

Moriond EW 2023 – 21/03/2023 Status of the GBAR experiment First results of antihydrogen production

Corentin Roumegou on behalf of the GBAR collaboration

The Weak Equivalence Principle

The effect of gravitation on a body in free fall is independent from its nature and composition

- Verified with a precision of 10^{-15} for matter *
- Effect of gravity on antimatter ? $\triangleright \overline{g}$
- Only result from ALPHA collaboration: -65 < (\overline{g}/g) < 110 **

* P. Touboul et al. (MICROSCOPE Collaboration), *Physical Review Letters* **129**, 121102 (2022) ** ALPHA Collaboration, *Nature Communications* **4** 1785 (2013)

21/03/2023

The GBAR experiment Gravitational Behaviour of Antihydrogen at Rest

 \blacktriangleright Creation of an Antihydrogen ion $\overline{\mathrm{H}}{}^+$

The GBAR experiment

Gravitational Behaviour of Antihydrogen at Rest

 \blacktriangleright Creation of an Antihydrogen ion $\overline{\mathrm{H}}^+$

Cooled to μK temperatures

The GBAR experiment

Gravitational Behaviour of Antihydrogen at Rest

 \blacktriangleright Creation of an Antihydrogen ion $\overline{\mathrm{H}}^+$

Cooled to µK temperatures

Photo-detachment

The GBAR experiment

Gravitational Behaviour of Antihydrogen at Rest

 \blacktriangleright Creation of an Antihydrogen ion $\overline{\mathrm{H}}{}^+$

Cooled to µK temperatures

Photo-detachment

\blacktriangleright Measure of \overline{g}

Double charge-exchange reaction

(1)
$$Ps + \bar{p} \longrightarrow \bar{H} + e^{-}$$

 $e^{-}e^{+}$
 \bar{p}
(2) \bar{H} is \bar{P}

(2) H + Ps
$$\longrightarrow$$
 H⁺ + e⁻
 p^{e^+} $e^{-}e^{+}$ $e^{+}p^{e^+}$

H⁺ production

Double charge-exchange reaction

(1) Ps +
$$\overline{p}$$
 --> \overline{H} + e^-

→ We need **positronium** & **antiprotons**

(2) \overline{H} + Ps --> \overline{H}^+ + e⁻

GBAR experiment design

Reaction

Positron line \rightarrow create Positronium (Ps)

P. Blumer et al., *NIMA* **1040** 167263 (2022)

21/03/2023

GBAR experiment design Antiproton line (p̄)

GBAR experiment design Mixing \overline{p} and Ps & measuring \overline{H} freefall

Reaction chamber

2022 experimental setup

2022 running scheme

- Detect \overline{H} on MCP (*MicroChannel Plate*) \rightarrow electric signal
- Background mainly from \overline{p} annihilations in reaction chamber (\rightarrow pions faster than antihydrogen)

21/03/2023

Moriond EW 2023 - GBAR results from 2022 - Corentin Roumegou

A few particles reach MCP in the expected time window \rightarrow distinguishable pulses ۲

Data taking

- Data taking during 2022 beamtime:
 - > 8468 shots with **antiprotons only** no positrons (\rightarrow " \bar{p} only")
 - **Positronium** background is negligible \succ
 - 6897 shots with **both antiprotons and positrons/positronium** (\rightarrow "mixing") \triangleright Expect to see \overline{H} \succ

Background

Preliminary results

• Compare number of events with high pulse height in time window for mixing vs background

"We produced antihydrogen"

• Confidence level > 3σ

GBAR collaboration - Acknowledgments

P. Adrich¹, P. Blumer², G. Caratsch², M. Chung³, P. Cladé⁴, P. Comini⁵, P. Crivelli²,
O. Dalkarov⁶, P. Debu⁵, A. Douillet^{4,7}, D. Drapier⁴, P. Froelich^{8,*}, S. Guellati-Khelifa^{4,9},
J. Guyomard⁴, P-A. Hervieux¹⁰, L. Hilico^{4,7}, P. Indelicato⁴, S. Jonsell⁸, J-P. Karr^{4,7},
B. Kim¹¹, S. Kim¹², E-S. Kim¹³, Y.J. Ko¹¹, T. Kosinski¹, N. Kuroda¹⁴, B.M. Latacz^{5,**},
B. Lee¹², H. Lee¹², J. Lee¹¹, E. Lim¹³, L. Liszkay⁵, D. Lunney¹⁵, G. Manfredi¹⁰,
B. Mansoulié⁵, M. Matusiak¹, V. Nesvizhevsky¹⁶, F. Nez⁴, S. Niang^{15,**}, B. Ohayon²,
K. Park¹⁰, N. Paul⁴, P. Pérez⁵, C. Regenfus², S. Reynaud⁴, C. Roumegou¹⁵,
J-Y. Roussé⁵, Y. Sacquin⁵, G. Sadowski⁵, J. Sarkisyan², M. Sato¹⁴, F. Schmidt-Kaler¹⁷,
M. Staszczak¹, K. Szymczyk¹, T.A. Tanaka¹⁴, B. Tuchming⁵, B. Vallage⁵, D.P. van der
Werf¹⁸, A. Voronin⁶, D. Won¹², S. Wronka¹, Y. Yamazaki¹⁹, K-H. Yoo³, P. Yzombard⁴

(GBAR Collaboration)

Backup Slides

21/03/2023

Next steps - Perspectives

- Install p
 -trap Lower emittance, better p
 focusing into target
- Increase LINAC frequency & improve transmission in positron line > More e⁺ on target
- Lamb-shift measurement for antihydrogen > CPT test
- Produce antihydrogen ion and measure cross-section of 2^{nd} reaction $\triangleright \overline{H}^+$
- Freefall measurement \blacktriangleright Measure $\overline{\mathbf{g}}$ ($\frac{\Delta \overline{g}}{\overline{a}} \leq 1\%$)
- "Quantum free-fall of antihydrogen" > Measure $\overline{\mathbf{g}}$ ($\frac{\Delta \overline{g}}{\overline{a}} \leq 10^{-5}$)

Free-fall chamber scheme

Cross sections theoretical calculations

A.S. Kadyrov et al., *Physical Review Letters* **114**, 183201 (2015)
P. Comini et al., *New Journal of Physics* **23**, 029501 (2021)

21/03/2023

Cross section measurement

1st reaction matter equivalent

$$Ps + p \longrightarrow H + e^+$$

Merrison et al., *Physical Review Letters* **78**, 2728 (1997)

FIG: Total cross sections for formation of hydrogen by proton impact upon Ps(1s). Comparison is made between the present experimental values and various theoretical approximations.

Positronium background [Preliminary]

> 1 x 10⁷ o-Ps per shot

- \succ o-Ps target to MCP = 1.6 μ s TOF for pbar / Time window: 200 ns \rightarrow detection starts at 1.4 μ s
- > #Gamma photons after this time: $3 \times e^{\frac{-1400}{142}} \times 10^7 = 1568$

> Solid angle of 4 cm diameter MCP: $\frac{\pi \times 0.02^2}{1.7^2} \Big/_{4\pi} = 3.46 \times 10^{-5}$

- → #Gammas on MCP after 1.4 µs: $1568 \times 3.46 \times 10^{-5} = 0.05$
- With 5 % detection efficiency (very good MCP with 10^7 gain !): 2.5×10^{-3} MCP signals per shot
 6897 mixing shots → $6897 \times 2.5 \times 10^{-3} < 18$ MCP signals

Positronium background [Preliminary]

MCP efficiency for gammas

- \succ < 18 MCP signals in 6897 mixing shots
- > Signal above the 50 mV threshold: 1 % (see histogram) \rightarrow 1% of 18

< 0.2 events for the 6897 mixing shots</p>

We used 22Na source to measure the amplitude distribution, but we do not expect a fundamentally different distribution for o-Ps annihilation photons

Significance [Preliminary]

<u>NB:</u> \overline{H} production is around 3.8 µs \rightarrow 1.6 µs TOF to MCP

Cut [V]	0.10	0.12	0.14	0.16	0.18	0.20
n	32	28	22	18	12	11
b	15	11	5	2	1	0
$\pmb{\sigma}_{binomial}$	3.26	3.42	3.87	4.14	3.48	3.79
$\sigma_{_{ m Li\&Ma}}$	3.20	3.40	3.92	4.27	3.66	4.20

- σbinomial: binomial test comparing Poisson means of two samples
- $\sigma_{\text{Li}\&Ma}: S = \sqrt{2} \sqrt{n} \times log\left(\frac{\alpha+1}{\alpha}\frac{n}{n+b}\right) + b \times \left((\alpha+1)\frac{b}{n+b}\right)$ [T-P. Li and Y-Q Ma, *The Astrophysical Journal* **272** 317-324 (1983)]

