The Rumble in the Meson

by Ben Allanach (University of Cambridge and CERN) collaborator: Joe Davighi

 $b \to s \mu^+ \mu^-$ anomalies

 $B_3 - L_2 Z'$

 S_3 Leptoquark

 $BR(B_s \rightarrow \mu^+ \mu^-)$.¹ $B_s = (\bar{b}s), B^0 = (\bar{b}d)$

¹BCA, Davighi, 2211.11766: SM: 1.6σ

 $B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$

Decay fully described by three helicity angles $\vec{\Omega} = (\theta_{\ell}, \theta_K, \phi)$ and $q^2 = m_{\mu\mu}^2 \frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\vec{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + \frac{4}{3} A_{\text{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + \frac{4}{3} A_{\text{FB}} \sin^2 \theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell$

P_5'

²LHCb, 2003.04831

 $B_s \to \phi \mu^+ \mu^-$: $\phi = (s\bar{s})$

Stolen from Capdevila et al, Flavour Anomaly Workshop '21

LHCb: 20/12/22

$$\log -q^{2} \begin{cases} R_{K} &= 0.994 \ ^{+0.090}_{-0.082} \,(\text{stat}) \ ^{+0.029}_{-0.027} \,(\text{syst}), \\ R_{K^{*}} &= 0.927 \ ^{+0.093}_{-0.087} \,(\text{stat}) \ ^{+0.036}_{-0.035} \,(\text{syst}), \end{cases}$$

$$\operatorname{central}_{q^{2}} \begin{cases} R_{K} &= 0.949 \ ^{+0.042}_{-0.041} \,(\text{stat}) \ ^{+0.022}_{-0.022} \,(\text{syst}), \\ R_{K^{*}} &= 1.027 \ ^{+0.072}_{-0.068} \,(\text{stat}) \ ^{+0.027}_{-0.026} \,(\text{syst}). \end{cases}$$

 $R_X(q^2) = BR(B \rightarrow X\mu^+\mu^-)/BR(B \rightarrow Xe^+e^-)$ LHCb 2212.09152: evidence for lepton flavour universality violation has *gone away*; smelli2.3.2:

category	n_{obs}	χ^2_{SM}	p	s/σ
'quarks'	224	262.9 259.1 (261.2)	.038 .054 (.044)	2.1 2.0 (2.0)
'LFU'	23	$17.1 \ 39.4 \ (39.4)$.80 .018 (.018)	0.2 2.4 (2.4)
combined	247	280.0 298.5 (300.7)	.073 .014 (.011)	1.8 2.5 (2.5)

 $\mathcal{L} = N(\bar{s}\gamma^{\alpha}P_{L}b)\left[C_{9}(\bar{\mu}\gamma_{\alpha}\mu) + C_{10}(\bar{\mu}\gamma_{\alpha}\gamma_{5}\mu)\right]$

Theory: uncertainties

	parametric	form factors	non-local
			MEs
$BR(B \to Mll)$	yes	large	large
angular	no	small	large
$BR(B_s \to ll)$	yes	small	no
LFU	no	tiny	no

Parametric uncertainties easy

Large theory uncertainties³ are taken into account

³Gubernari, Reboud, van Dyk, Virto 2206.03797

Neutral Current Fits

Alguero et al, 2104.08921; Altmannshofer, Stangl, flavio 2103.13370 Ciuchini et al, HEPfit 2011.01212; Hurth et al, superIso 2104.10058;

 $\mathcal{L} = N[C_9(\bar{b}_L\gamma^\mu s_L)(\bar{\mu}\gamma_\mu\mu) + C_{10}(\bar{b}_L\gamma^\mu s_L)(\bar{\mu}\gamma^5\gamma_\mu\mu)] + H.c.$

${\rm Simple}\,\, Z'\,\, {\rm Model}$

SM-singlet scalar 'flavon' $\theta_{X\neq 0}$

Additional $U(1)_X$ gauge symmetry broken by $\langle \theta \rangle \sim {\rm TeV}$

 $SM+3\nu_R$ fermion content

Zero X charges for first two generations of quark, electrons and taus

Postdicts heavy third family quarks⁴

 $^{4}X = B_{3} - L_{2}$: Bonilla et al, 1705.00915; Alonso et al 1705.03858, BCA 2009.02197 (simplified EFT)

Flavour problem

Postdicts small CKM angles

$$\mathcal{L}_{X\psi} = g_X \left(\overline{\mathbf{u}_{\mathbf{L}}} \Lambda^{(u_L)} \mathbf{Z}' \mathbf{u}_{\mathbf{L}} + \overline{\mathbf{u}_{\mathbf{R}}} \Lambda^{(u_R)} \mathbf{Z}' \mathbf{u}_{\mathbf{R}} \right. \\ \left. + \overline{\mathbf{d}_{\mathbf{L}}} \Lambda^{(d_L)} \mathbf{Z}' \mathbf{d}_{\mathbf{L}} + \overline{\mathbf{d}_{\mathbf{R}}} \Lambda^{(d_R)} \mathbf{Z}' \mathbf{d}_{\mathbf{R}} \right. \\ \left. - 3\overline{\mathbf{e}_{\mathbf{L}}} \Lambda^{(e_L)} \mathbf{Z}' \mathbf{e}_{\mathbf{L}} - 3\overline{\mathbf{e}_{\mathbf{R}}} \Lambda^{(e_R)} \mathbf{Z}' \mathbf{e}_{\mathbf{R}} \right. \\ \left. - 3\overline{\boldsymbol{\nu}_L} \Lambda^{(\nu_L)} \mathbf{Z}' \boldsymbol{\nu}_L - 3\overline{\boldsymbol{\nu}_R} \Lambda^{(\nu_R)} \mathbf{Z}' \boldsymbol{\nu}_R \right),$$
$$\Lambda^{(I)} \equiv V_I^{\dagger} \xi V_I, \qquad \xi = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Z' couplings, $I \in \{u_L, d_L, e_L, \nu_L, u_R, d_R, e_R\}$

A simple limiting case

$$V_{u_R} = V_{d_R} = 1$$

$$V_{d_L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & -\sin \theta_{23} \\ 0 & \sin \theta_{23} & \cos \theta_{23} \end{pmatrix}, \qquad V_{e_{L,R}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

 $\Rightarrow V_{u_L} = V_{d_L} V_{CKM}^{\dagger}$ and $V_{\nu_L} = V_{e_L} U_{PMNS}^{\dagger}$.

Important Z' Couplings

15

S_3 Leptoquark Model

TeV scale Scalar⁵ $S_3 = (\bar{3}, 3, 1/3)$:

 $\mathcal{L} = \ldots + \lambda Q'_{3}L_{2} + Y_{ij}Q_{i}Q_{j}S_{3}^{\dagger} + \text{h.c.}$ $= \ldots + \lambda(\cos\theta_{23}Q_{3}L_{2} + \sin\theta_{23}Q_{2}L_{2}) + \text{h.c.}$

⁵Capdevila et al 1704.05340, Hiller and Hisandzic 1704.05444, D'Amico et al 1704.05438

$B_s - \bar{B}_s$ Mixing

Measurement agrees with SM.

Best fits BCA, Davighi, 2211.11766

Dec 2022 $R_{K^{(*)}}$ [7]										
S_3 model	χ^2	n	p	$s\sqrt{ \Delta\chi^2 }$		Z' model	χ^2	n	p	$s\sqrt{ \Delta\chi^2 }$
quarks	247.3	224	.14	3.9		quarks	249.1	2 24	.12	3.7
LFU	19.7	23	.66	-1.6		LFU	18.2	23	.75	-1.0
global	267.0	247	.16	3.6		global	267.4	247	.16	3.6
	Previous $R_{K^{(*)}}$ [1–3]									
S_3 model	χ^2	n	p	$s\sqrt{ \Delta\chi^2 }$		Z' model	χ^2	n	p	$s\sqrt{ \Delta\chi^2 }$
quarks	245.7	224	.15	3.7		quarks	249.3	224	.12	3.1
LFU	22.2	23	.51	4.2		m LFU	22.8	23	.47	4.1
global	267.9	247	.15	5.5		global	272.1	247	11	5.1
·										

Wilson, flavio, smelli

Pull=(theory-exp)/error

BCA, Davighi, 2211.11766

Parameter Space

BCA, Davighi, 2211.11766

Summary

$b \to s \mu^+ \mu^-$ anomalies remain with caveat

Remarkable that models with TeV-scale flavour symmetry are still allowed

Shameless plug for my music, textbook and Quantum Selves art:

Backup

Trident Neutrino Process

FIG. 10. Neutrino trident process that leads to constraints on the Z^{μ} coupling strength to neutrinos-muons, namely $M_{Z'}/g_{v\mu} \gtrsim 750$ GeV.

Z^\prime Decay Modes

Mode	BR	Mode	BR	Mode	BR
$t\bar{t}$	0.15	$b\overline{b}$	0.15	$ u \overline{ u}' $	0.23
$\mid \mu^+\mu^-$	0.46				

 $\sigma_{prod} \propto g_X^2 \cos^4 \theta_{sb} = g_X^2 \left(1 - 2\theta_{sb}^2 + \mathcal{O}(\theta_{sb}^4) \right)$

$Z' ightarrow \mu \mu$ ATLAS 13 TeV 139 fb $^{-1}$

ATLAS analysis: look for two track-based isolated μ , $p_T > 30$ GeV. One reconstructed primary vertex. Keep only highest scalar sum p_T pair⁷

$$m_{\mu_1\mu_2}^2 = (p_1^{\mu} + p_2^{\mu}) \left(p_{1\mu} + p_{2\mu} \right)$$

CMS also have released⁸ a 139 fb⁻¹ analysis.

⁷1903.06248 ⁸2103.02708

 $B_3 - L_2 Z'$ at HL-LHC

Azatov, Garosi, Greljo, Marzocca, Salko, 2205.13552 with old $R_{K^{(st)}}$

Azatov, Garosi, Greljo, Marzocca, Salko, 2205.13552 with old $R_{K^{(st)}}$