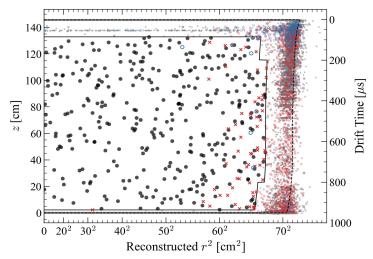
Non-physics sources in ROI: 1.2 events

Accidental coincidences



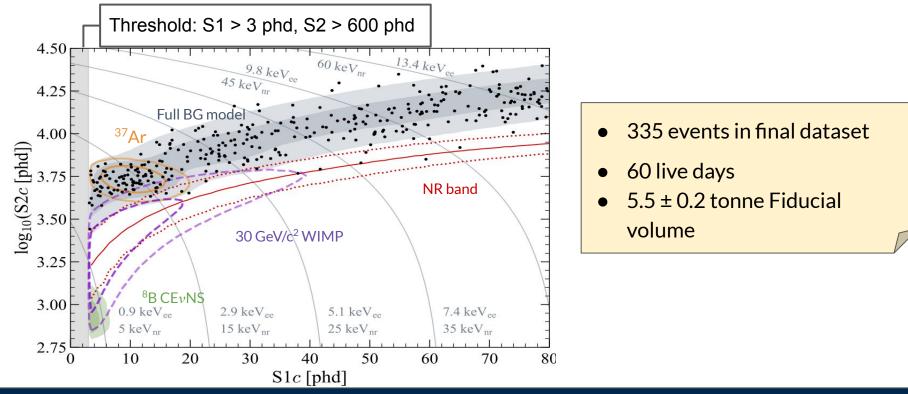
First Results of the LZ-Experiment

First Science Run Data Selection

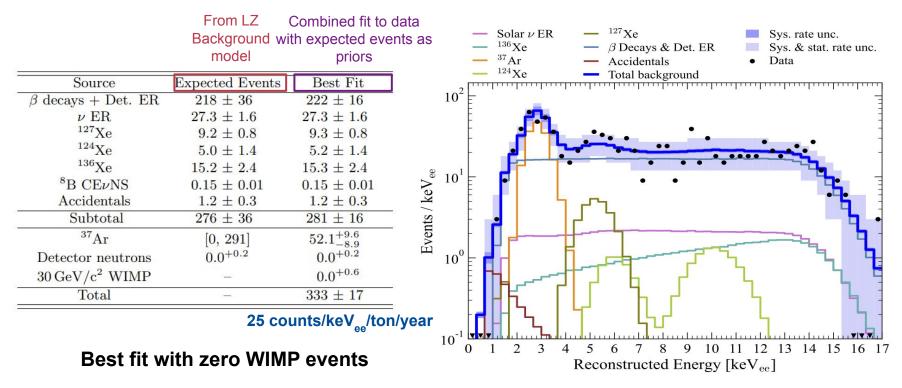

Signal acceptance after all cuts: ~ 90 %

Events surviving all selections

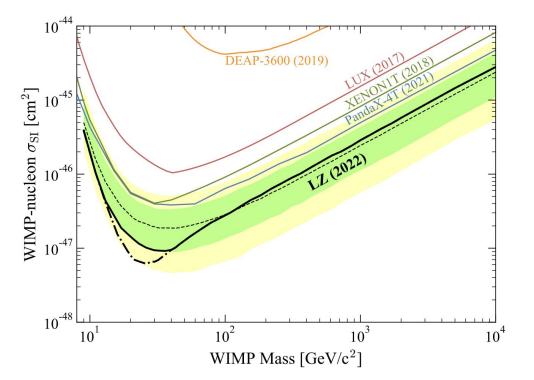
- × Skin-prompt-tagged events
- OD-prompt-tagged events


5.5 ± 0.2 tonne Fiducial volume

First Results of the LZ-Experiment


First Science Run Final Data Set

First Results of the LZ-Experiment

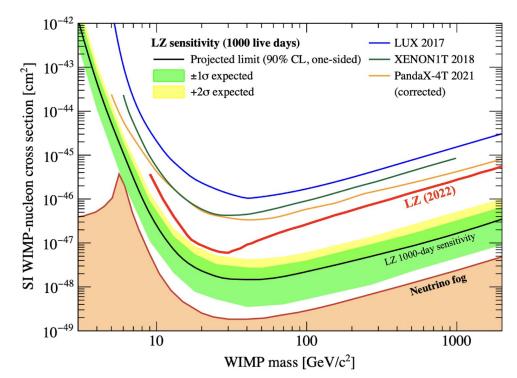

First Science Run PLR fit to Background Model

First Results of the LZ-Experiment

First Science Run Spin Independent WIMP search

- Frequentist, two sided PLR following <u>Phystat</u> recommendations
- First result released July 7, 2022

90% CL upper limit on WIMP-nucleon σ_{SI} : 9.2 x 10⁻⁴⁸ cm² at 36 GeV/c² WIMP mass



WIMP sensitivity: <u>Phys. Rev. D 101, 052002 (2020)</u> 0νββ ¹³⁶Xe: <u>Phys. Rev. C 102, 014602 (2020)</u> Low energy ER: <u>Phys. Rev. D 104, 092009 (2021)</u> 0νββ ¹³⁴Xe:<u>Phys. Rev. C 104, 065501 (2021)</u>

What's next?

Planning on **1000 live days** of data (x17 more exposure) to enable a broad physics program:

- Extending the reach: S2-only, Migdal effect, EFT
- Non-WIMP DM candidates: Axions, ALPs, hidden photons, mirror dark matter, leptophilic DM, and more
- Astrophysical neutrinos: ⁸B CEvNS, solar-pp, supernova, and more
- **Rare decays**: $0\nu\beta\beta$ of ¹³⁶Xe, $2\nu\beta\beta$ and $0\nu\beta\beta$ of ¹³⁴Xe, and more

Summary

- LZ is operating and taking high quality physics data
 - All detectors are performing well
 - Backgrounds are within expectation
- With its first run, LZ has achieved world-leading WIMP sensitivity
 - Paper: <u>arXiv:2207.03764</u>
- Broad physics program still lies ahead for LZ
- The xenon community is uniting into the <u>XLZD Consortium</u> to build the ultimate xenon rare event observatory
 - White paper: <u>arXiv:2203.02309</u>

Leading Xenon Researchers unite to build next-generation Dark Matter Detector

A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

J. Aalbers,^{1,2} K. Abe,^{3,4} V. Aerne,⁵ F. Agostini,⁶ S. Ahmed Maouloud,⁷ D.S. Akerib,^{1,2} D.Yu. Akimov,⁸ J. Akshat,⁹ A.K. Al Musalhi,¹⁰ F. Alder,¹¹ S.K. Alsun,¹² L. Althueser,¹³ C.S. Amarasinghe,¹⁴ F.D. Amaro,¹⁵ A. Ames,^{1,2} T.J. Andrerson,^{1,-2} B. Andrieu,⁷ N. Angelides,¹⁴ E. Angelino,¹⁷ J. Angevaare,¹⁸ V.C. Antochi,¹⁹ D. Antón Martin,²⁰ B. Antunovic,^{21, 22} E. Aprile,²³ H.M. Araújo,¹⁶ J.E. Armstrong,²⁴ F. Arneodo,²⁵ M. Arthurs,¹⁴ P. Asadi,²⁶ S. Baek,²⁷ X. Bai,²⁸ D. Bajpai,²⁹ A. Baker,¹⁶ J. Balashov,³¹ M. Balzer,³² A. Bandyopadhyay,³³ J. Bang³⁴ E. Barberio,³⁵ J.W. Bargemann,³⁶ L. Baudis,⁵ D. Balashov,³¹ M. Balzer,³⁷ A. Baster,³⁸ A. Basterie,⁹ M. Bazyk,³⁹ K. Beattie,⁴⁰ J. Behrens,⁴¹ N.F. Bell,³⁵ L. Bellagamba,⁶ P. Beltrame,⁴² M. Benabderrahmane,²⁵ E.P. Bernard,^{43,40} G.F. Bertone,¹⁸ P. Bhattacharjee,⁴⁴ A. Bhatti,²⁴ A. Biekert,^{43,40} T.P. Biesindzinski,^{1,2} A. B. Baberlo,³⁵ M. Baderl,¹⁴ F. Mandel,¹⁴ F. Mandel,¹⁴ F. Bachare,⁴⁶ A. Bhatta,²⁶ A. Babarber,¹⁶ D. Bauer,¹⁶ T. Biekert,^{43,40} T.P. Biesindzinski,^{1,2}

First Results of the LZ-Experiment

Geertje Heuermann heuerman@umich.edu

The LZ (LUX-ZEPLIN) Collaboration

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of Londor
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpoor
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Wisconsin, Madison

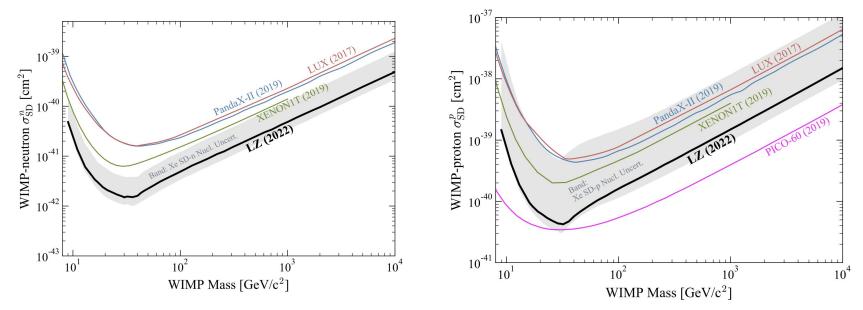
US UK Portugal Korea

Korea Australia

LZ Collaboration Meeting University Of Maryland 5th-7th January 2023

36 Institutions: 250 scientists, engineers, and technical staff

Science and Technology Facilities Council

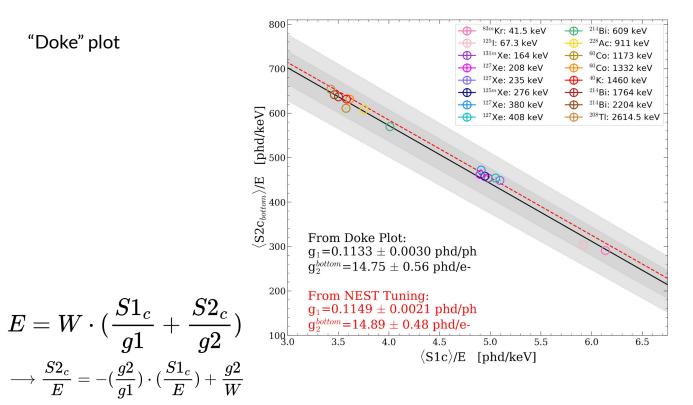


Backup slides

First Science Run Spin dependent WIMP search

WIMP-neutron Scattering

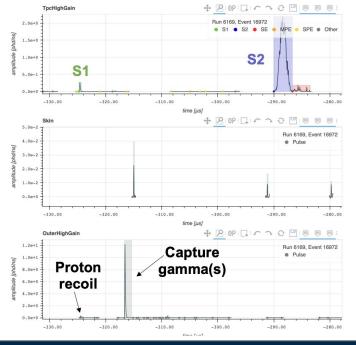
Grey band represents theoretical uncertainty on nuclear form factor for Xe (*)

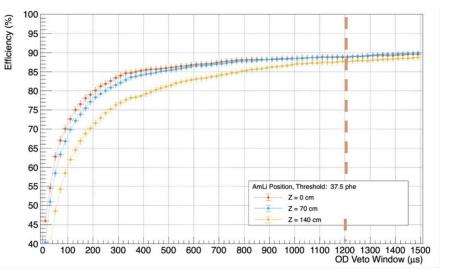

WIMP-proton Scattering

First Results of the LZ-Experiment

Geertje Heuermann heuerman@umich.edu

Detector response characterization




First Results of the LZ-Experiment

Geertje Heuermann heuerman@umich.edu

OD: neutron tagging

Real LZ AmLi calibration neutron event

OD neutron tagging settings:

- ≥ 200 keV
- ∆t ≤ 1200 µs

Livetime hit: 5%

Background Mitigation

Detector materials:

• Radio-assay campaign with 13 HPGe detectors, ICPMS, neutron activation analysis

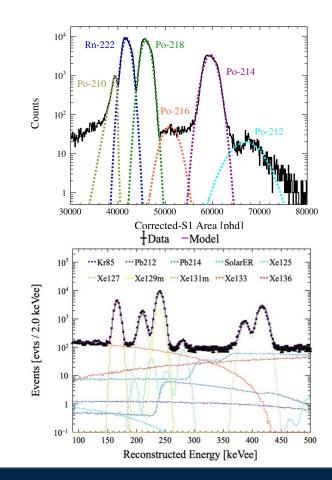
Rn daughters and dust on surfaces:

- TPC assembly in Rn-reduced cleanroom
- Dust < 500 ng/cm² on all LXe wetted surfaces
- Rn-daughter plate-out on TPC walls <0.5 mBq/m²

Xenon contaminants:

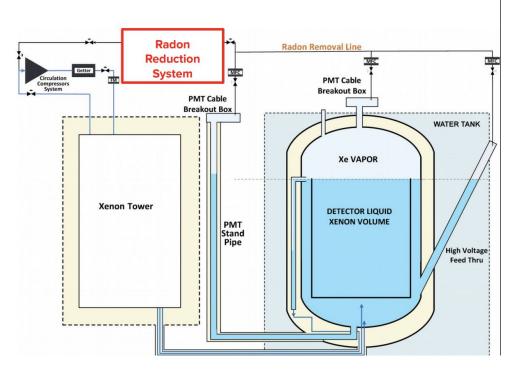
- Charcoal chromatography at SLAC (remove ⁸⁵Kr, ³⁹Ar)
- Continuous purification underground

Kr-removal at SLAC



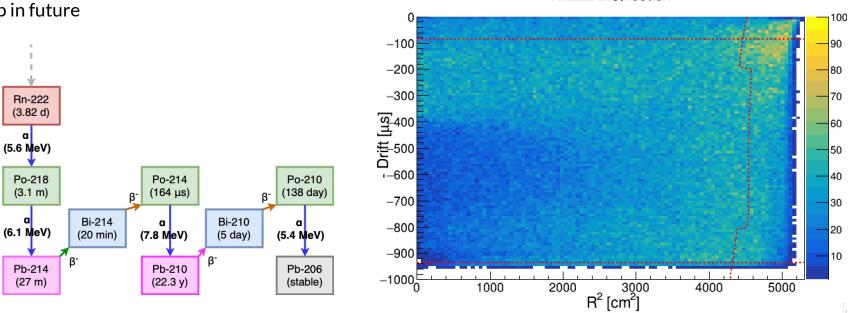
M

Radon Background


- Naked ²¹⁴Pb β -decays are the main source of background in the WIMP search
- Produced from Rn emanated in xenon
- Constrain β -decay rate with multiple methods:
 - Bracket with Rn-chain α tagging
 - Spectral fit of all internal BGs outside of energy ROI
- ²²²Rn activity within assay expectations

Isotope (decay)	Activity [µBq/kg]
²²² Rn (alpha)	4.37 ± 0.31 (stat)
²¹⁸ Po (alpha)	4.51 ± 0.32 (stat)
²¹⁴ Pb (beta)	3.26 ± 0.13(stat) ± 0.57(sys)
²¹⁴ Po (alpha)	2.56 ± 0.21 (stat)

Radon reduction system

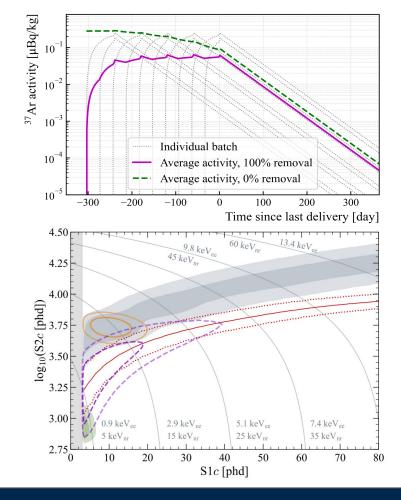


Radon Background

²²²Rn not uniformly distributed.

Stratification in LXe flow is a possible tool to reject $^{\rm 214}{\rm Pb}$ in future

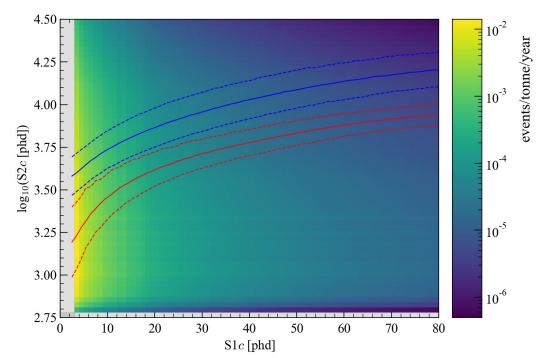
First Results of the LZ-Experiment


Geertje Heuermann heuerman@umich.edu

Rn222 Distribution

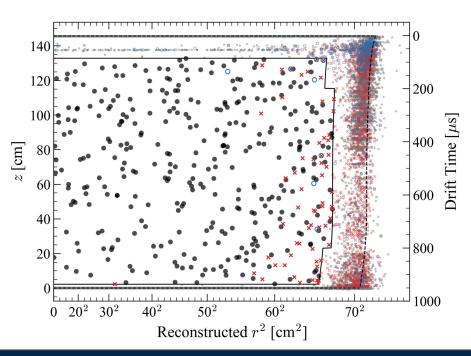
³⁷Ar

- Electron capture, t_{1/2} = 35 d, monoenergetic 2.8 keV ER deposition
- Occurs naturally in atmosphere via e.g. ⁴⁰Ca(n,α)³⁷Ar (*), but suppressed during Xe purification by charcoal chromatography
- Also produced by cosmic spallation of natural xenon
- Constrained ³⁷Ar activity based on Xe delivery schedule to SURF (**)
- Expect ~100 decays of ³⁷Ar in first science run, with a large uncertainty


(*) R.A. Riedmann, R. Purtschert, Environ. Sci. Technol. (2011) 45(20), 8656-8664 (**) LZ Collaboration, Phys. Rev. D 105, 082004 (2022), <u>2201.02858</u>

Accidentals

- Isolated S1 & S2 can accidentally combine to form WIMP ROI event
- Accidentals PDF generated from random pairing of isolated S1s and isolated S2s
- Normalize PDF to data using sideband:
 - Events with unphysical drift time (drift time > TPC height)
- Estimated rate of accidentals in first science run: **1.2 ± 0.3 events**

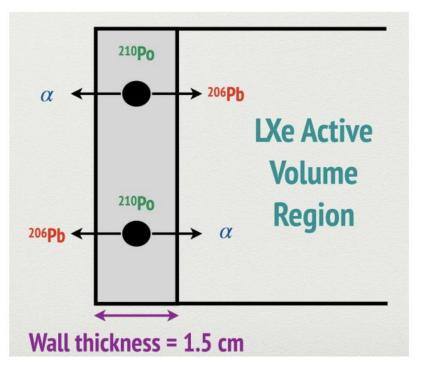


First Results of the LZ-Experiment

Geertje Heuermann heuerman@umich.edu

Fiducial Volume

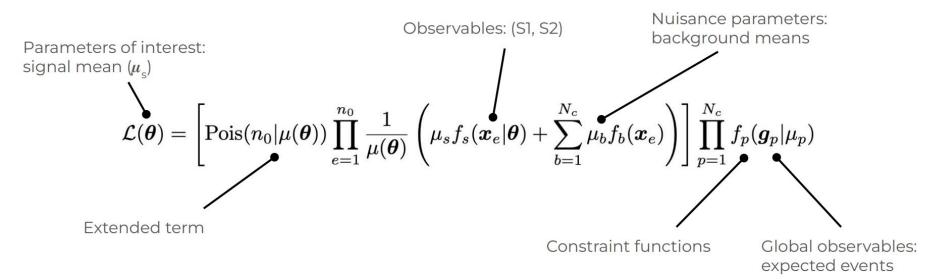
- Inner 5.5 tonne fiducial volume (FV) is lowest background and uniform
- Degraded S2s due to charge-loss effects ("wall BG") drive poor position resolution near the wall
 - Choose S2 threshold and FV simultaneously, such that wall BG is negligible in this analysis
- Skin and OD prompt tag:
 - Removes gammas
 - Skin reduces bare L,M-shell ¹²⁷Xe background 5x
- OD (and skin) delayed tag:
 - 1200 µs capture window, ~200 keV threshold
 - Tag neutron capture
 - Provides *in situ* constraint on neutron BG:
 0^{+0.2} neutron events in first science run



First Results of the LZ-Experiment

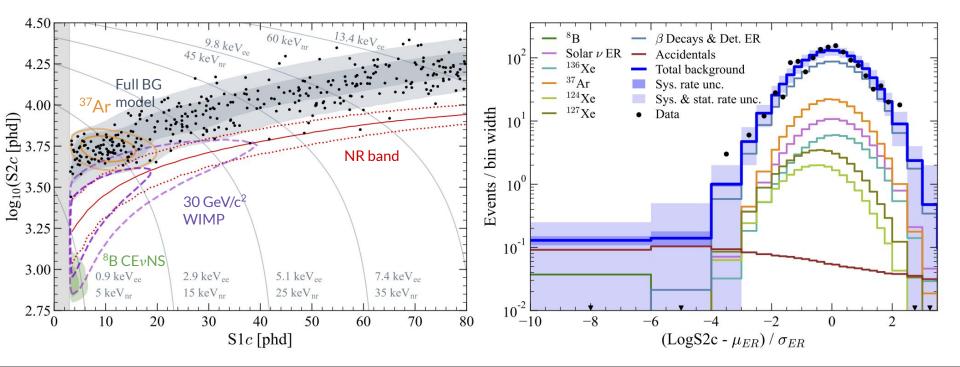
Geertje Heuermann heuerman@umich.edu

Wall Background



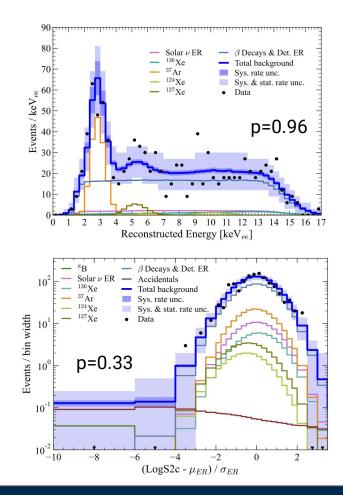
Background events arising from the internal wall of the TPC:

- S2 charge loss to the wall reduction of observed S2 signal
 - Reduced S2 size due to field effect near the wall
- Pb-206 recoil from Pb-210 decay (Rn daughter plate-out)
- Fiducial volume cuts are set such that total wall background leakage events into fiducial volume is less than 0.01 count



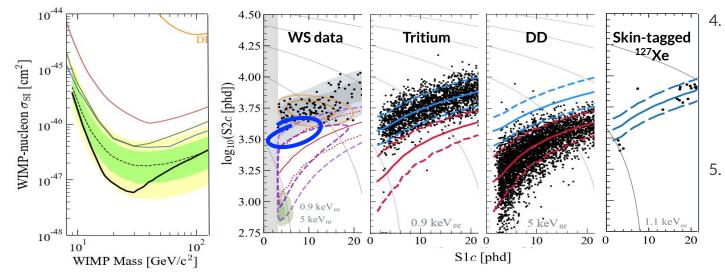
Likelihood Function

ER-fluctuations within expectations



First Results of the LZ-Experiment

Geertje Heuermann heuerman@umich.edu


Why is the background only p-value "so good"?

- We chose the binning for the reconstructed energy spectrum to best show the resolution of the 37Ar peak
- If we look at other observables (e.g. reduced ER band) or rebinning in Erec, the p-value returns other values, which show that the data is not inconsistent with the background-only model
- This appears to be a random fluctuation

Downward fluctuations

Bare M-shell decays of

 127 Xe populate near deficit region. Observed rate of M-shell decays with coincident γ -ray tagged by the skin is consistent with expectation, given signal efficiencies.

5. Deficit appears consistent with under-fluctuation of background.

 Downward fluctuation in the observed upper limit near 30 GeV/c² is a result of the deficit of events under the ³⁷Ar population.

Due to background under-fluctuation or unaccounted for signal inefficiency? Probe the latter.

- 2. **Tritium** data analyzed identically to WS data. Deficit region is well-covered.
- DD data also shows deficit region is well-covered. (Not shown here) AmLi neutron calibration data also shows deficit region well-covered.

