

Light dark matter search with DarkSide-50

Rencontres de Moriond - Electroweak Interactions & Unified Theories - March 2023

Davide Franco - APC

on behalf of the DarkSide-50 Collaboration

The Dual-Phase TPC

- 50 kg active mass of UAr
- 19 top + 19 bottom R11065 HQE 3" PMTs
- 36 cm height, 36 cm diameter
- Low field of 0.2 kV/cm drift

Liquid Scintillator Veto against neutrons

- 4 m diameter sphere
- Boron-loaded: 1:1 PC and TMB
- 110 8" PMTs
- LY ~ 500 pe/MeV

Cherenkov Water Detector

- 11 m diam. x 10 m
- 80 PMTs

Efficient electronic recoil (ER) background rejection thanks to LAr scintillation Pulse Shape Discrimination trough the "f90" observable (fraction of light detected in the first 90 ns)

Davide Franco - APC

The DS-50 WIMP Search

"low-mass" WIMP search

- Scintillation (S1)
 - Detection efficiency (g1) ~ 16%
- Ionization (S2)
 - Efficiency to extract 1 e- in the gas pocket ~ 100%
 - Amplification factor (g2) = ~23 pe / e-

Ionization Only

Thomas-Imel + extended custom model

$$Q_y^{ER} = \left(\frac{1}{\gamma} + p_0 \left(E_{er}\right)\right)$$

Davide Franco - APC

DarkSide-50, Phys.Rev.D 104 (2021) 8, 082005 Ionization Response to Electronic Recoils

Global fit to DS-50 calibration data with neutrons sources + external datasets (ARIS and SCENE)

Davide Franco - APC

Ionization Response to Nuclear Recoils

First results on light dark matter candidates with LAr in 2018

- DarkSide-50, Phys. Rev. Lett. 121 (2018) 081307
- DarkSide-50, Phys. Rev. Lett. 121 (2018) 111303

New exposure

- 650 live-days / 12 ton-day
- x 1.8 exposure used in 2018

Data Selection

- Quality cuts
 - Pulse-shape: remove anomalous pulses due to the pile-up of multiple S2's or S1+S2
 - Acceptance: 95% at 4 Ne and 99% at >15 Ne

• Selection cuts

- Fiducialization against external bg
- S2/S1 against S2's from alphas on the walls
- Time veto agains spurious (or "single") electrons

Dataset and Data Selection

Alpha-induced S2 pulses

- Select events with max fraction of pes in one of the 7 central top PMTs
- Acceptance ~ 41%

- Reject events with "anomalous" S2/S1
- Cut tuned on calibration data
- Acceptance ~ 99%

Data Selection

Spurious Electrons

- Reject correlated events (if within 20 ms from the previous one)
- Acceptance ~ 97%

Davide Franco - APC

Data Selection

- Overall acceptance almost flat: 38.2% at 4 e⁻ and

Background Model: Internal ³⁹Ar and ⁸⁵Kr

- Both ³⁹Ar and ⁸⁵Kr **uniformly distributed** in the LAr bulk
- ³⁹Ar activity: **0.7** ± **0.1** mBq/kg
 - from high energy spectral fit
- ⁸⁵Kr activity: **1.8 ± 0.1 mBq/kg**
 - from high energy spectral fit
 - from fast coincidence through metastable state
 - from decay time fit
- Both unique first-forbidden beta decays: additional atomic exchange and screening effects

Davide Franco - APC

1000 X Ne (1 Events

Uncertainty from atomic exchange and screening effects

- New background model from material screening campaign

Background Model: External Gammas

 $\mathcal{L} = \prod \mathcal{P}(n_i | m_i(\mu_s, \Theta)) \times \prod \mathcal{G}(\theta_i^0 | \theta_i)$ $\theta_i \, \epsilon \, \Theta$ $i \, \epsilon \, {
m bins}$

Poisson probability of observing n_i events in the ith-bin with respect to the expected ones, $m_i(\mu_s,\Theta)$, with μ_s the signal strength

Gaussian pena to account for nuisance parameters (6 $\Delta \theta$ are the nor central values and uncertain

	Name	Source	Affected components
Amplitude	A_{FV}	uncertainty on the fiducial volume	WIMP, ³⁹ Ar, ⁸⁵ Kr, PMTs, Cryostat
	A_{Ar}	14.0% uncertainty on ³⁹ Ar activity	³⁹ Ar
	A_{Kr}	4.7% uncertainty on 85 Kr activity	85 Kr
	A_{pmt}	11.5% uncertainty on activity from PMTs	PMT
	A_{cryo}	6.6% uncertainty on activity from the cryostat	Cryostat
Shape	\mathbf{Q}_{Kr}	0.4% uncertainty on the ⁸⁵ Kr-decay Q-value	⁸⁵ Kr
	Q_{Ar}	1% uncertainty on the ³⁹ Ar-decay Q-value	³⁹ Ar
	S_{kr}	spectral shape uncertainty on atomic exchange and screening effects	⁸⁵ Kr
	S_{Ar}	spectral shape uncertainty on atomic exchange and screening effects	³⁹ Ar
	Q_y^{er}	spectral shape systematics from ER ionization response uncertainty	³⁹ Ar, ⁸⁵ Kr, PMTs, Cryostat
	Q_y^{nr}	spectral shape systematics from NR ionization response uncertainty	WIMP

Profile Likelihood and Systematics

$,\Delta heta_{i})$	×	$\prod_{i \ \epsilon \ \text{bins}} \mathcal{G}\left(m_i^0 m_i(\Theta), \delta m_i(\Theta)\right)$
alties		Statistical uncertainties of the
r the		simulated sample
θ₀ and minal		
s ities)		

Electron Recoil Energy [keVer] 0.04 0.13 0.20 0.55 1.10 3.10 day) × kg 10-2 X Ne വ N ٠ 0) 10-3 DarkSide-50 Data Events Fitted Model 10^{-4} 0.25 0.00 -0.25 30 50 10 20 3 7 Number of Electrons

Tritium activity <1 µBq/kg (90% CL)

Background-Only Fit

DarkSide-50, Phys. Rev. D 107 (2023) 063001

Davide Franco - APC

WIMP-Nucleon Interactions

DarkSide-50, Phys. Rev. Lett. 130 (2023) 101001

Davide Franco - APC

The Migdal Effect

Results confirmed by using **Bayesian Networks** (<u>arXiv:2302.01830</u>)

- detector response model included in the likelihood function
- Markov Chain Monte Carlo for posterior probability

DarkSide-50, Phys. Rev. Lett. 130 (2023) 101002

Davide Franco - APC

Leptophilic Dark Matter

The DarkSide-50 low-mass search

- Improved light dark matter limits from 2018 analysis thanks to:
 - Calibration of ionization response to ERs and NRs down to <1 keV
 - Extended **exposure**
 - Better data selection
- Best SI WIMP-nucleon limits down to 1.2 GeV/c² (40 MeV/c²) WIMP mass without (with) Migdal effect
- Improved limits on WIMP-electron interactions, galactic ALPs, dark photons, and sterile neutrinos
- More results on **annual modulations** and **non-standard operators** in progress

Follow up of the DarkSide-50 search

- Sensitivity projection for a **1 ton-year exposure** dualphase LAr TPC optimized for light dark matter searches through the ionization channel (<u>arXiv:2209.01177</u>)
- Sensitivity projections for **DarkSide-20k** in progress (see Marie Van Uffelen's talk for more details on DarkSide-20k)

Conclusions

