Cabibbo Anomaly and Universality Tests

Emilie Passemar

 passemar@ific.uv.esIFIC Valencia/Indiana University
$57^{\text {th }}$ Rencontres de Moriond Electroweak Interactions and Unified Theories

La Thuile, March 18-25, 2023

1. What is the Cabbibo angle anomaly?
2. Why this anomaly?
3. Prospects
4. New Physics Interpretations
5. Conclusion and Outlook

1. What is the Cabbibo angle anomaly?

1.1 Test of the Standard Model: $\mathrm{V}_{\text {us }}$ and CKM unitarityq

- Extraction of the Cabibbo-Kobayashi-Maskawa matrix element $V_{u s}$
> Fundamental parameter of the Standard Model
Description of the weak interactions:

$$
\mathcal{L}_{E W}=\frac{g}{\sqrt{2}} W_{\alpha}^{+}\left(\bar{D}_{L} V_{C K M} \gamma^{\alpha} U_{L}+\bar{e}_{L} \gamma^{\alpha} v_{e_{L}}+\bar{\mu}_{L} \gamma^{\alpha} v_{\mu_{L}}+\bar{\tau}_{L} \gamma^{\alpha} v_{\tau_{L}}\right)+\text { h.c. }
$$

Unitary
matrix
> Check unitarity of the first row of the CKM matrix:

1.2 Constraining New Physics

> BSM: sensitive to tree-level and loop effects of a large class of models

$$
\square\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1+\Delta_{C K M}
$$

$\square \mathrm{BSM}$ effects : $\Delta \sim \frac{c_{n}}{g^{2}} \frac{M_{W}^{2}}{\Lambda^{2}} \leq 10^{-2}-10^{-3} \longleftrightarrow \Lambda \sim 1-10 \mathrm{TeV}$

1.2 Constraining New Physics

$>$ BSM: sensitive to tree-level and loop effects of a large class of models

$$
\square\left|\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1+\Delta_{C K M}\right.
$$

Grossman, E.P., Schacht'20
$>$ Look for new physics by comparing the extraction of $\mathrm{V}_{\text {us }}$ from different processes: helicity suppressed $\mathrm{K}_{\mu 2}$, helicity allowed K_{13}, hadronic τ decays
1.2 Cabibbo angle anomaly

$$
\begin{gathered}
\left|V_{u d}\right|=0.97373(31) \\
\left|V_{u s}\right|=0.2231(6) \\
\left|V_{u s} / / \|_{u d}\right|=0.2311(5)
\end{gathered}
$$

Fit results, no constraint

$$
\begin{gathered}
V_{u d}=0.97365(30) \\
V_{u s}=0.22414(37) \\
\chi^{2} / \mathrm{ndf}=6.6 / 1(1.0 \%) \\
\Delta_{\text {CKM }}=-0.0018(6) \\
\\
-2.7 \sigma
\end{gathered}
$$

$$
\frac{\left|\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+|V / u b|^{2}=1+\Delta_{C K M}\right.}{\text { Negligible } \sim 2 \times 10^{-5}} \begin{gathered}
(\mathrm{B} \text { decays })
\end{gathered}
$$

Paths to $V_{u d}$ and $V_{u s}$

- From kaon, pion, baryon and nuclear decays

$V_{\text {ud }}$	$\mathbf{0}^{+} \rightarrow 0^{+}$ $\pi^{ \pm} \rightarrow \pi^{0} e v_{e}$	$\mathrm{n} \rightarrow \operatorname{pev}_{\mathrm{e}}$	$\pi \rightarrow \mathrm{l} \mathrm{v}_{\mathbf{1}}$
V_{us}	$\mathrm{K} \rightarrow \pi \mathrm{l}_{\mathrm{l}}$	$\Lambda \rightarrow \operatorname{pev}_{\mathrm{e}}$	$\mathrm{K} \rightarrow \mathrm{I} \mathrm{v}_{\mathrm{l}}$

$$
\Gamma_{k}=\left(G_{F}^{(\mu)}\right)^{2} \times\left|V_{i j}\right|^{2} \times\left|M_{\mathrm{had}}\right|^{2} \times\left(1+\delta_{R C}\right) \times F_{\mathrm{kin}}
$$

Channel-dependent effective CKM element

Hadronic matrix element

Radiative corrections

Recent progress on 1) Hadronic matrix elements from lattice QCD
2) Radiative corrections from dispersive methods + Lattice QCD

2. Why this anomaly?

2.1 Changes on $V_{u s}$ and $V_{u d}$ since 2011

Flavianet Kaon WG: Antonelli et al'11

Moulson \& E.P.@CKM2021

2.1 Changes on $\mathrm{V}_{\text {us }}$ and V_{ud} since 2011

- Almost no change on the experimental side since 2011

Flavianet Kaon WG: Antonelli et al'11

$$
\Gamma_{k}=\left(G_{F}^{(\mu)}\right)^{2} \times\left|V_{i j}\right|^{2} \times\left|M_{\mathrm{had}}\right|^{2} \times\left(1+\delta_{R C}\right) \times F_{\text {kin }}
$$

Channel-dependent effective CKM element

Hadronic matrix element

Radiative corrections

2.1 Changes on $\mathrm{V}_{\text {us }}$ and V_{ud} since 2011

- Almost no change on the experimental side since 2011

Flavianet Kaon WG: Antonelli et al'11

$$
\Gamma_{k}=\left(G_{F}^{(\mu)}\right)^{2} \times\left|V_{i j}\right|^{2} \times\left|M_{\text {had }}\right|^{2} \times\left(1+\delta_{R C}\right) \times F_{\text {kin }}
$$

- Changes in theoretical inputs:
- Impressive progress on hadronic matrix element computations from lattice QCD for $\mathrm{V}_{\text {us }}$ and $\mathrm{V}_{\mathrm{us}} / \mathrm{V}_{\mathrm{ud}}$ extraction from Kaon decays

2.1 Changes on $\mathrm{V}_{\text {us }}$ and V_{ud} since 2011

- Almost no change on the experimental side since 2011

Flavianet Kaon WG: Antonelli et al'11

$$
\Gamma_{k}=\left(G_{F}^{(\mu)}\right)^{2} \times\left|V_{i j}\right|^{2} \times\left|M_{\mathrm{had}}\right|^{2} \times\left(1+\delta_{R C}\right) \times F_{\mathrm{kin}}
$$

nnel-dependent

Channel-dependent effective CKM element

Hadronic matrix element

- Changes in theoretical inputs:
- Impressive progress on hadronic matrix element computations from lattice QCD for $\mathrm{V}_{\text {us }}$ and $\mathrm{V}_{\mathrm{us}} / \mathrm{V}_{\mathrm{ud}}$ extraction from Kaon decays
- Radiative corrections from dispersive methods for V_{ud} extraction

$2.2 f_{+}(0)$ from lattice $Q C D$

- Recent progress on Lattice QCD for determining $f_{+}(0)$

$\mathbf{V}_{\mathrm{us}} / \mathbf{V}_{\mathrm{ud}}$ from $\mathrm{K}_{12} / \pi_{12}$

$$
\frac{\left|V_{u S}\right|}{\left|V_{u d}\right|} \frac{f_{K}}{f_{\pi}}=\left(\frac{\Gamma_{K_{\mu 2(\gamma)}} m_{\pi^{ \pm}}}{\Gamma_{\pi_{\mu 2(\gamma)}} m_{K^{ \pm}}}\right)^{1 / 2} \frac{1-m_{\mu}^{2} / m_{\pi^{ \pm}}^{2}}{1-m_{\mu}^{2} / m_{K^{ \pm}}^{2}}\left(1-\frac{1}{2} \delta_{\mathrm{EM}}-\frac{1}{2} \delta_{S U(2)}\right)
$$

- Recent progress on radiative corrections computed on lattice:

Di Carlo et al.'19

- Main input hadronic input: f_{K} / f_{π}
- In 2011: $\mathrm{V}_{\mathrm{us}} / \mathrm{V}_{\mathrm{ud}}=0.2312(4) \exp (12)_{\text {lat }}$
- In 2021: $\mathrm{V}_{\mathrm{us}} / \mathrm{V}_{\mathrm{ud}}=0.2311(3)_{\exp }(4)_{\text {lat }}$ the lattice error is reducing by a factor of 3 compared to 2011 ! It is now of the same order as the experimental uncertainty.
-1.8 σ away from unitarity

$2.2 \mathrm{f}_{\mathrm{K}} / \mathrm{f}_{\mathrm{T}}$ from lattice QCD

Progress since 2018: \square new results from ETM'21 and CalLat'20

Changes on V_{us} and V_{ud} since 2011

Flavianet Kaon WG: Antonelli et al'11

Moulson \& E.P.@CKM2021

$2.3\left|\mathrm{~V}_{\mathrm{ud}}\right|$ from $0^{+} \rightarrow 0^{+}$superallowed β decays

PDG 2018:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9994(4)_{V_{u d}}(2)_{V_{u s}}
$$

PDG 2020:
Figure adapted from J. Hardy

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9985(3)_{V_{u d}}(4)_{V_{u s}}
$$

Recent improvement on the theoretical RCs + Nuclear Structure Corrections
\square Use of a data driven dispersive approach
Seng et al. '18'19, Gorshteyn'18

Changes on V_{us} and V_{ud} since 2011

Flavianet Kaon WG: Antonelli et al'11

Moulson \& E.P.@CKM2021

3. Prospects

3.1 Experimental Prospects for $\mathbf{V}_{\text {us }}$

On Kaon side
Cirigliano et al'22

- NA62 could measure several BRs: $\mathrm{K}_{\mu 3} / \mathrm{K}_{\mu 2}, \mathrm{~K} \rightarrow 3 \pi, \mathrm{~K}_{\mu 2} / \mathrm{K} \rightarrow \pi \pi$
- Note that the high precision measurement of $\operatorname{BR}\left(\mathrm{K}_{\mu 2}\right)(0.3 \%)$ comes only from a single experiment: KLOE. It would be good to have another measurement at the same level of accuracy
- LHCb : could measure $\mathrm{BR}\left(K_{S} \rightarrow \pi \mu v\right)$ at the $<1 \%$ level?
$K_{S} \rightarrow \pi \mu \nu$ measured by KLOE-II but not competitive τ_{S} known to 0.04% (vs 0.41% for $\tau_{L}, 0.12 \%$ for $\tau_{ \pm}$)
- $\mathrm{V}_{\text {us }}$ from Tau decays at Belle II:

Belle II with $50 \mathrm{ab}^{-1}$ and $\sim 4.6 \times 10^{10} \tau$ pairs will improve $\mathrm{V}_{\text {us }}$ extraction from τ decays
Inclusive measurement is an opportunity to have a complete independent extraction of $\mathrm{V}_{\text {us }} \square$ not easy as you have to measure many channels

$$
\left|V_{u s}\right|=\mathbf{0 . 2 1 8 4} \pm 0.0018_{\text {exp }} \pm \mathbf{0 . 0 0 1 1}_{\text {th }} \quad \begin{aligned}
& \text { To be competitive theory error } \\
& \text { will have to be improved as well }
\end{aligned}
$$

$\mathrm{V}_{\text {us }}$ from Hyperon decays

$\mathrm{V}_{\text {us }}$ can be measured from Hyperon decays:

- $\boldsymbol{\Lambda} \rightarrow \boldsymbol{p e v}_{\mathrm{e}}$ Possible measurement at BESIII, Super T-Charm factory?
- Possibilities at $L H C b$?

Talk by Dettori@FPCP20

Channel	\mathcal{R}	ϵ_{L}	ϵ_{D}	$\sigma_{L}\left(\mathrm{MeV} / c^{2}\right)$	$\sigma_{D}\left(\mathrm{MeV} / c^{2}\right) \mathrm{R}=\mathrm{ratiO}$ of	
$K_{\mathrm{S}}^{0} \rightarrow \mu^{+} \mu^{-}$	1	$1.0(1.0)$	$1.8(1.8)$	~ 3.0	~ 8.0	~ 7.0
$K_{\mathrm{S}}^{0} \rightarrow \pi^{+} \pi^{-}$	1	$1.1(0.30)$	$1.9(0.91)$	~ 2.5	\sim production	
$K_{\mathrm{S}}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}$	1	$0.93(0.93)$	$1.5(1.5)$	~ 35	~ 45	~ 60
$K_{\mathrm{S}}^{0} \rightarrow \gamma \mu^{+} \mu^{-}$	1	$0.85(0.85)$	$1.4(1.4)$	~ 1.0	~ 6.0	efficiencies
$K_{\mathrm{S}}^{0} \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}$	1	$0.37(0.37)$	$1.1(1.1)$	~ 7.0		
$K_{\mathrm{L}}^{0} \rightarrow \mu^{+} \mu^{-}$	~ 1	$2.7(2.7) \times 10^{-3}$	$0.014(0.014)$	~ 3.0	~ 4.0	
$K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$	~ 2	$9.0(0.75) \times 10^{-3}$	$41(8.6) \times 10^{-3}$	~ 1.0	~ 4.5	
$K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$	~ 2	$6.3(2.3) \times 10^{-3}$	$0.030(0.014)$	~ 1.5	~ 3.0	
$\Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$	~ 0.13	$0.28(0.28)$	$0.64(0.64)$	~ 1.0	~ 5.0	
$\Lambda \rightarrow p \pi^{-}$	~ 0.45	$0.41(0.075)$	$1.3(0.39)$	~ 1.5	-	
$\Lambda \rightarrow p \mu^{-} \overline{\nu_{\mu}}$	~ 0.45	$0.32(0.31)$	$0.88(0.86)$	-	-	
$\Xi^{-} \rightarrow \Lambda \mu^{-} \overline{\nu_{\mu}}$	~ 0.04	$39(5.7) \times 10^{-3}$	$0.27(0.09)$	-	-	
$\Xi^{-} \rightarrow \Sigma^{0} \mu^{-} \nu^{-}$	~ 0.03	$24(4.9) \times 10^{-3}$	$0.21(0.068)$	-	~ 9.0	
Ξ	$\sim p \pi \pi^{-}$	~ 0.03	$0.41(0.05)$	$0.94(0.20)$	~ 3.0	~ 10
$\Xi^{0} \rightarrow p \pi^{-}$	~ 0.03	$1.0(0.48)$	$2.0(1.3)$	~ 5.0	~ 20	

- To be able to extract $\mathrm{V}_{\text {us }}$ one needs to compute form factors precisely \Rightarrow Lattice effort from RBC/UKQCD

3.2 Theoretical Prospects for $V_{u s}$

- Lattice Progress on hadronic matrix elements: decay constants, FFs
- Full QCD+QED decay rate on the lattice,for Leptonic decays of kaons and pions \Rightarrow Inclusion of EM and IB corrections :
- Perturbative treatment of QED on lattice established
- Formalism for \boldsymbol{K}_{12} worked out
- Application of the method for semileptonic Kaon (\mathbf{K}_{13}) and Baryon decays
\Rightarrow Aim: Per mille level within 10 years

3.3 Prospects for $\left|V_{u d}\right|$

See Talk by Misha Gorshteyn @CKM2021

PDG 2018:

Figure adapted from J. Hardy $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9985(3)_{V_{u d}}(4)_{V_{u s}}$

- From neutron decays : very impressive progress recently
- From pion β decay $\pi^{+} \rightarrow \pi^{0} e^{+} v:$ PIONEER experiment

3.3 Prospects for $\left|V_{u d}\right|$

See Talk by Misha Gorshteyn @CKM2021

PDG 2018:

Figure adapted from J. Hardy $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=0.9985(3)_{V_{u d}}(4)_{V_{u s}}$

- From neutron decays
- From pion β decay $\pi^{+} \rightarrow \pi^{0} e^{+} v$: PIONEER experiment \square (Phase-I) approved at PSI, physics starting in ~ 2029

$\left|\mathrm{V}_{\mathrm{ud}}\right|$ from pion $\boldsymbol{\beta}$ decay: $\boldsymbol{\pi}^{+} \rightarrow \boldsymbol{\pi}^{0} \mathbf{e}^{+} v$

- Theoretically cleanest method to extract V_{ud} : corrections computed in $\mathrm{SU}(2)$ ChPT
- Present result: PIBETA Experiment (2004) \rightarrow Uncertainty: 0.64\%

$$
\begin{aligned}
& \mathrm{B}\left(\pi^{+} \rightarrow \pi^{0} e^{+} v\right)=\left(1.036 \pm 0.004_{\text {stat }} \pm 0.004_{\text {syst }} \pm 0.003_{\text {re2 }}\right) \times 10^{-8}(\pm 0.6 \%) \\
& \Rightarrow\left|\boldsymbol{V}_{u d}\right|=\mathbf{0 . 9 7 3 9 (2 8)} \mathbf{e x p}(\mathbf{1})_{\text {th }} \text { to be compared to }\left|\boldsymbol{V}_{u d}\right|=\mathbf{0 . 9 7 3 7 3 (3 1)}
\end{aligned}
$$

- Reduction of the theory error thanks to a new lattice calculation for RC
- Next generation experiment PIONEER Phase II and III measurement at 0.02\% level \Rightarrow will be competitive with current $0^{+} \rightarrow 0^{+}$extraction
- Would be completely independent check! No nuclear correction and different RCs compared to neutron decay
- Opportunity to extract $\mathbf{V}_{\mathbf{u s}} / \mathbf{v}_{\mathrm{ud}}$ from $\frac{B(K \rightarrow \pi l v)}{B\left(\pi^{+} \rightarrow \pi^{0} e^{+} v\right)} \quad \begin{array}{r}\text { Czarnecki, Marciano, Sirlin'20 } \\ \text { EW Rad. Corr. cancel }\end{array}$ Improve precision on $\mathrm{B}\left(\pi^{+} \rightarrow \pi^{0} \mathrm{e}^{+} \mathrm{v}\right)$ by $\mathrm{x} 3 \Rightarrow \mathrm{~V}_{\mathrm{us}} / \mathrm{V}_{\mathrm{ud}}< \pm 0.2 \%$

Pion decays and LFU tests

- Lepton Flavor Universality test in $\mathrm{R}_{e / \mu}^{t h e o r y}=\frac{\Gamma(\pi \rightarrow e v(\gamma))}{\Gamma(\pi \rightarrow \mu \nu(\gamma))}$
$>$ Early insight into the V-A structure of weak interactions
> Exceptional precision of the SM prediction using ChPT

$$
R_{e / \mu}(\mathrm{SM})=1.23524(015) \times 10^{-4}
$$

Cirigliano \& Rosell'07
> World average (mainly PIENU at TRIUMF):
$R_{e / \mu}(\operatorname{Exp})=1.23270(230) \times 10^{-4}$
15 times worse than theory!

$$
\square \quad \frac{g_{e}}{g_{\mu}}=0.9990 \pm 0.0009(\pm 0.09 \%)
$$

Goal of PIONEER: reduce unc. by a factor of $10!\square$ by far most precise test of LFU
4. New Physics Interpretations

4.1 Right-handed currents

Bernard, Oertel, E.P., Stern'08

$$
\mathcal{L}_{\mathrm{W}}=\frac{e\left(1-\xi^{2} \rho_{L}\right)}{\sqrt{2} s}\left\{\overline{\mathrm{~N}}_{L} V_{\mathrm{MNS}} \gamma^{\mu} L_{L}+(1+\delta) \overline{\mathrm{U}}_{L} V_{L} \gamma^{\mu} D_{L}+\epsilon \overline{\mathrm{U}}_{R} V_{R} \gamma^{\mu} D_{R}\right\} W_{\mu}^{+}+\text {h.c }
$$

- See also Antonelli et al.'09

Alioli, Cirigliano, Dekens, de Vries, Mereghetti'17
T. Kitahara@HC2NP 2019

4.1 Right-handed Currents

$$
\begin{aligned}
V_{u s}^{K_{l 3}} & =\left|\sin \theta_{C}+\varepsilon_{s}\right|, \longleftarrow \text { Vector s quark } \\
\left(\frac{V_{u s}}{V_{u d}}\right)^{K_{l 2}} & =\left|\frac{\sin \theta_{C}-\varepsilon_{s}}{\cos \theta_{C}-\varepsilon_{n s}}\right| \longleftarrow \text { Axial } \\
V_{u d}^{\beta} & =\left|\cos \theta_{C}+\varepsilon_{n s}\right| \longleftarrow \text { Vector no s quark } \\
\left(\frac{V_{u s}}{V_{u d}}\right)^{K_{\ell 3}} & =\left|\frac{\sin \theta_{\mathrm{C}}+\epsilon_{\mathrm{s}}}{\cos \theta_{\mathrm{C}}+\epsilon_{\mathrm{ns}}}\right| \longleftarrow \text { Vector }
\end{aligned}
$$

- The SM is obtained in the limit $\varepsilon_{\mathrm{s}}=\varepsilon_{\mathrm{ns}}=0$.
- Perfect fit to data $\chi_{\text {min }, \mathrm{RH}}^{2}=0$
- Not obvious how to define CKM unitarity test in this case

4.1 Right-handed Currents

4.1 Right-handed Currents

- Global fit to CC processes involving light quarks and all lepton families
- SM hypothesis $\left(\varepsilon_{s}=\varepsilon_{n s}=0\right)$ disfavored (p-value 0.3%)

Anomaly removed by turning on the ε_{R} couplings

Cirigliano, Diaz-Calderon, Falkowski, Gonzalez-Alonso, Rodriguez-Sanchez'21

4.2 Other New Physics Models

- 4th quark b'
- Gauge horizontal family symmetry
- Turn on only vertex corrections to leptons Crivellin \& Hoferichter'21 Shift the location of the Vud, us bands but do not solve the tension between ratios

And many more....

4.2 Other New Physics Models

- 4th quark b'
- Gauge horizontal family symmetry
- Turn on only vertex corrections to leptons Crivellin \& Hoferichter'21 Shift the location of the Vud, us bands but do not solve the tension between ratios

Connection with $\pi \rightarrow e v / \pi \rightarrow \mu v$

$$
r_{\pi}=1+2\left(\epsilon_{W \ell}^{e e}-\epsilon_{W \ell}^{\mu \mu}\right)
$$

(and other LFU probes)

And many more....

5. Conclusion and Outlook

Conclusion and Outlook

- Recent precision determinations of V_{us} and V_{ud} enable unprecedented tests of the SM and constraints on possible NP models
- Tensions in unitarity of $1^{\text {st }}$ row of CKM matrix have reappeared!
- We need to work hard to understand where they come from:
- On experimental side:

For V_{us}, new measurements in kaons (NA62: $\mathrm{K}_{\mu 3} / \mathrm{K}_{\mu 2}$, LHCb?)
but mainly in tau decays from Belle I/
$\mathrm{V}_{\text {us }}$ from hyperon decays? $\Rightarrow B E S S I I I, L H C b$?

- For V_{ud}, understand the situation of the neutron lifetime, beta decay of pion? \Rightarrow PIONEER Consider $R_{V}=\Gamma(K \rightarrow \pi l \nu(\gamma)) / \Gamma\left(\pi^{+} \rightarrow \pi^{0} e^{+} \nu(\gamma)\right)$
- On theory side:

Calculate very precisely radiative corrections, isospin breaking effects and matrix elements
Be sure the uncertainties are under control

- If these tensions are confirmed \square what do they tell us?
- Interesting time ahead of us!

6. Back-up

PIONEER (Phase-I)

PIONEER (Phase-I) approved at PSI, physics starting in ~2029
$>$ Goal: matching the SM precision on $\mathrm{R}_{\mathrm{e} / \mu}$
\square Test of New Physics at 1 PeV scale
$>$ Stopped π^{+}at high rate $(300 \mathrm{kHz})$, focus on reduction of systematics.
> Detectors: highly-segmented LGAD active target, positron tracker, LXe calorimeter
$>$ Collection of $2 \times 10^{8} \pi^{+} \rightarrow \mathbf{e}^{+} v_{\mathbf{e}}$ events in three years.
$>$ Key point: control of the $\pi^{+} \rightarrow \mathrm{e}^{+} \mathrm{v}_{\mathrm{e}}$ signal tail in the calorimeter to a 10^{-4} precision

PIONEER Phase II,III:
$V_{u d}$ from $\pi^{+} \rightarrow \pi^{0} \mathbf{e}^{+} v_{\mathbf{e}}$ decays to a 0.02% level

1.1 Test of the Standard Model: $\mathrm{V}_{\text {us }}$ and CKM unitarity

- Extraction of the Cabibbo-Kobayashi-Maskawa matrix element $V_{u s}$
$>$ Fundamental parameter of the Standard Model
Description of the weak interactions:

$$
\begin{aligned}
& \mathcal{L}_{E W}=\frac{g}{\sqrt{2}} W_{\alpha}^{+}\left(\bar{D}_{L} V_{C K M} \gamma^{\alpha} U_{L}+\bar{e}_{L} \gamma^{\alpha} v_{e_{L}}+\bar{\mu}_{L} \gamma^{\alpha} v_{\mu_{L}}+\bar{\tau}_{L} \gamma^{\alpha} v_{\tau_{L}}\right)+\text { h.c. } \\
& \text { Gauge } \\
& \text { coupling }
\end{aligned}
$$

$>$ Universality: Is G_{F} from μ decay equals to G_{F} from π, K, nuclear β decay?

$$
G_{\mu}^{2}=\left(g_{\mu} g_{e}\right)^{2} / M_{W}^{4} \stackrel{?}{=} \quad G_{\mathrm{CKM}}^{2}=\left(g_{q} g_{\ell}\right)^{2}\left(\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}\right) / M_{W}^{4}
$$

1.2 Constraining New Physics

- Extraction of the Cabibbo-Kobayashi-Maskawa matrix element $V_{u s}$
> Fundamental parameter of the Standard Model
Description of the weak interactions :

$$
\mathcal{L}_{E W}=\frac{g}{\sqrt{2}} W_{\alpha}^{+}\left(\bar{D}_{L} V_{\text {СКK }} \gamma^{\alpha} U_{L}+\bar{e}_{L} \gamma^{\alpha} v_{e L}+\bar{\mu}_{L} \gamma^{\alpha} v_{\mu L}+\bar{\tau}_{L} \gamma^{\alpha} v_{\tau L}\right)+\text { h.c. }
$$

- Look for new physics
$>$ In the Standard Model : W exchange \square only V-A structure

$2.2 \mathrm{~V}_{\mathrm{us}}$ from $\mathrm{K}_{13}\left(\mathrm{~K} \rightarrow \pi 1 v_{1}\right)$

- Master formula for $\mathrm{K} \rightarrow \pi / \mathrm{v}_{\mathrm{l}}: \mathrm{K}=\left\{\mathrm{K}^{+}, \mathrm{K}^{0}\right\}, \mathrm{I}=\{\mathrm{e}, \mu\}$
$\Gamma(K \rightarrow \pi l v[\gamma])=\operatorname{Br}\left(K_{l 3}\right) / \tau=C_{K}^{2} \frac{\boldsymbol{G}_{F}^{2} m_{K}^{5}}{192 \pi^{3}} S_{E W}^{K}\left|V_{u s}\right|^{2}\left|f_{+}^{K^{0} \pi^{-}}(0)\right|^{2} I_{K l}\left(\mathbf{1}+\mathbf{2} \Delta_{\mathrm{EM}}^{K l}+\mathbf{2} \Delta_{\mathrm{SU}(2)}^{K \pi}\right)$
Average and work by Flavianet Kaon WG Antonelli et al'11 and then by M. Moulson, see e.g. Moulson.@CKM2021

Theoretically

- Update on long-distance EM corrections for $\mathrm{K}_{\mathrm{e} 3}$ Seng et al.'21
- Improvement on Isospin breaking evaluation due to more precise dominant input: quark mass ratio from $\eta \rightarrow 3 \pi$

Colangelo et al.'18

- Progress from lattice QCD on the $\mathrm{K} \rightarrow \pi \mathrm{FF}$

$$
\left\langle\pi^{-}(p)\right| \overline{\mathbf{s}} \gamma_{\mu} \mathbf{u}\left|\mathbf{K}^{0}(\mathbf{P})\right\rangle=f_{+}^{K^{0} \pi^{-}}(0)\left[(P+p)_{\mu} \bar{f}_{+}^{K^{0} \pi^{-}}(t)+(P-p)_{\mu} \bar{f}_{-}^{K^{0} \pi^{-}}(t)\right]
$$

$2.2 \mathrm{~V}_{\mathrm{us}}$ from $\mathrm{K}_{13}\left(\mathrm{~K} \rightarrow \pi 1 v_{1}\right)$

- Master formula for $\mathrm{K} \rightarrow \pi / \mathrm{v}_{\mathrm{l}}: \mathrm{K}=\left\{\mathrm{K}^{+}, \mathrm{K}^{0}\right\}, \mathrm{I}=\{\mathrm{e}, \mu\}$
$\Gamma(K \rightarrow \pi l v[\gamma])=\operatorname{Br}\left(K_{l 3}\right) / \tau=C_{K}^{2} \frac{\boldsymbol{G}_{F}^{2} m_{K}^{5}}{192 \pi^{3}} S_{E W}^{K}\left|V_{u s}\right|^{2}\left|f_{+}^{K^{0} \pi^{-}}(0)\right|^{2} I_{K l}\left(\mathbf{1}+\mathbf{2} \Delta_{\mathrm{EM}}^{K l}+\mathbf{2} \Delta_{\mathrm{SU}(2)}^{K \pi}\right)$
Average and work by Flavianet Kaon WG Antonelli et al'11 and then by M. Moulson, see e.g. Moulson.@CKM2021

Theoretically

- Update on long-distance EM corrections for $\mathrm{K}_{\mathrm{e} 3}$ Seng et al.'21
- Improvement on Isospin breaking evaluation due to more precise dominant input: quark mass ratio from $\eta \rightarrow 3 \pi$

Colangelo et al.'18

- Progress from lattice QCD on the $\mathrm{K} \rightarrow \pi \mathrm{FF}$

$$
\left\langle\pi^{-}(p)\right| \overline{\mathbf{s}} \gamma_{\mu} \mathbf{u}\left|\mathbf{K}^{0}(\mathbf{P})\right\rangle=f_{+}^{K^{0} \pi^{-}}(0)\left[(P+p)_{\mu} \bar{f}_{+}^{K^{0} \pi^{-}}(t)+(P-p)_{\mu} \bar{f}_{-}^{K^{0} \pi^{-}}(t)\right]
$$

$2.3 \mathrm{~V}_{\mathrm{us}} / \mathrm{V}_{\mathrm{ud}}$ from $\mathrm{K}_{12} / \pi_{12}$

$$
\frac{\left|V_{u s}\right|}{\left|V_{u d}\right|} \frac{f_{K}}{f_{\pi}}=\left(\frac{\Gamma_{K_{\mu 2(\gamma)}} m_{\pi^{ \pm}}}{\Gamma_{\pi_{\mu 2(\gamma)}} m_{K^{ \pm}}}\right)^{1 / 2} \frac{1-m_{\mu}^{2} / m_{\pi^{ \pm}}^{2}}{1-m_{\mu}^{2} / m_{K^{ \pm}}^{2}}\left(1-\frac{1}{2} \delta_{\mathrm{EM}}-\frac{1}{2} \delta_{S U(2)}\right)
$$

- Recent progress on radiative corrections computed on lattice:

First lattice calculation of EM corrections to \boldsymbol{P}_{12} decays

- Ensembles from ETM
- $N_{f}=2+1+1$ Twisted-mass Wilson fermions
$\delta_{S U(2)}+\delta_{\mathrm{EM}}=-0.0122(16)$
- Uncertainty from quenched QED included (0.0006)

Compare to ChPT result from Cirigliano, Neufeld '11:

$$
\delta_{S U(2)}+\delta_{\mathrm{EM}}=-0.0112(21)
$$

Update, extended description, and systematics of Giusti et al.
$\delta_{S U(2)}+\delta_{\mathrm{EM}}=-0.0126(14)$

Progress since 2018:

- First experimental measurement of BR of $\boldsymbol{K}_{s} \rightarrow \boldsymbol{\pi} \mu v$
$\mathrm{BR}\left(K_{s} \rightarrow \pi \mu v\right)=(4.56 \pm 0.20) \times 10^{-4}$

KLOE-2

PLB 804 (2020)

- Theoretically update on long-distance EM corrections:

Up to now computation at fixed order $e^{2} p^{2}+$ model estimate for the LECs
Cirigliano et al. '08
New calculation of complete EW RC using hybrid current algebra and ChPT (Sirlin's representation) with resummation of largest terms to all chiral orders

- Reduced uncertainties at $O\left(e^{2} p^{4}\right)$
- Lattice evaluation of QCD contributions to YW box diagrams

Seng et al.'21

Progress since 2018:

- First experimental measurement of BR of $\boldsymbol{K}_{s} \rightarrow \boldsymbol{\pi} \mu \boldsymbol{v}$ $\mathrm{BR}\left(K_{s} \rightarrow \pi \mu v\right)=(4.56 \pm 0.20) \times 10^{-4}$

KLOE-2
PLB 804 (2020)

- Theoretically update on long-distance EM corrections:

Cirigliano et al. '08
Seng et al. '21
Only $K_{e 3}$ at present For $K_{\mu 3}$ modes continue to use Cirigliano et al. '08

Only $K_{e 3}$ at present	Cirigliano et al. '08		
Sor $K_{\mu 3}$ modes	$\Delta^{\mathrm{EM}}\left(\boldsymbol{K}_{e 3}{ }_{e 3}\right)[\%]$	0.50 ± 0.11	0.580 ± 0.016
continue to use '21	$\Delta^{\mathrm{EM}}\left({K^{+}}_{e 3}\right)[\%]$	0.05 ± 0.13	0.105 ± 0.024
Cirigliano et al. '08	ρ	+0.081	-0.039

Progress since 2018:

- Theoretical progress on isospin breaking correction

$$
\begin{aligned}
\Delta^{S U(2)} & \equiv \frac{f_{+}(0)^{K^{+} \pi^{0}}}{f_{+}(0)^{K^{0} \pi^{-}}-1} \quad \begin{array}{ll}
\text { Strong isospin breaking } \\
\text { Quark mass differences, } \eta-\pi^{0} \text { mixing in } K^{+} \pi^{0} \text { channel } \\
& =\frac{3}{4} \frac{1}{Q^{2}}\left[\frac{\bar{M}_{K}^{2}}{\bar{M}_{\pi}^{2}}+\frac{\chi_{p^{4}}}{2}\left(1+\frac{m_{s}}{\hat{m}}\right)\right] \quad Q^{2}=\frac{m_{s}^{2}-\hat{m}^{2}}{m_{d}^{2}-m_{u}^{2}}
\end{array} \begin{array}{l}
\chi_{s}^{4}=0.252 \\
\mathrm{OLO}\left(e^{2} p^{2}\right) \text { strong interm } \varepsilon_{\mathrm{EM}}(4) \sim 10^{-6}
\end{array}
\end{aligned}
$$

Cirigliano et al., '02; Gasser \& Leutwyler, '85
$=+2.61(17) \%$ Calculated using:

$$
\begin{array}{ll}
Q=22.1(7) & \text { Colangelo et al. '18, avg. from } \eta \rightarrow 3 \pi \\
m_{s} / \hat{m}=27.23(10) & \text { FLAG '20, } N_{f}=2+1+1 \text { avg. } \\
M_{K}=494.2(3) \\
M_{\pi}=134.8(3) \quad & \text { Isospin-limit meson masses from FLAG '17 }
\end{array}
$$

Previous to recent results for Q, uncertainty on $\Delta^{S U(2)}$ was leading contributor to uncertainty on $V_{u s}$ from $K^{ \pm}$decays

Reference value of Q from dispersion relation analyses of $\eta \rightarrow 3 \pi$ Dalitz plots

Colangelo et al., '18

$$
Q=22.1 \pm 0.7
$$

Lattice results for Q somewhat higher than analytical results
But, lattice results have finite correction to LO expectation:

$$
Q_{M}^{2} \equiv \frac{\hat{M}_{K}^{2}}{\hat{M}_{\pi}^{2}} \frac{\hat{M}_{K}^{2}-\hat{M}_{\pi}^{2}}{\hat{M}_{K^{0}}^{2}-\hat{M}_{K^{+}}^{2}}
$$

Low-energy theorem: Q has no correction at NLO

$\mathrm{V}_{\text {us }}$ from Tau decays

- Belle II with $50 \mathrm{ab}^{-1}$ and $\sim 4.6 \times 10^{10} \tau$ pairs will improve $\mathrm{V}_{\text {us }}$ extraction
- Inclusive measurement is an opportunity to have a complete independent measurement of $\mathrm{V}_{\mathrm{us}} \square$ not easy as you have to measure many channels

$\mathrm{V}_{\text {us }}$ from Tau decays

13: HFLAV 2021τ branching fractions to strange final states.

$$
\boldsymbol{R}_{\tau} \equiv \frac{\Gamma\left(\tau^{-} \rightarrow v_{\tau}+\text { hadrons }\right)}{\Gamma\left(\tau^{-} \rightarrow v_{\tau} e^{-} \bar{v}_{e}\right)} \approx N_{C}
$$

parton model prediction

Branching fraction	HFLAV 2021 fit (\%)
$K^{-} \nu_{\tau}$	0.6957 ± 0.0096
$K^{-} \pi^{0} \nu_{\tau}$	0.4322 ± 0.0148
$K^{-} 2 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$	0.0634 ± 0.0219
$K^{-} 3 \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \eta\right)$	0.0465 ± 0.0213
$\pi^{-} \bar{K}^{0} \nu_{\tau}$	0.8375 ± 0.0139
$\pi^{-} \bar{K}^{0} \pi^{0} \nu_{\tau}$	0.3810 ± 0.0129
$\pi^{-} \bar{K}^{0} 2 \pi^{0} \nu_{\tau}\left(\right.$ ex..$\left.K^{0}\right)$	0.0234 ± 0.0231
$\bar{K}^{0} h^{-} h^{-} h^{+} \nu_{\tau}$	0.0222 ± 0.0202
$K^{-} \eta \nu_{\tau}$	0.0155 ± 0.0008
$K^{-} \pi^{0} \eta \nu_{\tau}$	0.0048 ± 0.0012
$\pi^{-} \bar{K}^{0} \eta \nu_{\tau}$	0.0094 ± 0.0015
$K^{-} \omega \nu_{\tau}$	0.0410 ± 0.0092
$K^{-} \phi\left(K^{+} K^{-}\right) \nu_{\tau}$	0.0022 ± 0.0008
$K^{-} \phi\left(K_{S}^{0} K_{L}^{0}\right) \nu_{\tau}$	0.0015 ± 0.0006
$K^{-} \pi^{-} \pi^{+} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \omega\right)$	0.2924 ± 0.0068
$K^{-} \pi^{-} \pi^{+} \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}, \omega, \eta\right)$	0.0387 ± 0.0142
$K^{-} 2 \pi^{-} 2 \pi^{+} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$	0.0001 ± 0.0001
$K^{-} 2 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\left(\right.$ ex. $\left.K^{0}\right)$	0.0001 ± 0.0001
$X_{s}^{-} \nu_{\tau}$	2.9076 ± 0.0478

$$
\left|V_{u s}\right|^{2}=\frac{R_{\tau, S}}{\frac{R_{\tau, N S}}{\left|V_{u d}\right|^{2}}-\delta R_{\tau, t h}}
$$

2.9 σ away from unitarity!

- Master Formula:

$$
n \rightarrow p+e^{-}+\bar{v}_{e}
$$

- Needs $\delta \lambda / \lambda \approx 3 \times 10^{-4}$ and $\delta \tau_{\mathrm{n}} \approx 0.3$ s to compete with $0^{+} \rightarrow 0^{+}$transitions.
- Theoretically, the radiative corrections are under control (same as for $0^{+} \rightarrow 0^{+}$)
- Recent progress :
- New Perkeo III result: PERKEO II/ result improves world-average of beta asymmetry by factor 5 ! Half of it is due to the reduction of the scale factor

$$
A=-0.11958(21), S=1.2 \quad \lambda_{A}=-1.2757(5)
$$

- Tension with aSPECT result:

$$
\lambda_{\mathrm{avg}}=-1.2754(13), S=2.7
$$

- Master Formula:

$$
n \rightarrow p+e^{-}+\bar{v}_{e}
$$

- Needs $\delta \lambda / \lambda \approx 3 \times 10^{-4}$ and $\delta \tau_{\mathrm{n}} \approx 0.3$ s to compete with $0^{+} \rightarrow 0^{+}$transitions.
- Theoretically, the radiative corrections are under control (same as for $0^{+} \rightarrow 0^{+}$)
- Recent progress :
- New Perkeo III result: PERKEO III result improves world-average of beta asymmetry by factor 5 ! Half of it is due to the reduction of the scale factor

$$
A=-0.11958(21), S=1.2 \quad \lambda_{A}=-1.2757(5)
$$

- New result for Lifetime from $U C N \tau \quad \tau_{n}=877.75 \pm 0.28_{-0.16}^{+0.22} \mathrm{~s}$
\Rightarrow improvement by a factor of 2.25 compared to previous result

3.3 Example: Constraints on Heavy Neutral Leptons

- Strongest |Ue4| ${ }^{2}$ limits below $\mathbf{4 0 0} \mathbf{M e V}: \mathbf{K}^{+}, \pi^{+} \rightarrow \mathbf{e}^{+} \mathbf{N}$ from NA62 \& PIENU.
- Also important limits on $\left|\mathbf{U}_{\mu 4}\right|^{2}$ from E949, NA62 and PIENU.
- NA62/E949 limits are complementary to HNL decay searches at T2K.
- Next-generation \mathbf{K}^{+}and $\mathrm{p}+$ experiments (NA62 ${ }^{++}$, PIONEER) to improve by up to factor 10 , reaching the seesaw bound.

