

Status of the KOTO Experiment

National Taiwan University

57th Rencontres de Moriond @Italy, Mar. 18-25th, 2023

Yu-Chen Tung

Japan

KEK, Kyoto Univ, NDA, Osaka Univ, Saga Univ, Yamagata Univ.

US

• Univ. of Chicago, Univ. of Michigan

Taiwan

• National Taiwan Univ.

Korea

• Jeonbuk National Univ, Jeju National Univ, Korea Univ.

 $K_I \rightarrow \pi^0 \nu \bar{\nu} in SM$

- Direct CP-violating process, $BR(K_L \to \pi^0 \nu \bar{\nu})_{SM} \propto \eta^2$
- Ultra-rare:
 - $BR(K_L \to \pi^0 \nu \bar{\nu})_{SM} = 3 \times 10^{-11} [Buras et al, JHEP 1511]$
 - with only 2% uncertainties, dominated by top quark mass.
 - Sensitive to new physics, but experimentally challenging!

- New physics could contribute differently to $BR(K^+) \& BR(K_L^0)$. [JHEP 11(2015)]

CERN NA62 $B(K^+ \rightarrow \pi^+ \nu \bar{\nu}) \times 10^{11}$

$K_I \rightarrow \pi^0 \nu \bar{\nu} \bar{\nu} in \text{New Physics}$

• $BR(K_L^0 \to \pi^0 \nu \bar{\nu}) < 4.3 \times BR(K^+ \to \pi^+ \nu \bar{\nu})$ (Grossman-Nir limit) [Phys.Lett.B398.163] • Grossman-Nir limit: $BR(K_L^0 \to \pi^0 \nu \bar{\nu}) < 6.2 \times 10^{-10}$ (NA62) [JHEP06.093] • Experimental limit: $BR(K_L^0 \to \pi^0 \nu \bar{\nu}) < 3.0 \times 10^{-9}$ (KOTO) [PRL.122.021802]

Signal Signatures:

• 2y in the final state

- Measured by Csl calorimeter
- Nothing else
 - Hermetic veto system
- Large $\pi^0 P_T$ (missing *P* taken by $\nu \bar{\nu}$)
 - Narrow beam -

Detection of $K_L \to \pi^0 \nu \bar{\nu}$

- Reconstruct decay vertex (Z_{vtx}) by assuming $M(\gamma\gamma) = M_{\pi^0}$
- Calculate P_T of π^0 by using Z_{vtx}
- Signal Region:
 - Z_{vtx} within the fiducial decay region
 - Large $\pi^0 P_T$

Reconstruction of $K_I \rightarrow \pi^0 \nu \bar{\nu}$

Run History and Results

- 2019-2021: analysis in progress.

• 2013 data: 100h run, interrupted by radiation accident. [PTEP.2017.021C01] 2015 data: set the current best limit on $B(K_L \rightarrow \pi^0 \nu \bar{\nu})$. [PRL.122.021802] 2016-2018 data: recent results with new background sources. [PRL.126.121801]

Recent Results

- 2015 data [PRL.122.021802]:
- No event was observed with 0.42 predicted BGs. •
- $S.E.S. = 1.30 \times 10^{-9}$
- $BR(K_L \to \pi^0 \nu \bar{\nu}) < 3.0 \times 10^{-9} at 90\% C.L.$ • • The world's best limit.
- 2016-2018 data [PRL.126.121801]:
 - $S.E.S. = 7.20 \times 10^{-10}$
- Observed 3 events with 1.22 predicted BG. •
 - 1.22 BG events included newly found BGs.
- $BR(K_L \to \pi^0 \nu \bar{\nu}) < 4.9 \times 10^{-9} at 90\% C.L.$ ٠

Beam halo $K_L BG(K_L \rightarrow \gamma \gamma)$

New BG Sources

BG Table of 2016-2018 data

source		Number of events
K_L	$K_L \rightarrow 3\pi^0$	0.01 ± 0.01
	$K_L \rightarrow 2\gamma$ (beam halo)	0.26 ± 0.07 $^{\mathrm{a}}$
	Other K_L decays	0.005 ± 0.005
K^{\pm}		0.87 ± 0.25 $^{\mathrm{a}}$
Neutron	Hadron cluster	0.017 ± 0.002
	$\mathrm{CV}\eta$	0.03 ± 0.01
	Upstream π^0	0.03 ± 0.03
total		1.22 ± 0.26

^a Background sources studied after looking inside the blind region.

10

Beam Halo K_L BG

Beam halo $K_L BG(K_L \rightarrow \gamma \gamma)$

- A new cut based on the cluster shape and γ angle suppressed the halo K_L by a factor of 16. (Not applied to the 2016-2018 analysis)
- BG level ~0.4 events at $BR_{EXP}(K_L \to \pi^0 \nu \bar{\nu})$

$$\sim O(10^{-11}).$$

11

Charged Kaon BG

2021

- UCV was installed.
- Scintillating fiber.
- K \pm BG \times 1/13

New Upstream Charged Veto (UCV)

- Combined reduction ~1/1000 after 2023.

2023

- UCV will be upgraded.
- Scintillator film.
- K=BG × 1/100

2023

- Will install a magnet after 2nd collimator.
- K = BG × 1/10

• K=BG ~0.02 events at $BR_{EXP}(K_L \rightarrow \pi^0 \nu \bar{\nu}) \sim O(10^{-11})$.

Run History and Results

- 2019-2021: analysis in progress. •

• 2013 data: 100h run, interrupted by radiation accident. [PTEP.2017.021C01] 2015 data: set the current best limit on $B(K_L \rightarrow \pi^0 \nu \bar{\nu})$. [PRL.122.021802] 2016-2018 data: recent results with new background sources. [PRL.126.121801]

*S.E.S. (Single Event Sensitivity) = BR of one signal event

26	
20	
,	
<u></u>	
<u></u>	
<u></u>	
·	

Prospects

2021-2022 Accelerator Shutdown

- Main-ring power supply upgrade.
 - Beam power $64kW \rightarrow 80-100kW$.
- Will resume data-taking from May, 2023
- By 2027, with 2-3 month run per year
 - Expect to collect ×11 more data.
 - S.E.S. can reach below $O(10^{-10})$.

Summary

Analysis Status:

- 2015 data [PRL.122.021802] •
 - $BR(K_L \to \pi^0 \nu \bar{\nu}) < 3.0 \times 10^{-9} \text{ at } 90\% C.L.$
 - The current best limit on $BR(K_L \to \pi^0 \nu \bar{\nu})$
- 2016-2018 data [PRL.126.121801] •
 - $BR(K_L \to \pi^0 \nu \bar{\nu}) < 4.9 \times 10^{-9} \text{ at } 90\% C.L.$
 - New background sources were found.
- 2019-2021 data (analysis in progress) •
 - New detector and analysis tools for suppressing new BG. •

Prospects:

KOTO expects to improve the S.E.S. below O(10⁻¹⁰) by 2027.

Backup slides

Charged Kaon BG

2021

- UCV was installed.
- Scintillating fiber.
- K = BG × 1/13

New Upstream Charged Veto (UCV) 1 st 2 stCollimator Collimator K_L Magnet

Background Control

	source		
	$K_L \rightarrow 2\pi^0$		
	K+		
Perfo	Hadron cluster BG		
Halo K∟ fl	Halo K∟→2γ		
Scattered K	Scattered K _L $\rightarrow 2\gamma$		
Compare a	η production in CV		
Probability c	Upstream π^0		
	$K_L \rightarrow 3\pi^0$		

Study item

Veto performance

K+ flux, UCV inefficiency

rmance of cuts against Hadron cluster BG

lux, Performance of cuts against Halo $K_{L} \rightarrow 2\gamma$

 K_{L} flux, Performance of cuts against Halo $K_{L} \rightarrow 2\gamma$

 $\eta\,$ production in the AI target with data and MC

of mis-energy-measurement in the Csl calorimeter

Probability of overlapped pulse

- Higher J-PARC accelerator beam power (up to 100kW from 2023). •
- New beamline with richer KL yields (the construction begins in 2023). ٠
- Larger detector with better signal acceptance (currently in R&D stage). •

[arXiv:2110.04462v1]

KOTO II aims to measure $K_L \rightarrow \pi^0 \nu \bar{\nu}$ with SES of O(10⁻¹³), based on:

[arXiv:2110.04462v1]

Expect KOTO II to start data-taking from 2029.

Detector

- Larger detector: •

[arXiv:2110.04462v1]

Kaon beam extraction angle: $16^{\circ}(KOTO) \rightarrow 6^{\circ}(KOTO II)$ • P_{K_I} peaks at 1.4 GeV/c (KOTO) $\rightarrow 3 GeV/c$ (KOTO II)

Signal & BG

						Background	Number	
				$K_L \to \pi^0 \pi^0$	33.2	± 1.3		
Beam power	100 kW	W (at 1-interaction-length T2 target)			$K_L \to \pi^+ \pi^- \pi^0$	2.5	± 0.4	
		(1.1×10^7)	$K_L/2 \times 1$	0^{13} POT)		$K_L o \pi^{\pm} e^{\mp} \nu$	0.08	± 0.0006
Repetition cycle	$4.2 \mathrm{~s}$					halo $K_L \rightarrow 2\gamma$	4.8	± 0.2
Spill length	2 5					$K^{\pm} \to \pi^0 e^{\pm} \nu$	4.0	± 0.4
	25 107		770	C 1 /	. 1 •	hadron cluster	3.0	± 0.5
Running time	$3 \times 10^{\circ} \text{ s}$	~effectively	y / 30 da	ys of data-	taking	π^0 at upstream	0.2	± 0.1
						η at downstream	8.2	± 2.3
						Total	56.0	± 2.8
		$ ightarrow \pi^{0}\pi^{0}$	K	±		Halo K _L $\rightarrow 2\gamma$	Hadr	on cluster
$K_{L} \rightarrow \pi^{0} \nu \overline{\nu}$		2 ± 1.25 $z_{vtx}(m) 2$ $\rightarrow \pi + \pi - \pi 0$ 54 ± 0.39	10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-2} 0	00±0.38 2 _{vtx} (noroduction 3.22±2.28 2 _{vtx} (m)	$\frac{10}{10} = \frac{10}{10}$	4.75±0.15 $z_{vtx}(m)$ 20 of signal evolution of background /N = 0.63 > 4.70 obset	ents: ind ev	±0.51 <i>z</i> vtx(m)20 35 ents : 56

[arXiv:2110.04462v1]

Signal & BG

- With $35 K_L \rightarrow \pi^0 \nu \bar{\nu} SM$ events and 56 BG events,
 - $S/B = 0.63, 4.7\sigma$ observation.
 - 14% precision for CKM η parameter.

[arXiv:2110.04462v1]

• New physics discovery at 90% C.L. for 44% deviations from SM.