

Weak decays of heavy-quark baryons

On behalf of the LHCb Collaboration Young Scientist Forum

Laboratoire de Physique des 2 Infinis

Moriond EW: 18th - 25th March 2023

Janina Nicolini*

* janina.nicolini@cern.ch

Supported by:

Weakly decaying b-baryons

Four weakly decaying b-baryons with one heavy quark

 Λ_b^0 bud $f_{\Lambda^0_h} \sim 18~\%$

- Ω_{h}^{-} least studied b-baryon
 - \rightarrow large uncertainties on e.g. **mass** $m(\Omega_{h}^{-})$
- **Production fraction** $f_{\Omega_{\overline{h}}}$ needed to measure absolute branching fractions
 - \rightarrow never measured at the LHC

$$R = \frac{f_{\Omega_{\overline{b}}}}{f_{\Xi_{\overline{b}}}} \times \frac{\mathscr{B}(\Omega_{\overline{b}}^{-} \to \Omega^{-}J/\psi)}{\mathscr{B}(\Xi_{\overline{b}}^{-} \to \Xi^{-}J/\psi)}$$

* based on CDF measurement with 16 events Phys. Rev. D 80 (2009), 072003

Weakly decaying b-baryons

Four weakly decaying b-baryons with one heavy quark

 Λ_b^0 bud $f_{\Lambda^0_h} \sim 18\%$

- Ω_{h}^{-} least studied b-baryon
 - \rightarrow large uncertainties on e.g. **mass** $m(\Omega_{h}^{-})$
- **Production fraction** $f_{\Omega_{\overline{h}}}$ needed to measure absolute branching fractions
 - \rightarrow never measured at the LHC

$$R = \frac{f_{\Omega_{\overline{b}}}}{f_{\Xi_{\overline{b}}}} \times \frac{\mathscr{B}(\Omega_{\overline{b}}^{-} \to \Omega^{-}J/\psi)}{\mathscr{B}(\Xi_{\overline{b}}^{-} \to \Xi^{-}J/\psi)}$$

• Both decay modes hyperon decay chain: \rightarrow cannot be mimicked by any mesonic decay

$$\begin{split} \Omega_b^- &\to J/\psi (\to \mu^+ \mu^-) \Omega^- (\to \Lambda K^-) & \text{with} \\ \Xi_b^- &\to J/\psi (\to \mu^+ \mu^-) \Xi^- (\to \Lambda \pi^-) \end{split}$$

Weakly decaying b-baryons

Four weakly decaying b-baryons with one heavy quark

 Λ_b^0 bud $f_{\Lambda^0_h} \sim 18\%$

- Ω_{h}^{-} least studied b-baryon
 - \rightarrow large uncertainties on e.g. **mass** $m(\Omega_{h}^{-})$
- **Production fraction** $f_{\Omega_{\overline{h}}}$ needed to measure absolute branching fractions
 - \rightarrow never measured at the LHC

$$R = \frac{f_{\Omega_{\overline{b}}}}{f_{\Xi_{\overline{b}}}} \times \frac{\mathscr{B}(\Omega_{\overline{b}}^{-} \to \Omega^{-}J/\psi)}{\mathscr{B}(\Xi_{\overline{b}}^{-} \to \Xi^{-}J/\psi)}$$

• Both decay modes hyperon decay chain: → cannot be mimicked by any mesonic decay

$$\begin{split} \Omega_b^- &\to J/\psi(\to \mu^+\mu^-)\Omega^-(\to \Lambda K^-) & \text{with} \\ \Xi_b^- &\to J/\psi(\to \mu^+\mu^-)\Xi^-(\to \Lambda \pi^-) \end{split}$$

• $\tau_{\Lambda} \sim 0.263 \text{ ns} > \tau_{\Xi^-} \sim 0.164 \text{ ns} > \tau_{\Omega^-} \sim 0.082 \text{ ns}$: $\rightarrow \Omega_{h}^{-}$ more often in LHCb acceptance, both decays low energy release

• Fully cut-based selection in fiducial phase-space

Ω_b^- mass measurement

- Extract the mass difference $m(\Omega_h^-) m(\Xi_h^-)$
- \rightarrow cancels dominant systematic uncertainty: abs. mom. scale Mass difference kept floating

 $m(\Omega_{h}^{-}) - m(\Xi_{h}^{-}) = 248.54 \pm 0.51 \text{ (stat)} \pm 0.38 \text{ (syst)} \text{ MeV}/c^{2}$

• Dominant systematic uncertainty: hyperon masses

Ω_b^- mass measurement

• Extract the mass difference $m(\Omega_h^-) - m(\Xi_h^-)$

→ cancels dominant systematic uncertainty: abs. mom. scale Mass difference kept floating

 $m(\Omega_{h}^{-}) - m(\Xi_{h}^{-}) = 248.54 \pm 0.51$ (stat) ± 0.38 (syst) MeV/ c^{2}

- Dominant systematic uncertainty: hyperon masses
- Using $m(\Xi_{h}^{-})$ from $\Xi_{h}^{-} \to \Xi_{c}^{0} \pi^{-}$ Phys. Rev. D 103 (2021) 012004 $m_{LHCb}(\Xi_b^-) = 5797.33 \pm 0.24$ (stat) ± 0.29 (syst) MeV/ c^2

 $m(\Omega_{b}^{-}) = 6045.9 \pm 0.5 \text{ (stat)} \pm 0.6 \text{ (syst)} \text{ MeV}/c^{2}$

• Factor 2 improvement wrt. previous best measurement

Phys.Rev.D 104 (2021) L091102

Relative production fraction

LHCb-PAPER-2022-053 in preparation

- - $\rightarrow R$ kept floating

$$R = \frac{f_{\Omega_{\overline{b}}}}{f_{\Xi_{\overline{b}}}} \times \frac{\mathscr{B}(\Omega)}{\mathscr{B}(\Xi)}$$

• In agreement within 1.2σ with CDF measurement but differs by a factor 2 $R_{CDF} = 0.27 \pm 0.12 \text{ (stat)} \pm 0.01 \text{ (syst)}$ Phys. Rev. D 80 (2009), 072003 Production cross-sections ratio not expected to match between production environment at Tevatron and LHC

• Simultaneous fit to Run2 ($\sqrt{s} = 13$ TeV) only

• Dominating systematic uncertainties: simulation calibration and b-baryon lifetimes

 $\frac{2_b^- \to \Omega^- J/\psi}{E_b^- \to \Xi^- J/\psi} = 0.120 \pm 0.008 \text{ (stat)} \pm 0.008 \text{ (syst)}$

Conclusion

• Most precise measurement of the Ω_h^- mass with an LHCb

- dataset corresponding to 9 fb^{-1}
- Measurement in agreement with world average and previous measurements

Conclusion

• Most precise measurement of the Ω_h^- mass with an LHCb

- dataset corresponding to 9 fb $^{-1}$
- Measurement in agreement with world average and previous
 - measurements

• First determination of the relative production fraction

of the Ω_h^- at the LHC at $\sqrt{s} = 13$ TeV

 $\frac{f_{\Omega_{\overline{b}}}}{f_{\Xi_{\overline{b}}}} \times \frac{\mathscr{B}(\Omega_{\overline{b}}^{-} \to \Omega^{-}J/\psi)}{\mathscr{B}(\Xi_{\overline{b}}^{-} \to \Xi^{-}J/\psi)} = 0.120 \pm 0.008 \text{ (stat)} \pm 0.008 \text{ (syst)}$

• Input from theory needed to disentangle production fraction ratio from ratio of branching fractions

Track categories

- Possible track categories based on Velo information available long track (L) or not downstream track (D)
- $\tau_{\Lambda} \sim 0.263$ ns > $\tau_{\Xi^-} \sim 0.164$ ns > $\tau_{\Omega^-} \sim 0.082$ ns : More long tracks for Ω_b^- decays,

available long track (L) or not downstream track (D) : More long tracks for Ω_b^- decays,

Uncertainties

Systematic uncertainties on mass difference

Type	Value, MeV/ c^2
Momentum scale knowledge	0.09
dE/dx correction	0.01
Hyperon mass knowledge	0.35
$\Lambda_b^0 \to J/\psi \Lambda$ background	0.10
Fit bias	0.06
Full fit model	0.01
Total	0.38

Systematic uncertainties on production fraction x BF

Type	Value [%]
Size of simulated samples	0.3
Calibration of simulation	5.5
Selection criteria	0.1
Lifetimes of b -baryons	3.1
Material interactions	0.7
Fit model	0.8
External input (\mathcal{B})	1.0
Total	6.5

