New Results from PROSPECT

Russell Neilson, Drexel University on behalf of the PROSPECT collaboration 57th Rencontres de Moriond, EW 2023

PROSPECT - Precision Oscillation and Spectrum Experiment

Model Independent search for short-baseline oscillation at distances <12m.

• Suggested by the Reactor Antineutrino Anomaly (RAA) and Gallium, MiniBooNE anomalies.

Precision measurement of the ²³⁵U reactor antineutrino spectrum.

 Investigate the Reactor Spectrum Anomaly ~5-7 MeV neutrino energy (4-6 MeV visible energy).

Neutrino Source: HFIR, Oak Ridge, Tennessee

Compact Reactor Core

Power: 85 MW Fuel: HEU (²³⁵U) Core shape: cylindrical Size: h=0.5m r=0.2m Duty-cycle: 41%

Optically Segmented Detector

Neutrino Detection: IBD and PSD

- Inverse Beta Decay (IBD) provides distinctive neutrino signature of prompt positron and delayed neutron captures signal.
- Most neutrons (~75%) are captured on ⁶Li doped into the liquid scintillator detector, giving high pulse shape discrimination (PSD) delayed signal.

Pulse shape discrimination as particle ID

0.0

0.0

0.5

1.0

Energy (MeV)

1.5

R. Neilson | Moriond 2023

2.0

2.5

Event Reconstruction

- Detector segmentation provides 2D position reconstruction and event topology.
- Position along segment (Z) provided by relative time and amplitude of PMT signals.

 Energy response calibrated with internal gamma and neutron sources, and cosmogenic ¹²B beta decay.

Background Rejection and Subtraction

Neutron capture PID

• ⁶Li loading + PSD

Prompt (positron) PID

• PSD

Shower event veto

Energy Reconstruction

Prompt-delay distance

• Position Reconstruction

Fiducialization

• Active Shielding

Passive shielding

• Water, poly etc.

Prompt Energy Distributions Under Different Cuts

Cosmogenic backgrounds subtracted with reactor-off data.

Detector Stability

Resolution vs time

PRD 103, 032001 (2021)

R. Neilson | Moriond 2023

Oscillation Search Strategy: Spectrum vs Baseline

Independent of predictions of the neutrino flux and spectrum.

PRD 103, 032001 (2021)

Oscillation Fit Results

- Build χ_2 comparing data to oscillated prediction.
- Covariance matrices capture all uncertainties included correlations.

- Use both Feldman Cousins (frequentist) method and Gaussian CL_s to convert $\Delta \chi_2$ values to statistically valid excluded regions of oscillation phase space.
- RAA best-fit excluded: 98.5% CL
- Data is compatible with null oscillation hypothesis (p=0.57)

Previous Spectrum Analysis

PRD 103, 032001 (2021)

- 2.2 σ excess over Huber-Mueller model in 4-6 MeV region.
- 'Bump' amplitude: A = 0.84 ± 0.39 (1 = Daya Bay bump)

R. Neilson | Moriond 2023

Joint Spectrum Analyses

11

Boosted Dark Matter Search

R. Neilson | Moriond 2023

m_x [GeV]

10⁰

New Analysis of 2018 Data

												1	
140	141	142	143	144	145	146	147	148	149	150	151	152	153
126	127	128	129	130	131	132	133	134	135	136	137	138	139
112	113	114	115	116	117	118	119	120	121	122	123	124	125
98	99	100	101	102	103	104	105	106	107	108	109	110	111
84	85	86	87	88	89	90	91	92	93	94	95	96	97
70	71	72	73	74	75	76	77	78	79	80	81	82	83
56	57	58	59	60	61	62	63	64	65	66	67	68	69
42	43	44	45	46	47	48	49	50	51	52	53	54	55
28	29	30	31	32	33	34	35	36	37	38	39	40	41
14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	1	2	3	4	5	6	7	8	9	10	11	12	13
							_			-		_	

- Double ended segment
- Single ended segment
- Blind segment

- PMT base degradation due to scintillator leaking into PMT housings.
- To maximize detector uniformity, all data from affected segments was previously excluded.
- We recover excluded data with:
 - **Data Splitting (DS)**

and

Single Ended Event Reconstruction (SEER)

Data Splitting

- Divide data into five periods, one for each reactor cycle.
- Reactor-on periods bookended by reactor-off periods for background subtraction.
- For each period use the live segments from the end of the period.

Data Splitting Configurations

140	141	142	143	144	145	146	147	148	149	150	151	152	153
126	127	128	129	130	131	132	133	134	135	136	137	138	139
112	113	114	115	116	117	118	119	120	121	122	123	124	125
98	99	100	101	102	103	104	105	106	107	108	109	110	111
84	85	86	87	88	89	90	91	92	93	94	95	96	97
70	71	72	73	74	75	76	77	78	79	80	81	82	83
56	57	58	59	60	61	62	63	64	65	66	67	68	69
42	43	44	45	46	47	48	49	50	51	52	53	54	55
28	29	30	31	32	33	34	35	36	37	38	39	40	41
14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	1	2	3	4	5	6	7	8	9	10	11	12	13
	-				-		_	-	-		-	_	-

Period 3

Previous

Period 4

40	141	142	143	144	145	146	147	148	149	150	151	152	153
26	127	128	129	130	131	132	133	134	135	136	137	138	139
12	113	114	115	116	117	118	119	120	121	122	123	124	125
98	99	100	101	102	103	104	105	106	107	108	109	110	111
34	85	86	87	88	89	90	91	92	93	94	95	96	97
70	71	72	73	74	75	76	77	78	79	80	81	82	83
56	57	58	59	60	61	62	63	64	65	66	67	68	69
12	43	44	45	46	47	48	49	50	51	52	53	54	55
28	29	30	31	32	33	34	35	36	37	38	39	40	41
4	15	16	17	18	19	20	21	22	23	24	25	26	27
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Period 5

140	141	142	143	144	145	146	147	148	149	150	151	152	153
126	127	128	129	130	131	132	133	134	135	136	137	138	139
112	113	114	115	116	117	118	119	120	121	122	123	124	125
98	99	100	101	102	103	104	105	106	107	108	109	110	111
84	85	86	87	88	89	90	91	92	93	94	95	96	97
70	71	72	73	74	75	76	77	78	79	80	81	82	83
56	57	58	59	60	61	62	63	64	65	66	67	68	69
42	43	44	45	46	47	48	49	50	51	52	53	54	55
28	29	30	31	32	33	34	35	36	37	38	39	40	41
14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	1	2	3	4	5	6	7	8	9	10	11	12	13

R. Neilson | Moriond 2023

Double ended segment

Single ended segment

Blind segment

SEER

For single-ended segments event location is unknown.

• Unable to correct signal amplitude for position, therefore poor energy information and these segments not used for energy reconstruction.

But, single-ended segments retain effective PSD.

• Used for background rejection.

Double Ended PSD

Single Ended PSD

Signal-to-Background Improvement

Substantial reduction of background due to SEER, especially the 4.4 MeV ¹²C(n,n')¹²C* peak.

	IBD Effective	IBD Effective/ calendar day	Total IBD counts	Total IBD counts/ calendar day	S/CB	S/AB
Previous PROSPECT Results	18100	189	50560	528	1.37	1.78
Data Splitting + SEER	36204	379	61029	638	3.90	4.31

Improvement in:

- IBD counts ~(x1.2)
- Signal to cosmo. background (S/CB) ~(x2.8)
- Signal to accidental background (S/AB) ~(x2.4)
- IBD effective counts (x2.0) number of events in a background-free experiment with equivalent precision

Five-Period Spectrum

• Simulation prediction illustrates minor detector response changes.

arXiv:2212.10669v2

[•] Comparing each period to the average confirms inter-period compatibility.

Unfolded Neutrino Spectrum

- Obtain antineutrino energy spectrum by inverting detector response over all five periods with the Weiner-SVD method.
- Systematics are treated as periodcorrelated (e.g. energy response) or period-uncorrelated (e.g. background subtraction).
- Same technique can be used for combining different experiments.

arXiv:2212.10669v2

Isotopic Composition of 'The Bump'

- Ratio of PROSPECT bump amplitude to Daya-Bay bump.
- Equal Isotope hypothesis preferred.
- Ratio = 0 (no ²³⁵U bump) disfavored at 3.7σ.
- Ratio = 1.78 (all ²³⁵U bump) disfavored at 2.0σ.
- Detector systematics limited. Multi-reactor measurement with correlated detector systematics (same detector) would strengthen the result.

Other Upcoming PROSPECT Results

- Five-period oscillation analysis
 - Increased statistics from Data Splitting.
 - New Combined Neyman Pearson framework to allow finer binning without bias from low statistics.
- Absolute antineutrino flux
- IBD background analysis
 - Identification of background classes and data/simulation comparisons.
- Antineutrino directionality
 - Neutron displacement correlated to incoming neutrino direction.

PROSPECT-II

- Proposed upgrade to PROSPECT. Same size and location.
- PMTs separated from liquid scintillator volume by new acrylic window.
- Anticipate increase in effective statistics from 35,000 to 210,000 in 2 years at HFIR.
- Potential future deployments at other reactors.
- Design well advanced. Looking for construction funding.

PROSPECT-II Oscillation Sensitivity

J. Phys. G 49 (2022) 7 070501

Conclusions

- The statistical power of the PROSPECT dataset has been doubled through new analysis techniques: Data Splitting and Single Ended Event Reconstruction.
- A multi-period response unfolding strengthens our observation of a spectrum excess between 5-7 MeV neutrino energy.
 - 'Equal isotope' hypothesis favored.
 - This approach could be extended to multi-experiment measurements.
- Expect additional PROSPECT-I results in the next year incorporating the new DS+SEER event selection.
 - SBL oscillation search, absolute flux, aboveground IBD backgrounds, antineutrino directionality.
- An upgraded PROPSECT-II experiment would increase the statistical power a further factor of ~6 at HFIR, and allow for multi-reactor deployment.

Extra slides

Reactor Antineutrino Anomaly

Anomalies

MiniBooNE low energy excess Phys. Rev. Lett. 121, 221801 (2018) MicroBooNE results to be announced Oct 27-28

Neutrinos from Nuclear Fission

R. Neilson | Moriond 2023

Locating the Reactor

Prompt-Delayed Displacement

Neutrino Directionality

Evidence for Flux Prediction Issue

 r_{235}

Altered from JHEP 01 167

PROSPECT-II Improved Detector Response

External Calibration

