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Where to look for HNLs?

The Seesaw Lagrangian Active neutrino masses
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How to look for HNLs?
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[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]
[see talks by Haifa Rejeb Sfar and Sophie Middleton]
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How to look for HN

HNL mixing
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[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

[see talks by Haifa Rejeb Sfar and Sophie Middleton]

3/1



How to look for HN
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[see talks by Haifa Rejeb Sfar and Sophie Middleton]
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How to look for HN
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Low-scale leptogenesis mechanisms



From High to Low-scale Leptogenesis

The Sakharov Conditions

1. Baryon number violation

sphaleron processes

2. C and CP violation

RHN decays and oscillations

3. Deviation from equilibrium

freeze-in and freeze-out of RHN
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[ Fukugita/Yanagida '86 ]
thermal leptogenesis

[Davidson/lbarra '02]

10-11 10t ] 1031 1001

1071 109 e s s |

My [GeV]

4/m



From High to Low-scale Leptogenesis

The Sakharov Conditions

1. Baryon number violation

sphaleron processes o
N

2. C and CP violation

RHN decays and oscillations

3. Deviation from equilibrium
freeze-in and freeze-out of RHN TIME

. , [ Liu/Segre '93
[ Akhmedov/Rubakav/Smirnoy ‘98 Pilaftsis '97 [ Fukugita/Yanagida '86 ]

Asaka/Shgposhmkov 0.5] Pilaftsis/Underwood '04;'05] thermal leptogenesis
leptogenesis via oscillations .
resonant leptogenesis

[Davidson/lbarra '02]

| | | | | | | | | N
1ol 102! 103 | 1051 1071 1ol ol jgsl sl ’

My [GeV] 411



From High to Low-scale Leptogenesis

The Sakharov Conditions

e

. . D

1. Baryon number violation RN
sphaleron processes - Q/‘\?‘ g

. . | & s

2. C'and CP violation 'z
RHN decays and oscillations §
. R i<

3. Deviation from equilibrium iz
]

freeze-in and freeze-out of RHN

[ Liu/Segre '93
Pilaftsis 97
Pilaftsis/Underwood '04;'05]
resonant leptogenesis

[ Akhmedov/Rubakov/Smirnov '98
Asaka/Shaposhnikov '05)
leptogenesis via oscillations

[Davidson/lbarra '02]

TIME

[ Fukugita/Yanagida '86 ]
thermal leptogenesis

1ol 102! 103 | 1051 1071 1001 o1l

My [GeV]

10181 o8l

4/m



From High to Low-scale Leptogenesis

The Sakharov Conditions

1. Baryon number violation

sphaleron processes -
N

2. C and CP violation

RHN decays and oscillations

3. Deviation from equilibrium
freeze-in and freeze-out of RHN TIME

. , [ Liu/Segre '93
[ Akhmedov/Rubakav/Smirnoy ‘98 Pilaftsis '97 [ Fukugita/Yanagida '86 ]

Asaka/Shgposhmkov 0.5] Pilaftsis/Underwood '04;'05] thermal leptogenesis
leptogenesis via oscillations .
resonant leptogenesis

[Davidson/lbarra '02]

| | | | | | | | | N
1ol 102! 103 | 1051 1071 1ol ol jgsl sl ’

My [GeV] 411



From High to Low-scale Leptogenesis

The Sakharov Conditions

1. Baryon number violation

sphaleron processes

2. C and CP violation

RHN decays and oscillations

3. Deviation from equilibrium

equiubr—LDm\ :
\
\

\
\
\

57992 ¥

.. :1’0'0?...

ALERON FREEZE-OUT

7,3 S,

freeze-in and freeze-out of RHN

/Rubakov/Smirnov '98
Shaposhnikov '05]
esis via oscillations

'02]

TIME

[ Fukugita/Yanagida '86 ]
thermal leptogenesis

| 3

103 | 1051 1071 1001 o1l

10181

10151

4/m



From High to Low-scale Leptogenesis

The Sakharov Conditions
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The low-scale leptogenesis mechanisms

Resonant leptogenesis Leptogenesis via oscillations
- assymetry produced in HNL decays - all asymmetry is generated
during RHN equilibration

2 (freeze-in)

- asymmetry diverges when Mo — M

- HNL scatterings dominate over
decays
- important to distinguish the

- relativistic effects can typically be helicities of the RHN
neglected

! : - the comoving HNL equilibrium
- heavy neutrino decays require L .
M > T, not clear what happens for d|str|but|on Is approximately
M < 130 GeV constant Y ~ 0

- both can be described by the same density-matrix equations
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Results: The minimal model with 2 RHNs

baryogenesis possible for all masses

104 : ‘ ‘ ‘ 0 above 100 MeV!

1050 — BAU limits A ‘ )

53 o -+ two main contributions to the BAU,

107 from freeze-in and freeze-out
LR e - there is significant overlap of the
5 w0k .

100} - two regimes

1:2’ results depend on low-energy CP

2 E 10°
107 NH phases:
1002 g ot 0 02 AM/E;" - optimal phases for NH: § = 0 and
My, GeV o n=m/2

[)K/Timiryasov/Shaposhnikov 210316545] - lessoverlapforeg § = wandn =0

- maximal AM/M < 1071 —1073

in resonant leptogenesis freeze-out (HNL decays) dominates,
we can start with thermal initial conditions

leptogenesis via oscillations is freeze-in dominated,
we neglect HNLs falling out of equilibrium
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Results: Leptogenesis with 3 RHNs

both freeze-in and
freeze-out leptogeneses
within reach of existing
experiments

- all U? are allowed for
experimentally
accessible masses

[see the talk by Yannis Georis]
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[leptogenesis bounds from JK/Timiryasov/Shaposhnikov 210316545

and Drewes/Georis/JK 210616226 | 7/11
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What kind of HNLs to look for?




Sensitivity of experiments highly depends on mixing ratios
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New Benckmark Flavour Ratios

| 10NO
m20NO
30NO

m10l10
m20l10
3010

[Drewes/JK/Lopez-Pavon 2207.02742]

- in the minimal seesaw model the
flavour ratios are determined by
Upmns

- uncertainty dominated by Majorana
phase 7, Dirac phase ¢ and 623

new benchmarks prepared for the
HNL WG of the FIPs physics centre

- selection criteria:

1. consistency with v-osc. data
2. added value

3. symmetry considerations

4. simplicity

5. leptogenesis

- in addition to the single flavor

benchmarks, we propose the new

points:
FUZ2:U2:U2=0:1:1
o UZ:U&:UE:I:l:l

- Common benchmarks can used to

compare the reach of different
searches
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New Benckmark Flavour Ratios

new benchmarks prepared for the
HNL WG of the FIPs physics centre

- selection criteria:

1. consistency with v-osc. data
added value

symmetry considerations
simplicity

leptogenesis

AR

- in addition to the single flavor

benchmarks, we propose the new
points:

FUZ2:U2:U2=0:1:1

o U3:U3:U3:1:1:1

- Common benchmarks can used to

compare the reach of different
searches

3HNLs with flavour symmetries
[Drewes/Georis/HagedornKlaric 2203.08538]

[Drewes/Georis/HagedornKlaric 230a.bcde]
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Dirac or Majorana HNLs?

UZ
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4 \
Ry >1/3 \\
LNV
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~~~~~ N
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M [GeV]

[Drewes/Klose/JK 1907.13034]

- for AMy <« T'y lepton number

is conserved - Dirac HNLs

- for AMy 2 'y lepton number

is violated - Majorana HNLs

- fine tuning practically implies

lower limit on the mass splitting
AMy Z Am,

- large range of AMy are

consistent with leptogenesis

- energy resolution of planned

experiments -
AM/M ~ O(few%)

- tiny mass splittings can be

probed via HNL oscillations
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Dirac or Majorana HNLs?
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Dirac or Majorana HNLs?

- for AMy <« T'y lepton number
is conserved - Dirac HNLs

; .
0.8 Ry(10) = 50/51 - for AMy 2 T'y lepton number
, A=1s is violated - Majorana HNLs
i) N . . . .
0.6 I, ) == - fine tuning practically implies
Q. 04l J ! —— LNC | lower limit on the mass splitting
T A iy LNV AMy > Am,,
02| S S~ - large range of AMy are
L Y consistent with leptogenesis
| - S

0 2 4 6 8 10 - energy resolution of planned

experiments -

AM/M ~ O(few%)

[Antusch/Hajer/Rosskopp 2210.10738] o tmy mass Splittings can be
probed via HNL oscillations

cT/mm
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Dirac or Majorana HNLs?

- for AMy <« T'y lepton number
is conserved - Dirac HNLs

- for AMy 2 'y lepton number

2579 events, My=1GeV, 6M =4-10~7 eV is violated - Majorana HNLs
puwy inferred using LightGBM with accuracy 0.639
100 - fine tuning practically implies
E :Z T ‘ lower limit on the mass splitting
5 oas Y AMy Z Am,
S oo Mg e e
WS s 1 - large range of AMy are
S0 ' consistent with leptogenesis
=75
Tt etmetm - energy resolution of planned
experiments -
[Tastet/Timiryasov 1912.05520] AM/M ~ O(few%)

- tiny mass splittings can be
probed via HNL oscillations
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Conclusions

- right-handed neutrinos can offer a minimal solution to
the origins of neutrino masses and the baryon asymmetry
of the Universe

- the existence right-handed neutrinos can be tested at
existing and near-future experiments

- excellent synergy between high-energy and high-intensity
experiments!

- leptogenesis is a viable baryogenesis mechanism for all
heavy neutrino masses above the O(100) MeV scale

- HNLs have a very rich phenomenology
displaced vertices, LNV, LFV, HNL oscillations...
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Thank you!



Indirect probes: Charged LFV
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[Granelli/JK/Petcov 2206.04342]

parameters space in the TeV region already severly constrained by cLFV observables
future p — e conversion experiments can probe a large part of the N = 3 parameter space
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Large mixing angles and approximate B-L symmetry

- large U2 require Pseudo-Dirac pairs

cancellations between

different entries of the Mo = TR Ny = o
Yukawa matrices F'

- this cancellation can be R
associated with an EAL I ol
approximate lepton o
number symmetry MM—M< 9 A ;)

[Shaposhnikov hep-ph/0605047, Kersten Smirnov
0705.3221, Moffat Pascoli Weiland 1712.07611] ,
1 Fe(1l+ €e) iFe(1 — €e) Fee,
F= Fru(l4eu) iFL(1—epu) FMEL
’

- symmetry broken by small ~ B\ e

parameters e, €, u,



- if present, symmetries are manifest to all orders in p.t.

- in the case of a large B-L breaking, radiative corrections
can cause large neutrino masses

- we can use the size of radiative corrections to the light
neutrino masses to quantify tuning

Fine Tuning




Measuring flavor ratios at experiments

10, M = 30 GeV
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- the HNL branching ratios are
constrained for a fixed U?

large number of HNLs
possible at FCC-ee allow for
measurement of U2 /U? .

- similar sensitivity @ SHiP

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]



Measuring flavor ratios at experiments

Mpy = 30 GeV @ FCC-ee

10, FCC-ee at 4/ =90 GeV
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- similar sensitivity @ SHiP T e

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]



Measuring flavor ratios at experiments

My =1 GeV @ SHiP

0.9 Nops =811
A=98242 " §::8gg
- the HNL branching ratios are 0.7 N=1000
: 2 . xb=0.34
constrained for a fixed U :%O.s \\ e
- large number of HNLs > =20
possible at FCC-ee allow for 03 & \\
measurement of U2/U? ] \\“\\ Q\
L . . 0.1 SRy
- similar sensitivity @ SHiP i R
0

1 03 05 07 09
U2IU?

[Snowmass HNL WP 2203.08039]



Future sensitivity to PMNS parameters?

- significant improvement
expected with DUNE and HyperK

- we can use the sensitivity
estimates to estimate how the
allowed flavor ratios change

[NUFIT 51 200714792]

[DUNE TDR 2002.03005]

——— VFIT 5.1, CI 90%
VFIT51,30

M DUNE, 5,:=0.58

B DUNE, 5,5%=0.42



Future sensitivity to PMNS parameters?
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[Drewes/JK/Lopez-Pavon 2207.02742] [DUNE TDR 2002.03005]
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Complementarity with neutrinoless double beta decay

+ mgg is a complementary probe of
the flavor mixing ratios for
Mpy > 100MeV

- excluding mgg limits allowed
flavour ratios
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Complementarity with neutrinoless double beta decay

+ mgg is a complementary probe of
the flavor mixing ratios for
Mpy > 100MeV

- excluding mgg limits allowed
flavour ratios
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HNL contribution to neutrinoless double 5 decay

[figure from 1910.04688]

* RHN can contribute to mgg

- large mass splitting is

required to have an
observable effect (not
always compatible with
leptogenesis)

- some leptogenesis

scenarios can already be
excluded by current results
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HNL contribution to neutrinoless double 5 decay

M{GeV]
[Eijima/Drewes 1606.06221,

Hernandez/Kekic/Lopez-Pavon/Salvado 1606.06719]

* RHN can contribute to mgg

- large mass splitting is

required to have an
observable effect (not
always compatible with
leptogenesis)

- some leptogenesis

scenarios can already be
excluded by current results



HNL contribution to neutrinoless double 5 decay
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[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]

* RHN can contribute to mgg

- large mass splitting is

required to have an
observable effect (not
always compatible with
leptogenesis)

- some leptogenesis

scenarios can already be
excluded by current results



Measuring the mass splitting in model with 2 HNLs

U2

Normal Ordering:
tosexC [M]
10° 10™* 10 107%2

1077 10-12
1078 10-13
107° 10-14 -
10-10 g 10-15 g
107" ) 10-16
10712 seesaw limit 1017
102 108 10% 10°
AMphys[GeV]
M =30 GeV

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]

- large range of AM

consistent with
leptogenesis

- energy resolution of

planned experiments -
AM/M ~ O(few%)

- Higgs vev contribution to

RHN mass difference

A Myg practically implies
lower limit on the mass
splitting
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Measuring the mass splitting in model with 2 HNLs

- large range of AM
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leptogenesis

- energy resolution of

planned experiments -
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- Higgs vev contribution to

RHN mass difference
AMyy practically implies
lower limit on the mass
splitting



Measuring the mass splitting in model with 2 HNLs

- large range of AM
consistent with

I e T leptogenesis
way - energy resolution of
R s e | planned experiments -
j o ey AM/M ~ O(few%)
e , - Higgs vev contribution to
B I T S S RHN mass difference

AMyy practically implies
lower limit on the mass
splitting

[Tastet/Timiryasov 1912.05520]



Mass splittings with 3 HNLs

M =10 GeV
N,
-2 \\\
< N,
3 o>, LNV KINERN
O _4] - ~ 200 SN
E K N “/oé\ ~
R N e
g | \ ~f
W < - 4
— B 4 ﬂ’
s -8 e
[} g
< 10 4 -
3 T
- -’
] , y < LNC
‘3 —121 /7
4
4
T z T T T
-10 -8 -6 -4 =7
logioU?
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benchmark with fixed

U2, /u?

upper bound on U? arises
through a combination of
baryogenesis + fine tuning
constraints

leptogenesis consistent
with both LNV and LNC RHN
decays

nontrivial LNV/LNC ratios
can further constrain the
RHN parameters



Mass splittings with 3 HNLs

M =50 GeV
—24 N O
— 2 . \\\ "\AJ
A N,
3 » LNV N0
6] ~
% 41
&
s
g
S -6
o
S

10g10(AM12/GeV)
&
o

[ Drewes/Georis/JK 230x.xxxx]

benchmark with fixed
U2, /u?

- upper bound on U? arises

through a combination of
baryogenesis + fine tuning
constraints

- leptogenesis consistent

with both LNV and LNC RHN
decays

- nontrivial LNV/LNC ratios

can further constrain the
RHN parameters



Mass splittings with 3 HNLs

M =100 GeV

=10910(AM>3/GeV)

log10(AM12/GeV)
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Mass splittings with 3 HNLs

- benchmark with fixed
U2, /u?

- upper bound on U? arises
through a combination of
baryogenesis + fine tuning
constraints

log10(AM,3/GeV)

- leptogenesis consistent
with both LNV and LNC RHN
decays

- nontrivial LNV/LNC ratios

can further constrain the
RHN parameters

log10(AM12/GeV)

[ Drewes/Georis/JK 230x.xxxx]



Slices of the parameter space
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splittings

- mass splitting induced by

the H |ggs AMpg

- mass splitting induced by

RG running é Mpc
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Slices of the parameter space

AM/M

101 |
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M=1000.0 GeV

- two characteritic mass

splittings

- mass splitting induced by

the H |ggs AMpg

- mass splitting induced by

RG running é Mpc



Results: Leptogenesis with 3 RHN (Normal Ordering)
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[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]



Hierarchy in the wa t

- lepton asymmetry can
survive washout if hidden

W 10NO
in a particular flavor Bsono
. miol0
- washout suppression
3010
. r, U?
- T U?
O for 2 RHN f > 5 X 1073 [Snowmass White Paper 2203.08039]

. .r:or 3 RHN f < 1 pOSSible [Drewes/Garbrecht/Gueter/JK 1609.09069]

[Caputo/Hernandez/Lopez-Pavon/Salvado 1704.08721]



Hierarchy in the washout

3 RHNs:

- lepton asymmetry can
survive washout if hidden
in a particular flavor

- washout suppression

2

Yo  Ua

r U2
- for2RHN > 5 x 1073

[Chrzaszcz/ Drewes/Gonzalo/Harz/Krishna-

: for 3 RHN f < 1 pOSSible murthy/Weniger 1908.02302]
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Hierarchy in the washout

- lepton asymmetry can
survive washout if hidden
in a particular flavor

- washout suppression
Lo Us
r Uu?
- for2RHN > 5 x 1073
- for 3 RHN § < 1 possible

—n
Il

3 RHNs:

m;=0.03 eV

[ Drewes/Georis/JK 220x.xxxx]
[Chrzaszcz/ Drewes/Gonzalo/Harz/Krishna-

murthy/Weniger 1908.02302]



Enhancement due to level crossing

- Inthe B — L symmetric limit two heavy neutrinos form a
pseudo-Dirac pair

- the “3rd” heavy neutrino can be heavier than the
pseudo-Dirac pair

- for T > Tgw, the pseudo-Dirac pair also has a thermal
mass

T > Tepw T < Tepw
o P———

1078

107
1012 /
10714

]

envalues of (H) [GeV]

1074 0.001 0.010 0.100 1
Tew/T




Enhancement due to level crossing

Heavy Neutrino Densities Lepton flavour asymmetries
1.0 ]
0.8 ¢ 107
?Eo.s . 107
? 0.4 & 107°
: o,
3 —e
= 0.2 10-M "
0.0 / ] -
10 0.001 0.010 0.100 1 10 0.001 0.010 0.100 1
TewlT TewlT
Heavy Neutrino correlations Lepton number asymmetry
0.000 N 7 1 1078
= -0.005 ‘ £ 10
2 £ 10710
'f-é -0.010 z 10"
S 0015 5 107"
E B 101
-0.020 2 o
1074 0.001 0.010 0.100 1 1074 0.001 0.010 0.100 1

Tew/T Tew/T



	Low-scale leptogenesis mechanisms
	What kind of HNLs to look for?
	Appendix

