Heavy Neutral Leptons and Leptogenesis

Juraj Klarić March 21st, 2023

Some puzzles for physics beyond the Standard Model

Neutrino masses

Image credits: Kamioka Observatory, ICRR, U. Tokyo; ESA and the Planck Collaboration

Some puzzles for physics beyond the Standard Model

[Fukugita/Yanagida '86...]

Image credits: Kamioka Observatory, ICRR, U. Tokyo; ESA and the Planck Collaboration

The Seesaw Lagrangian

$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & 0 \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

Active neutrino masses

 $m_{\nu} = m_D$

The Seesaw Lagrangian

$$\mathcal{L} \supset rac{1}{2} ig(\overline{
u_L} \quad \overline{
u_R^c} ig) ig(egin{matrix} 0 & m_D \ m_D^T & M_M \end{pmatrix} ig(egin{matrix}
u_L^c \
u_R \end{pmatrix}$$

Active neutrino masses

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

[Minkowski '77 Gell-Mann/Ramond/Slansky '79 Mohapatra/Senjanović '80 Yanagida '79 Schechter/Valle '80] canonical type-I seesaw

The Seesaw Lagrangian

$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

Active neutrino masses

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

[Minkowski '77 Gell-Mann/Ramond/Slansky '79 Mohapatra/Senjanović '80 Yanagida '79 Schechter/Valle '80] canonical type-I seesaw

The Seesaw Lagrangian

$$\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

Active neutrino masses

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

[Minkowski '77 Gell-Mann/Ramond/Slansky '79 Mohapatra/Senjanović '80 Yanagida '79 Schechter/Valle '80] canonical type-I seesaw

low-scale seesaw

LLP experiments

LLP experiments

LLP experiments

Low-scale leptogenesis mechanisms

- 1. Baryon number violation sphaleron processes
- 2. C and CP violation RHN decays and oscillations
- 3. Deviation from equilibrium freeze-in and freeze-out of RHN

- 1. Baryon number violation sphaleron processes
- 2. C and CP violation RHN decays and oscillations
- 3. Deviation from equilibrium

- 1. Baryon number violation sphaleron processes
- 2. C and CP violation RHN decays and oscillations
- 3. Deviation from equilibrium

The Sakharov Conditions

- 1. Baryon number violation sphaleron processes
- 2. C and CP violation RHN decays and oscillations
- 3. Deviation from equilibrium freeze-in and freeze-out of RHN

TIME

- 1. Baryon number violation sphaleron processes
- 2. C and CP violation RHN decays and oscillations
- 3. Deviation from equilibrium freeze-in and freeze-out of RHN

- 1. Baryon number violation sphaleron processes
- 2. C and CP violation RHN decays and oscillations
- 3. Deviation from equilibrium freeze-in and freeze-out of RHN

TIME

Resonant leptogenesis

 $\cdot\,$ assymetry produced in HNL decays

- \cdot asymmetry diverges when $M_2
 ightarrow M_1$
- relativistic effects can typically be neglected
- + heavy neutrino decays require $M\gtrsim T$, not clear what happens for $M\lesssim 130~{\rm GeV}$

Leptogenesis via oscillations

- all asymmetry is generated during RHN equilibration (freeze-in)
- HNL scatterings dominate over decays
- important to distinguish the helicities of the RHN
- the comoving HNL equilibrium distribution is approximately constant $\dot{Y_N^{\mathrm{eq}}} \approx 0$
- both can be described by the same density-matrix equations

[[]JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium

[[]JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta = \pi$ and $\eta = 0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium

[[]JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium

[[]JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta = \pi$ and $\eta = 0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium

[[]JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta = \pi$ and $\eta = 0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium

[[]JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- results depend on low-energy CP phases:
 - optimal phases for NH: $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta = \pi$ and $\eta = 0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium

Results: Leptogenesis with 3 RHNs

- both freeze-in and freeze-out leptogeneses within reach of existing experiments
- all U² are allowed for experimentally accessible masses
- [see the talk by Yannis Georis]

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502] [leptogenesis bounds from JK/Timiryasov/Shaposhnikov 2103.16545 and Drewes/Georis/JK 2106.16226]

Results: Leptogenesis with 3 RHNs

- both freeze-in and freeze-out leptogeneses within reach of existing experiments
- all U² are allowed for experimentally accessible masses
- [see the talk by Yannis Georis]

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502] [leptogenesis bounds from JK/Timiryasov/Shaposhnikov 2103.16545 and Drewes/Georis/JK 2106.16226]

Results: Leptogenesis with 3 RHNs

- both freeze-in and freeze-out leptogeneses within reach of existing experiments
- all U² are allowed for experimentally accessible masses
- [see the talk by Yannis Georis]

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502] [leptogenesis bounds from JK/Timiryasov/Shaposhnikov 2103.16545 and Drewes/Georis/JK 2106.16226]

What kind of HNLs to look for?

Sensitivity of experiments highly depends on mixing ratios

[Drewes/Hajer/JK/Lanfranchi

[Tastet/Ruchayskiy/Timiryasov

2107.12980]

[CMS-PAS-EXO-21-013]

[from the talk by Haifa Rejeb Sfar] 8/11

1801.04207]

[Drewes/JK/Lopez-Pavon 2207.02742]

- in the minimal seesaw model the flavour ratios are determined by UPMNS
- uncertainty dominated by Majorana phase η , Dirac phase δ and θ_{23}

- new benchmarks prepared for the HNL WG of the FIPs physics centre
- selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:
 - $\cdot \ U_e^2: U_{\mu}^2: U_{\tau}^2 = 0: 1: 1$
 - $\cdot \ U_e^2: U_{\mu}^2: U_{\tau}^2 = 1:1:1$
- Common benchmarks can used to compare the reach of different searches

NO, M = 30 GeV

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]

- new benchmarks prepared for the HNL WG of the FIPs physics centre
- selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:
 - $U_e^2: U_\mu^2: U_\tau^2 = 0: 1: 1$
 - $\cdot \ U_e^2: U_{\mu}^2: U_{\tau}^2 = 1:1:1$
- Common benchmarks can used to compare the reach of different searches

 $\Delta M/M = 10^{-2}$

[Hernandez/Lopez-Pavon/Rius/Sandner 2207.01651]

- new benchmarks prepared for the HNL WG of the FIPs physics centre
- selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:
 - $U_e^2: U_\mu^2: U_\tau^2 = 0: 1: 1$
 - $\cdot \ U_e^2: U_{\mu}^2: U_{\tau}^2 = 1:1:1$
- Common benchmarks can used to compare the reach of different searches

3HNLs with flavour symmetries

[Drewes/Georis/HagedornKlaric 2203.08538]

[Drewes/Georis/HagedornKlaric 230a.bcde]

- new benchmarks prepared for the HNL WG of the FIPs physics centre
- selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:
 - $U_e^2: U_\mu^2: U_\tau^2 = 0:1:1$
 - $U_e^2: U_\mu^2: U_\tau^2 = 1:1:1$
- Common benchmarks can used to compare the reach of different searches

Dirac or Majorana HNLs?

[Drewes/Klose/JK 1907.13034]

- for $\Delta M_N \ll \Gamma_N$ lepton number is conserved Dirac HNLs
- for $\Delta M_N \gtrsim \Gamma_N$ lepton number is violated - Majorana HNLs
- fine tuning practically implies lower limit on the mass splitting $\Delta M_N\gtrsim\Delta m_{
 u}$
- large range of ΔM_N are consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}({\rm few\%})$
- tiny mass splittings can be probed via HNL oscillations
Dirac or Majorana HNLs?

- + for $\Delta M_N \ll \Gamma_N$ lepton number is conserved Dirac HNLs
- for $\Delta M_N \gtrsim \Gamma_N$ lepton number is violated Majorana HNLs
- fine tuning practically implies lower limit on the mass splitting $\Delta M_N\gtrsim\Delta m_{
 u}$
- large range of ΔM_N are consistent with leptogenesis
- energy resolution of planned experiments - $\Delta M/M \sim O(\text{few}\%)$
- tiny mass splittings can be probed via HNL oscillations

Dirac or Majorana HNLs?

[Antusch/Hajer/Rosskopp 2210.10738]

- + for $\Delta M_N \ll \Gamma_N$ lepton number is conserved Dirac HNLs
- + for $\Delta M_N \gtrsim \Gamma_N$ lepton number is violated Majorana HNLs
- fine tuning practically implies lower limit on the mass splitting $\Delta M_N\gtrsim\Delta m_{
 u}$
- large range of ΔM_N are consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}({\rm few\%})$
- tiny mass splittings can be probed via HNL oscillations

Dirac or Majorana HNLs?

[Tastet/Timiryasov 1912.05520]

- + for $\Delta M_N \ll \Gamma_N$ lepton number is conserved Dirac HNLs
- for $\Delta M_N \gtrsim \Gamma_N$ lepton number is violated Majorana HNLs
- fine tuning practically implies lower limit on the mass splitting $\Delta M_N\gtrsim\Delta m_{
 u}$
- large range of ΔM_N are consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}({\rm few\%})$
- tiny mass splittings can be probed via HNL oscillations

Conclusions

- right-handed neutrinos can offer a minimal solution to the origins of neutrino masses and the baryon asymmetry of the Universe
- the existence right-handed neutrinos can be tested at existing and near-future experiments
 - excellent synergy between high-energy and high-intensity experiments!
- leptogenesis is a viable baryogenesis mechanism for all heavy neutrino masses above the $\mathcal{O}(100)$ MeV scale
- HNLs have a very rich phenomenology displaced vertices, LNV, LFV, HNL oscillations...

Thank you!

Indirect probes: Charged LFV

[Granelli/JK/Petcov 2206.04342]

- · parameters space in the TeV region already severly constrained by cLFV observables
- future $\mu
 ightarrow e$ conversion experiments can probe a large part of the N=3 parameter space

Indirect probes: Charged LFV

[Granelli/JK/Petcov 2206.04342]

- · parameters space in the TeV region already severly constrained by cLFV observables
- $\cdot \;$ future $\mu
 ightarrow e$ conversion experiments can probe a large part of the N=3 parameter space

Large mixing angles and approximate B-L symmetry

- large U² require cancellations between different entries of the Yukawa matrices F
- this cancellation can be associated with an approximate lepton number symmetry

[Shaposhnikov hep-ph/0605047, Kersten Smirnov

0705.3221, Moffat Pascoli Weiland 1712.07611]

• symmetry broken by small parameters $\epsilon, \epsilon', \mu, \mu'$

Pseudo-Dirac pairs

$$N_s = \frac{N_1 + iN_2}{\sqrt{2}}, N_w = \frac{N_1 - iN_2}{\sqrt{2}}$$

B-L parametrisation

$$M_M = \bar{M} \begin{pmatrix} 1 - \mu & 0 & 0\\ 0 & 1 + \mu & 0\\ 0 & 0 & \mu' \end{pmatrix}$$

$$F = \frac{1}{\sqrt{2}} \begin{pmatrix} F_e(1+\epsilon_e) & iF_e(1-\epsilon_e) & F_e\epsilon'_e \\ F_\mu(1+\epsilon_\mu) & iF_\mu(1-\epsilon_\mu) & F_\mu\epsilon'_\mu \\ F_\tau(1+\epsilon_\tau) & iF_\tau(1-\epsilon_\tau) & F_\tau\epsilon'_\tau \end{pmatrix}$$

Fine tuning

- if present, symmetries are manifest to all orders in p.t.
- in the case of a large B-L breaking, radiative corrections can cause large neutrino masses
- we can use the size of radiative corrections to the light neutrino masses to quantify tuning

Fine Tuning

$$f.t.(m_{\nu}) = \sqrt{\sum_{i=1}^{3} \left(\frac{m_i^{\text{loop}} - m_i^{\text{tree}}}{m_i^{\text{loop}}}\right)^2}$$

Measuring flavor ratios at experiments

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of U_e^2/U^2
- similar sensitivity @ SHiP

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]

Measuring flavor ratios at experiments

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of U_e^2/U^2
- similar sensitivity @ SHiP

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]

Measuring flavor ratios at experiments

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of U_e^2/U^2
- similar sensitivity @ SHiP

[Snowmass HNL WP 2203.08039]

Future sensitivity to PMNS parameters?

- significant improvement expected with DUNE and HyperK
- we can use the sensitivity estimates to estimate how the allowed flavor ratios change

[nuFIT 5.1 2007.14792]

[DUNE TDR 2002.03005]

Future sensitivity to PMNS parameters?

[nuFIT 5.1 2007.14792]

[Drewes/JK/Lopez-Pavon 2207.02742]

[DUNE TDR 2002.03005]

Complementarity with neutrinoless double beta decay

- + m_{etaeta} is a complementary probe of the flavor mixing ratios for $M_N \gg 100 MeV$
- excluding $m_{\beta\beta}$ limits allowed flavour ratios

Complementarity with neutrinoless double beta decay

- + m_{etaeta} is a complementary probe of the flavor mixing ratios for $M_N \gg 100 MeV$
- excluding $m_{\beta\beta}$ limits allowed flavour ratios

[figure from 1910.04688]

- + RHN can contribute to m_{etaeta}
- large mass splitting is required to have an observable effect (not always compatible with leptogenesis)
- some leptogenesis scenarios can already be excluded by current results

[figure from 1910.04688]

- RHN can contribute to m_{etaeta}
- large mass splitting is required to have an observable effect (not always compatible with leptogenesis)
- some leptogenesis scenarios can already be excluded by current results

[Eijima/Drewes 1606.06221,

Hernández/Kekic/López-Pavón/Salvado 1606.06719]

- + RHN can contribute to m_{etaeta}
- large mass splitting is required to have an observable effect (not always compatible with leptogenesis)
- some leptogenesis scenarios can already be excluded by current results

- RHN can contribute to $m_{\beta\beta}$
- large mass splitting is required to have an observable effect (not always compatible with leptogenesis)
- some leptogenesis scenarios can already be excluded by current results

[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]

Measuring the mass splitting in model with 2 HNLs

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]

- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments - $\Delta M/M \sim O(\text{few}\%)$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta}$ practically implies lower limit on the mass splitting

Measuring the mass splitting in model with 2 HNLs

[Antusch/Hajer/Rosskopp 2210.10738]

- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few\%})$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta}$ practically implies lower limit on the mass splitting

Measuring the mass splitting in model with 2 HNLs

[Tastet/Timiryasov 1912.05520]

- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few\%})$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta}$ practically implies lower limit on the mass splitting

[Drewes/Georis/JK 230x.xxxx]

- benchmark with fixed $U^2_{lpha I}/U^2$
- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

- benchmark with fixed $U^2_{lpha I}/U^2$
- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

[Drewes/Georis/JK 230x.xxxx]

[Drewes/Georis/JK 230x.xxxx]

- benchmark with fixed $U^2_{lpha I}/U^2$
- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

[Drewes/Georis/JK 230x.xxxx]

- benchmark with fixed $U^2_{lpha I}/U^2$
- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

Slices of the parameter space

- two characteritic mass splittings
- mass splitting induced by the Higgs $\Delta M_{\theta\theta}$
- mass splitting induced by RG running δM_{RG}

Slices of the parameter space

- two characteritic mass splittings
- mass splitting induced by the Higgs $\Delta M_{ heta heta}$
- mass splitting induced by RG running δM_{RG}

Slices of the parameter space

- two characteritic mass splittings
- mass splitting induced by the Higgs $\Delta M_{ heta heta}$
- \cdot mass splitting induced by RG running δM_{RG}

Results: Leptogenesis with 3 RHN (Normal Ordering)

[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]

Hierarchy in the washout

- lepton asymmetry can survive washout if hidden in a particular flavor
- washout suppression

$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

- + for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- + for 3 RHN $\mathfrak{f}\ll 1$ possible

[Snowmass White Paper 2203.08039] [Drewes/Garbrecht/Gueter/JK 1609.09069] [Caputo/Hernandez/Lopez-Pavon/Salvado 1704.08721]

Hierarchy in the washout

- lepton asymmetry can survive washout if hidden in a particular flavor
- washout suppression

$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

- + for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- + for 3 RHN $\mathfrak{f}\ll 1$ possible

[Drewes/Georis/JK 220x.xxxx] [Chrzaszcz/Drewes/Gonzalo/Harz/Krishnamurthy/Weniger 1908.02302]

Hierarchy in the washout

- lepton asymmetry can survive washout if hidden in a particular flavor
- washout suppression

$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

- + for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- + for 3 RHN $\mathfrak{f}\ll 1$ possible

3 RHNs:

[Drewes/Georis/JK 220x.xxxx] [Chrzaszcz/Drewes/Gonzalo/Harz/Krishnamurthy/Weniger 1908.02302]

Enhancement due to level crossing

- in the B L symmetric limit two heavy neutrinos form a pseudo-Dirac pair
- the "3rd" heavy neutrino can be heavier than the pseudo-Dirac pair
- for $T \gg T_{EW}$, the pseudo-Dirac pair also has a thermal mass

Enhancement due to level crossing

Lepton flavour asymmetries

