B-Physics measurements with CMS and ATLAS data

Sanjay K Swain

NISER, India

on behalf of the CMS and ATLAS Collaborations 21/03/2023

<u>Outline</u>

- Fragmentation fraction ratio
- Rare double-Dalitz decay of η –> 4μ
- Study of di-charmonium spectrum
- Study of $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ decay

Ratio of fragmentation fractions $(f_s/f_u, f_d/f_u)$ with CMS data

- The fragmentation fractions: f_u , f_d , and $f_s \rightarrow$ probability of b-quark to hadronize to B-mesons or b-baryons such as B⁺ (f_u), $B_d^{\ o}(f_d)$, $B_s^{\ o}(f_s)$, $\Lambda_b(udb)$ etc.
- Since in the fragmentation process, the color force fields create quark-antiquark pairs that combine with a bottom quark (bq, bq_1q_2) to create B-meson or b-baryon, it can not be reliably calculated by perturbative QCD, so must be determined empirically.
- Very useful when measuring branching fraction of B_s^o (e.g., $B_s^{o->} \mu^+\mu^-$) relative to other B-mesons (most often use B^o or B⁺ to cancel the effect of b-hadron production cross section, integrated luminosity and other systematic uncertainties).
- However, f_u/f_s is one of the major uncertainties for measurement of branching fraction of $B_s^{\ 0} \rightarrow \mu^+\mu^-$: $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = \mathcal{B}(B^+ \rightarrow J/\psi K^+) \frac{N_{B_s^0 \rightarrow \mu^+\mu^-}}{N_{B^+ \rightarrow J/\psi K^+}} \frac{\varepsilon_{B^+ \rightarrow J/\psi K^+}}{\varepsilon_{B_s^0 \rightarrow \mu^+\mu^-}} \frac{\varepsilon_{B^+ \rightarrow J/\psi K^+}}{\varepsilon_{B_s^0 \rightarrow \mu^+}} \frac{\varepsilon_{B^+ \rightarrow J/\psi K^+}}{\varepsilon_{B_$
- So, precise measurement of fragmentation ratio is important. However, the ratio depends on kinematic variables such as transverse momentum, and pseudo-rapidity of the b-hadron.

Previous results on fragmentation fraction ratio

• LHCb and ATLAS have measured these parameters: LHCb has seen P_T dependence whereas ATLAS didn't observe such P_T dependency (although measured in different P_T range).

• CMS measures $R_s (f_s/f_u)$ and f_d/f_u using the decays $B_s^{0} - J/\psi (\mu^+\mu^-) \phi (K^+K^-)$, $B^+ - J/\psi (\mu^+\mu^-)K^+$ and $B^{0} - J/\psi K^{*0}(K^-\pi^+)$. To be precise CMS measures

$$\begin{split} \mathcal{R}_{\rm s} &= \left(N_{\rm B_{\rm s}^0}/\epsilon_{\rm B_{\rm s}^0}\right) / \left(N_{\rm B^+}/\epsilon_{\rm B^+}\right) = f_{\rm s}/f_{\rm u} \; \frac{\mathcal{B}({\rm B}_{\rm s}^0 \rightarrow {\rm J}/\psi \; \phi)\mathcal{B}(\phi \rightarrow {\rm K}^+{\rm K}^-)}{\mathcal{B}({\rm B}^+ \rightarrow {\rm J}/\psi \; {\rm K}^+)} \\ \mathcal{R}_{\rm d} &= \frac{N_{\rm B^0}}{\epsilon_{\rm B^0}} \left/ \frac{N_{\rm B^+}}{\epsilon_{\rm B^+}} = f_{\rm d}/f_{\rm u} \; \frac{\mathcal{B}({\rm B}^0 \rightarrow {\rm J}/\psi \; {\rm K}^{*0})\mathcal{B}({\rm K}^{*0} \rightarrow \pi^-{\rm K}^+)}{\mathcal{B}({\rm B}^+ \rightarrow {\rm J}/\psi \; {\rm K}^+)} \end{split}$$

- In the ratio J/ψ branching fraction cancels out. We measure R_s (instead of f_s/f_u) as available measurement of $B_s^0 J/\psi\phi$ branching fraction and of f_s are correlated.
- CMS uses 61.6 fb⁻¹ data collected during 2018 with COM energy 13TeV.

Signal yields for B_s⁰, B⁺, and B⁰

- Signal pdf: Double Gaussian with common mean, independent widths
- Combinatorial background: Exponential
- The other peaking/non-peaking background normalizations/pdfs are either fixed/floated depending on kind of background and information available, e.g.:
- B⁰->J/ψK⁺π⁻ (where pion can be misidentified as kaon) is Johnson function, with normalization fixed w.r.t signal yield.
- B->J/ψK⁺X is error function with free shape parameters
 B⁺->J/ψπ⁺, triple gaussian, normalization fixed to signal yield and scaled by BF ratios
- $B^{0} \rightarrow J/\psi K^{+}\pi^{-}$, shape and relative normalization w.r.t. unswapped fixed from MC.
 - B_s->J/ψK^{*0} shape fixed from MC,
 normalization fixed to signal yield.

R_s and f_d/f_u results with CMS data

- The measured R_s does not show any lyl dependence, although there is clear dependence on P_T at low P_T followed by flat shape in high P_T .
- Similar dependency observed by LHCb.
- Averaging the $P_T > 18$ GeV, the value of Rs= 0.1102± 0.0027

- The ratio f_d/f_u shows no dependency on either P_T or [y].
- The average over all P_T points given the value: 1.015 ± 0.051. This is consistent with unity as expected from strong isospin symmetry.
- This result will be crucial in the measurement $B_s^{\ o} > \mu^+ \mu^-$ in future.

The rare decay of $\eta \to \mu^+ \mu^- \mu^+ \mu^-$ with CMS Data

- Neutral Meson Pseudoscalar, like π^0 , with Strangeness(S)=0 and Charge (Q)=1. J^{PC}= 0⁻⁺
- Mixture of light quark states:

$$\eta = \frac{1}{\sqrt{6}} \left(u\bar{u} + d\bar{d} - 2s\bar{s} \right)$$

- Mass: 547.9MeV, Width= 0.0013MeV
- η decays to 4 leptons through radiative double Dalitz decays where two virtual photons internally convert to leptons pairs.
- No Hadrons among decay products -> Matrix element directly sensitive to the η meson transition form factor.
- The knowledge of η meson coupling to the virtual photons is important for calculation of anomalous magnetic moment of muon.
- Study of this process provide a sensitive probe to new Physics, e.g., dark photons, light Higgs scalars, axion-like particles which is complementary to detect new particles below GeV mass scale.

 $\ell(p_A)$

Analysis strategy

- CMS uses 13 TeV data (101 fb^{-1}) collected during 2017 and 2018.
- Use $\eta >\mu^+\mu^-$ [where B($\eta >\mu^+\mu^-$) = (5.8±0.8)x 10⁻⁶] as the reference channel.
- Dedicated set of high-rate triggers are developed to improve the efficiency at low mass [low P_T muon threshold and keeps only limited information(<10kB)/event].
- Two/Four muons to come from same vertex. About 4.5M $\eta-\!\!>\!\!2\mu$ signals and ~50 $\eta-\!\!>\!\!4\mu$ signal events found.

Branching fraction measurement for η –>4 μ

Here *i* and *j* runs over the P_T and pseudo-rapidity of η mesons

- Using the signal yields and acceptance values, we get $\frac{B_{4\mu}}{B_{2\mu}} = (0.9 \pm 0.1 \text{ (stat)} \pm 0.1 \text{ (syst)}) \times 10^{-3}$
- However, using the world average value of BF of η ->2 μ , $\mathcal{B}(\eta o 2\mu) = (5.8 \pm 0.8) imes 10^{-6}$

 $\mathcal{B}(\eta \to 4\mu) = (5.0 \pm 0.8 \, (\text{stat}) \pm 0.7 \, (\text{syst}) \pm 0.7 \, (\mathcal{B})) \times 10^{-9}$

- The expected theoretical value of η to 4μ decay is (3.98 ± 0.15) x 10⁻⁹ .
- The observed central value 25% more than prediction, however consistent given large error.

η -> 4 μ result with CMS data

• Main Source of syst shown below: (Several sources already cancels out in the ratio)

Track P _T threshold	9%
Trigger P _T threshold	8.4%
Efficiency plateau	3.2%
Fit signal model, $N_{4\mu}$	3.4%
Fir background model, $N_{4\mu}$	4.2%
Fit signal and bkg model, $N_{2\mu}$	3.8%
Total Syst Uncertainty	14.3%

- This is first observation of the double Dalitz decay η ->4 μ with high-rate muon trigger.
- It is very important to measure the reference channel precisely.

CMS-PAS-BPH-22-003

Di-charmonium excess in 4μ final state

- Apart from conventional mesons(two quark states) and baryons(three quark states) many tetraquarks and several pentaquarks candidates are observed in experiment but their theoretical interpretation remain contested.
- The first experimental evidence for exotic hadron was $\chi_{c1}(3872)$ observed by Belle Collaboration in 2003 [PRL 91 (2003) 262001].
- In 2020, LHCb reported evidence of narrow resonance in di-J/ ψ (-> 4 μ) spectrum, at around 6.9 GeV, which can be interpreted as tetraquark consisting of four charm quarks.

LHCb model I: no interference	LHCb model II: with interference
$m[X(6900)] = 6905 \pm 11 \pm 7 \text{MeV}/c^2$	$m[X(6900)] = 6886 \pm 11 \pm 11 \mathrm{MeV}/c^2$
$\Gamma[X(6900)] = 80 \pm 19 \pm 33 \mathrm{MeV}_{0}$	$\Gamma[X(6900)] = 168 \pm 33 \pm 69 \mathrm{MeV}$

di-J/ ψ spectrum without interference model using CMS data

Fit model building:

- Sequential fit starting from background-only hypothesis to increasingly complex ones.
- Add new features if their local significance exceeds 3 standard deviations.

Signal shapes are relativistic S-wave Breit-Wigner functions convolved with double Gaussian resolution functions (BW):

• $BW_1 \rightarrow structure at \simeq 6600 \text{ MeV}$

•
$$BW_3 \rightarrow structure at \simeq 7200 MeV$$

Background shapes based on MC simulations:

• Non-resonant single-parton scattering (NRSPS)

$$f_{SPS}(x, x_0, \alpha, p_1, p_2, p_3) = (x - x_0)^{\alpha} \times \left(1 - \left(\frac{1}{(15 - x_0)^2} - \frac{p_1}{10}\right)(15 - x)^2\right) \times \exp\left(-\frac{(x - x_0)^{p_3}}{2p_2^{p_3}}\right)$$

where $x_t = x - x_0$ and $x_0 = 2M_{J/\psi}$

• Non-resonant double-parton scattering (NRDPS):

 $f_{DPS}(x) = \sqrt{x_t} \times \exp(-ax_t) \times (p_0 + p_1x_t + p_2x_t^2)$ where $x_0 = 2M_{J/\psi}$

di-J/ ψ spectrum with interference model using CMS data

		BW ₁	BW ₂	BW ₃
Non interference	m[MeV] Γ[MeV] Ν	$6552 \pm 10 \pm 12$ 124 ± 29 ± 34 474 ± 113	6927 ± 9 ± 4 122 ± 22 ± 19 492 ± 75	$7287 \pm 19 \pm 5$ 95 ± 46 ± 20 156 ± 56
Interference	m[MeV] Γ[MeV]	$6638^{+43}_{-38}{}^{+16}_{-31}_{-199}{}^{+109}_{-235}$	$6847^{+44}_{-28}{}^{+48}_{-20}_{-17}$	$7134^{+48} - 25^{+41} - 15 \\97^{+40} - 29^{+29} - 26$

- The non-interference model doesn't account for dip around 6750 and 7150 MeV
- The fit to the mode with three interference leads to shifts in masses of three components.
- Fitting our data with LHCb models give poor fit probabilities although BW parameters are similar.
- Theoretical calculation suggests these structures be identified as part of a family of radial excited P-wave states, whose masses are calculated to be 6554, 6926 and 7220 MeV.

CMS-PAS-BPH-21-003

Di-charmonium study with ATLAS data

- ATLAS uses 13 TeV Run2 data (139 fb⁻¹) collected during 2015 – 2018. Search 4µ final state through di-J/ ψ and J/ ψ + ψ (2S) mode. Sianal· TO -> T/ ψ + T/ ψ (2C) during 2015 - 2018.
- Signal: TQ $\rightarrow J/\psi + J/\psi$ (or $\psi(2S)$) $\rightarrow 4\mu$.
- Background processes:

(i)prompt di-J/ ψ : SPS and DPS

(ii) non-prompt di-J/ ψ : bb -> J/ ψ + J/ ψ + X

(iii) Ohers: Single charmonium + fake muons,

non-peaking without any real charmonium

Signal region	SPS/DPS control region	non-prompt region		
Di-muon or tri-muon triggers,				
Opposite charged muons from the same J/ψ or $\psi(2S)$ vertex,				
Loose muon ID, $p_T^{1,2,3,4} > 4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for the four muons				
$m_{J/\psi} \in \{2.94, 3.25\}$ GeV, or $m_{\psi(2S)} \in \{3.56, 3.80\}$ GeV,				
Loose vertex cuts $\chi^2_{4\mu}/N < 40$ and $\chi^2_{di-\mu}/N < 100$,				
Vertex $\chi^2_{4\mu}/N < 3$,				
$L_{xy}^{4\mu} < 0.2 \text{ mm}, L_{xy}^{\text{di-}\mu} < 0.3 \text{ mm},$		Vertex $\chi^2_{4\mu}/N > 6$,		
$m_{4\mu} < 7.5$ GeV,	$7.5 \text{ GeV} < m_{4\mu} < 12.0 \text{ GeV} (\text{SPS})$	$ L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm}$		
$\Delta R < 0.25$ between charmonia	14.0 GeV < $m_{4\mu}$ < 25.0 GeV (DPS)			

Fit to di-J/ ψ mass spectrum

- The signal PDF consists of several interfering S-wave BW resonances convolved with mass resol.
- The number of resonances changed from 1 to 2 or 3, and compared with the χ^2 values of fit.

$$f_{s}(x) = \left| \sum_{i=0}^{2} \frac{z_{i}}{x^{2} - m_{i}^{2} + im_{i}\Gamma_{i}} \right|^{2} \sqrt{1 - \frac{4m_{J/\psi}^{2}}{x^{2}}} \otimes R(\alpha),$$

$$(\text{GeV}) = \frac{m_{0} \qquad \Gamma_{0} \qquad m_{1} \qquad \Gamma_{1}}{\frac{6.22 \pm 0.05^{+0.04} \qquad 0.31 \pm 0.12^{+0.07} \qquad 6.62 \pm 0.03^{+0.02} \qquad 0.31 \pm 0.09^{+0.06}}{\frac{m_{2} \qquad \Gamma_{2}}{6.87 \pm 0.03^{+0.06} \qquad 0.12 \pm 0.04^{+0.03} \qquad -}}$$

 $m_i (\Gamma_i)$: masses (widths) of resonances z_i : represents amplitude $R(\alpha)$: resolution function The function under square root: phase space

(b) and (c) fitted with 3 resonances but with different resonances magnitudes and interferences.

- The resonance at around 6.9GeV is consistent with LHCb and has 10 σ significance.
- LHCb Model-II is disfavored due to worse fit quality (worse χ^2 /NDF).

Fit to $J/\psi + \psi(2S)$ mass spectrum

- Signal significance from the best fit for Model A(B) are $4.6\sigma(4.3\sigma)$.
- In the fit Model A, the significance of second resonance found at 7.2 GeV is 3.2 σ . Such structure at 7.2 GeV was seen by LHCb in di-J/ ψ spectrum.
- We need more data to confirm this as multiple non-interfering resonances, reflection effects, threshold enhancements etc, can not be ruled out completely.

The decay $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ using ATLAS data

- Being the only weakly decaying meson consisting of two heavy quarks, B_c^+ provides unique testing ground for different theoretical approaches that describe its production and decays.
- B_c^+ decays can occur through a weak transition of either heavy quarks or weak annihilation.
- B_c^+ decay to J/ ψ final state involves a b-quark transition with c-quark being spectator and annihilation diagram.
- ATLAS studied decay of $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ where $J/\psi \rightarrow \mu^+\mu^-$, $D_c^{*+} \rightarrow D_c^+\pi^0$, $D_c^+ \rightarrow \phi$ (K⁺K⁻) π^+

- The branching fractions are measured with respect to a reference channel $B_c^+ \rightarrow J/\psi \pi^+$ as well as BF($B_c^+ \rightarrow J/\psi D_s^{*+}$)/ BF ($B_c^+ \rightarrow J/\psi D_s^+$).
- The decay of $J/\psi D_s^{*+}$ (Pseudo-scalar -> two vector states) is described by three helicity amplitudes -> Measure their relative contributions , e.g. $A_{\pm\pm}$

Results for $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ decay with ATLAS data

- The two non-overlapping datasets corresponding to two different triggers used for the analysis.
- An extended UML fit to $m(J/\psi D_s^{(*)+})$ and $|\cos \theta'(\mu^+)|$ is performed together to extract signal yields, as well as the transverse polarization fractions in $B_c^+ \rightarrow J/\psi D_s^{*+}$ decay.

- The branching fraction of $B_c^+ \rightarrow J/\psi D_s^+$ or $B_c^+ \rightarrow J/\psi D_s^{*+}$ with respect to $B_c^+ \rightarrow J/\psi \pi^+ R_{D_s^+/\pi^+}$ or $R_{D_s^{*+}/\pi^+}$) uses dataset 1 whereas $R_{D_s^{*+}/D_s^+}$ uses dataset 2.
- $\theta'(\mu^+)$: helicity angle, defined in the rest frame of the muon pair (angle between μ^+ and D_s^+ momenta).

Results and theory comparisons

 $R_{D_s^+/\pi^+} = 2.76 \pm 0.33 \pm 0.29 \pm 0.16$

 $R_{D_s^{*+}/\pi^+} = 5.33 \pm 0.61 \pm 0.67 \pm 0.32$

- All the results are consistent with earlier measurements by ATLAS and LHCb, although with better precision now.
- Various measured quantities are compared with data the QCD relativistic potential model calculation agrees well with the three ratios of BFs.

 $R_{D_s^{*+}/D_s^+} = 1.93 \pm 0.24 \pm 0.09$

 $\Gamma_{\pm\pm}/\Gamma=0.70\pm0.10\pm0.04$

arXiv: 2203.01808 (JHEP 08, 2022(087))

Parameter	Value	
$m_{B_c^+}$ [MeV]	6274.8 ± 1.4	
$\sigma_{B_c^+}$ [MeV]	11.5 ± 1.5	
$r_{D_s^{*+}/D_s^+}$	1.76 ± 0.22	
$f_{\pm\pm}$	0.70 ± 0.10	
$N^{\mathrm{DS1}}_{B^+_c \to J/\psi D^+_s}$	193 ± 20	
$N_{B_c^+ \to J/\psi D_s^+}^{\mathrm{DS2}}$	49 ± 10	
$N_{B_c^+ \to J/\psi D_s^{*+}}^{\mathrm{DS1}}$	338 ± 32	
$N_{B_c^+ \to J/\psi D_s^+}^{\mathrm{DS1\&2}}$	241 ± 28	
$N^{\mathrm{DS1\&2}}_{B^+_c \to J/\psi D^{*+}_s}$	424 ± 46	
Parameter	Value	
$m_{B_c^+}$ [MeV]	6274.5 ± 1.5	
$\sigma_{B_c^+}$ [MeV]	47.5 ± 2.5	
$N_{B_c^+ \to J/\psi \pi^+}$	8440^{+550}_{-470}	

Summary and discussions

- CMS and ATLAS pursues broad spectrum of B-physics measurements.
- The precision measurements of fragmentation fraction would be crucial input for the $B_{a}^{0} \mu^{+}\mu^{-}$ branching fraction.
- The first observation of double Dalitz rare decay of η ->4 μ is reported.
- Di-charmonium mass spectrum was studied by CMS and ATLAS. The detailed interpretation of the structures (whether they are four charm tetra quark states) are yet to be confirmed.
- The decay of B_c^+ meson to $J/\psi D_S^{(*)+}$ is reported and compared with different theoretical calculations.
- More results on Run2, as well as Run3 data (with COM energy of 13.6 TeV) coming soon.