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high frequency (> kHz) GW sources

Cosmological

sourced by violent cosmological
event in the early Universe

stochastic GW background (SGWB):.
stationary, isotropic, broad spectrum

GW frequency determined by
Hubbe horizon at sourcing time
- high frequency = early Universe

observationally bounded by
BBN and CMB (extra radiation)

vanilla cosmology: SGWB from
cosmic inflation & CGWB very small.
But in many BSM models, saturating
BBN bound is easy
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high frequency (> kHz) GW sources

Cosmological

sourced by violent cosmological
event in the early Universe

stochastic GW background (SGWB):

stationary, isotropic, broad spectrum
GW frequency determined by
Hubbe horizon at sourcing time

— high frequency = early Universe

observationally bounded by
BBN and CMB (extra radiation)

vanilla cosmology: SGWB from

cosmic inflation & CGWB very small.

But in many BSM models, saturating
BBN bound is easy

Astrophysical

localized GW sources, both coherent
and incoherent signals possible

no strong astrophysical sources
guaranteed in UHF band

eg mergers of light primordial black
holes or exotic compact objects,
superradiance, neutron star mergers
depending on QCD EoS.

large signals require near-by events
- rare events with GW strain far
above BBN bound are possible

SGWB from unresolved sources,
typically harder to detect

UHF GW searches are always a search for New Physics

2117
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challenges in UHF GW detection

BBN bound

rly\Universe
B hysics

Theorists are joyful people
>

frequency

CMB/BBN bound constrains energy
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Experimentalists live 27
Theorists are joyful people on a slippery slope
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frequency frequency
QGW XX f2hg

CMB/BBN bound constrains energy experiments measure displacement
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Ultra-High-Frequency GWs: A Theory and Technology Roadmap

This workshop is part of the Ultra-High-Frequency Gravitational Waves initiative (see the website of our
initiative) and comes after a first meeting held at ICTP in Trieste in 2019 (see the website of the
first workshop) that led to a review paper on the subject.

The aim of this meeting is to foster the that is ¥ to get to ultra-high-
frequency gravitational wave detection. In particular, we will discuss

« the science case for UHF-GW searches

= new detector concepts

« feasibility studies and construction of prototypes for proposed detector concepts

« coordinating an international effort to support collaborations working on UHF-GW detectors
The workshop will combine theoretical developments regarding GW sources in different parts of the
ultra-high-frequency band with experimental concepts aiming at probing them.

Each day we will have a discussion session with the aim of setting up working groups around one or
more detector concepts and/or theoretical aspects of sources, which will be encouraged to continue
their work after the end of the workshop, hopefully contributing to the technology development that is
needed to make concrete progress in the field.

3rd workshop: Dec 4 — 8 2023 /@7 CERN !

microwave background

all talks available online:

1st workshop
http://indico.ictp.it/event/9006/

2nd workshop:
https://indico.cern.ch/event/1074510/

Living Review:
https://arxiv.org/abs/2011.12414

UHG GW initiative:
https://www.ctc.cam.ac.uk/activities/UHF-GW.php

Valerie Domcke - CERN
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GW electrodynamics

Classical electrodynamics + linearized GR, 9uv = Muv + hpuw

O, FM = jte = (=V P, V x M + 9;P) effect!ve current
5 Frr effective polarization vector
v N effective magnetization vector
with
P, = —hijE; + 1hE; + hooE; — €;j1ho;j Br, induced at linear order in h
M; = —h;jB; — +hB; + h;;B; + €;j5ho; E, in presence of external E,B field

VD, Garcia-Cely, Rodd 22

Direct analogy with axion electrodynamics

LD gayyaE-B  — P=gs,aB, M=g;aE McAllister et al 18
Tobar, McAllister, Goryachev 19
Ouellet, Bogorad "19

effective source terms in Maxwell's equation due to GW

417 Valerie Domcke - CERN



GW signal in axion haloscopes

eg ABRACADABRA, SHAFT, DM Radio: VD, Garcia-Cely, Rodd 22

static magnetic field

[

low-mass axion haloscopes are
high frequency GW detectors
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GW signal in axion haloscopes

eg ABRACADABRA, SHAFT, DM Radio: VD, Garcia-Cely, Rodd 22

static magnetic field

effective current

[

low-mass axion haloscopes are
high frequency GW detectors

5/17 Valerie Domcke - CERN



GW signal in axion haloscopes

eg ABRACADABRA, SHAFT, DM Radio: VD, Garcia-Cely, Rodd 22

static magnetic field

effective current

induced oscillating magnetic field

low-mass axion haloscopes are
high frequency GW detectors
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GW signal in axion haloscopes

eg ABRACADABRA, SHAFT, DM Radio: VD, Garcia-Cely, Rodd 22

static magnetic field

effective current

induced oscillating magnetic field

measure magnetic flux (~ h)
through pickup loop

at leading order in (wR) :
,I:e—z'wt

gy = h*w’ Bomr? Ra(a + 2R)s;

g 16\/5 07 ( )Seh

low-mass axion haloscopes are
high frequency GW detectors
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GW signal in axion haloscopes

eg ABRACADABRA, SHAFT, DM Radio:

low-mass axion haloscopes are
high frequency GW detectors

VD, Garcia-Cely, Rodd 22

static magnetic field

effective current

induced oscillating magnetic field

measure magnetic flux (~ h)
through pickup loop

at leading order in (wR) : ~ (wL)*hByL?
ie_i“’t
Dy = h*w’Bomr®Ra(a + 2R)s;

match to axion induced flux to recast
axion-photon coupling bounds as GW bounds

b, = e Wt gaW\/ZpDMBOWT2R1n(1 +a/R)

~ (WL ByL?
5/17 ( ) Yayv 120 Valerie Domcke - CERN



h [strain]

bounds and prospects

VD, Garcia-Cely, Rodd 22

circular pickup loop fig-8 pickup loop
102 ' ' 1078 B
104 1010 3 ii 3 i
B |
10-° 10~ : - 7Rl
& |lm
10—8 10_14 é ><: :\U)\ : an| ||
— %) E\ |:§‘ [ <
10_10 - E e 9:\ q% \ 8
oS 10—16 < o | d
12 = = - ZMIh:e
10 0, Z = 7
< 1071 7 7R
10_14 [ : \
_20 | :: |
10—16 10 _+____:_:J | :
10-18 -zt o |
| DMRadio GW Sensitivit <
002 - - Y - 10+ UHF-GW Landscape S
1072 107t 10° 10! 10? - . . . . .
f [MHZ] 102 107t 10° 10! 102 103 10*

f [MHz
bounds from recasting ABRA [2102.06722] and SHAFT limits [2003.03348]

prospects for DM Radio proposals [Snowmass Letters of Interest CF2]

still far away from BBN bound, but clear synergies with axion searches
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microwave cavities

effective current can also induce power in microwave cavities, Berlin, Blas, D*Agnolo et al "23
in addition consider mechanical deformation of cavity walls:

-
-

-
-
——
-
-

-
e

- LIGO-Virgo
10_28 L LR R roor L ror T
10° 10* 10° 108 107 10% 10?
w, [Hz]
see also Ejlli et al [1908.00232] : _
7117 Valerie Domcke - CERN
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optical frequency modulation

Bringmann, VD, Fuchs, Kopp — in preparation

GW wA — WS
% — —%th X {COS[ng + o] — cosgoo}
gl
.
S > A (for free-falling S & A) GW phase at (0,0)

10712 ¢
< ; ] frequency measurement by
B 10
2 10716 § ; amplification of side bands in cavities
a ] :
= ' : . : :
© 018} _ optical demodulation via de-tuned
o . * optical demodulationy cavities
Z o100 TRy,
© S, e/ i - optical clocks 3 . ) )
S ol s holometer 2 | optical clocks measuring freqqe_ncy shift
g 10 r bulk accoustic wave dev. - - mau ] after pass through optical rectifier
= ] E
(4] 24 t E
5 10 3 1

26t =18 ]f
10— bbb bdiinl b, il ki diainl PR R T

10° 10* 103 102 10" 10 10" 102
gravitational wave frequency f [GHZz]
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Conclusions and Outlook

GW signals >> kHz would be a smoking gun of BSM physics

New techniques currently being explored for high-frequency GW detection,
among them different electromagnetic GW detectors
(also: ‘light-shining-through the wall’ axion searches, magnon detectors,...)

Important synergies between axion searches and UHF GW searches

A lot of room for new (and old?) ideas!

Next workshop Dec 4 — 8 @ CERN:
https://indico.cern.ch/event/1257532/
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Conclusions and Outlook

GW signals >> kHz would be a smoking gun of BSM physics

New techniques currently being explored for high-frequency GW detection,
among them different electromagnetic GW detectors
(also: ‘light-shining-through the wall’ axion searches, magnon detectors,...)

Important synergies between axion searches and UHF GW searches

A lot of room for new (and old?) ideas!

Next workshop Dec 4 — 8 @ CERN:

“Iﬂllk vﬂll I https://indico.cern.ch/event/1257532/

9/17 Valerie Domcke - CERN


https://indico.cern.ch/event/1257532/

backup slides

10/ 17



BBN bound

photons neutrinos

radiation energy after electron decoupling: / / /
Prad = 35 ( ( ) (3.046 + ANcs5) )

at BBN or CMB decoupling:

7 4 4/3

PGW (T) < Aprad(T) = (pGW) 3
P~ TBBN,CMB

- at BBN, CMB decoupling ~ 5 % GW energy density allowed

0 0 \4/3 :
. Paw _ 0 [ 9s pew (T) _5 L 1n—6 note: constraint
today: 0 Q) (m) (T) <1077ANepr ~ 10 on total GW energy

- today, energy fraction < 10° (for GWs present at BBN / CMB decoupling)

11/17 Valerie Domcke - CERN



astrophysical sources

0.75 m interferometer magnon 4
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SOURCES LEGEND
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[— Primordial BHs
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GW electrodynamics

homogeneous Maxwell equation

0=V, ,F,+V,F,, +V,F,, =0,F,,+0,F,, +0,F,,

— Fopg = 00 A — 05A, independent of background metric

inhomogeneous Maxwell equation
V. (§*"Fapg®’) = j* — 8, (V=99 Fap g"") = V=g 4"

expand in h: ¢ Fag g ~ F" — FVh* — FFghP’ /=g ~1+h/2
h pv Vi ap w1, By h L 2
By (145 ) F™ = F/ho = Frsh™ ) = (145 ) j* + O(R?),

1 1
O, FM = (1 + §h> * + 0, (—gh FH + F VhoH 1 F“Bhﬁ”> + O(h?)

1z
]eff
13/ 17 Valerie Domcke - CERN



[ @ note on frames ]

GR is invariant under coordinate transformations, but linearized GR is not

Transverse traceless (TT) gauge [ BIT = (Wt el (6n,0n) + B € (0n, On))e 0T }

* coordinates fixed by freely falling test masses
« GW takes very simple form  ho, = 0,h! =0,0;h"” =0
* rigid body seems to ‘oscillate’ in presence of GW

Proper detector frame

« coordinates fixed by laboratory frame hoo =w*F(k-r)b-r, by =rihij| .
. 1 , A )
* GW takes a more involved form hog =5w” [F(k 1) —iF" (k- 1)] (k ‘rb—b-r k)
. . . .2 2
« description of experimental setup hij = —iw F'(k-x) (|r|* hif"| g + D18 —bir;=bjrs),

and observables is straightforward

VD, Garcia-Cely, Rodd 22
s.a. Berlin et al 21

we will consider a plane wave plane wave in the proper detector frame

14/ 17 Valerie Domcke - CERN



recasting axion searches

Frequency [MHz|
0! 10°

T [ | ABRA[2102.06722]
| | SHAFT [2003.03348]

gt [Gev)

. . | R | . L . . 1
0.5 08 1 3 5 8

Frequency
MHz

DM Radio proposals
[Snowmass Letters of Interest CF2]

~» recast as bound on h taking into
account reduced quality factor

(I)gw — (I)a(Qa/ng)l/4

Axion Coupling |g,,,/| (GeVh)

peV neV eV
Axion Mass m, (eV)
‘ X Garyy
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GW to photon conversion

(inverse) Gertsenshtein effect: [Gertsenshtein "62, Boccaletti et al “70, Raffelt, Stodolsky "88]
Ay = photon
hy = GW
(D—I—wgl/c2) Ay = —B0,hy,, Uhy = /-432B82A>\ B = ext. transv. B - field
wpl = Pplasma frequency

pr=1- ng/w2

plane waves: -
A L %\/uﬂ + (=E _jYEED
- (t2) = (“f_‘h A) = e e P0,0), K= (#) ST
= N\ iR %\/w2+(%)

EM wave in curved space time
(i.e. classical linearized general
relativity) —» purely SM process

analogous to axion to photon conversion

HFGWs at axion experiments Valerie Domcke - CERN/EPFL



LSW experiments

Light-shining-through-the-wall (LSW) experiments: [Ejilli et al “19]

-20
1- ALPS/OSQAR (Photon +B — WISP — WISP + B — Photon )
Magnets Magnets -25 L | .- |
Source M/\If\z’» >~~~ Detector r OSQAR
: e s o _In ALPS lic
ﬁ -30% ~UCIe°s.Vnt | Lo 1
g [T~ lMhesisyn,, . JURA
= F S~o -~
8 35, 109\ TT=a
2 - Our work (GW +B — Photon) Gravitational Wave E - 5’[7'BH = 9 | ~~~~~; [
: e = 1009 N Tl
| —40T | | mey 10°9 !
Source D Detector I - ‘*fﬂn
‘ WISP L ==\
-45 L. L L 1 s L L 1 L L L L L L 1 L L .
10 12 14 16 18 20
Frequency f [Hz]

axion bounds recast as HFGW bounds

HFGWs at axion experiments Valerie Domcke - CERN/EPFL
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