

Semileptonic B decays at Belle II

Christoph Schwanda (Austrian Academy of Sciences) Representing the collaboration

Rencontres de Moriond — Electroweak Interactions & Unified Theories, March 20, 2023

Semileptonic *B* decays **Determination of the CKM elements** $|V_{cb}|$ and $|V_{\mu b}|$

- SL B decays are studied to determine the CKM elements $|V_{ch}|$ and $|V_{\mu h}|$
 - $|V_{xb}|$ are limiting the global constraining power of UT fits
 - Important inputs in predictions of SM rates for ultrarare decays such as $B_s \rightarrow \mu \nu$ and $K \rightarrow \pi \nu \nu$
- The determinations can be
 - *Exclusive* from a single final state
 - *Inclusive* sensitive to all SL final states

	Experiment	Theory
Exclusive V _{cb}	$B \rightarrow Dlv, D^*lv$ (low backgrounds)	Lattice QC light cone s rules
Inclusive V _{cb}	B → Xlv (higher background)	Operator pro expansio

Experimental status $|V_{cb}|$ and $|V_{ub}|$

- Determinations of both $|V_{ch}|$ and $|V_{ub}|$ exhibit a discrepancy at the level of ~3 σ between exclusive and inclusive
- The current experimental focus is on understanding the origin of this discrepancy, as this inconsistency limits the power of precision flavour physics

The Belle II detector

Untagged vs. Tagged

Untagged:

only $B_{\rm sig}$ is reconstructed

high signal yield (+) high backgrounds (-) poor neutrino reconstruction (-)

Tagged:

 $B_{\rm sig}$ and $B_{\rm tag}$ are reconstructed to take advantage of $\Upsilon(4S)$ kinematics

signal yield O(10³) lower (-) low backgrounds (+) good neutrino reconstruction (+) tag calibration (-)

n

 π^+

 $\bar{\mathbf{D}}_0$

 e^+

$B^0 \rightarrow D^{*-} \ell^+ \nu$ untagged (189/fb) preliminary [to be submitted to Phys. Rev. D]

Parameterisation of $B \rightarrow D^* \ell \nu$

Three form-factors as function of $w = v_B \cdot v_{D^*}$ parameterise the non-perturbative physics

 $d^4\Gamma$ $\frac{1}{dwd\cos\theta_{\ell}d\cos\theta_{V}d\chi} \propto |V_{cb}|^{2}F^{2}(w,\cos\theta_{\ell},\cos\theta_{V},\chi)$

- Form factor parameterisations
 - Boyd, Grinstein, Lebed (BGL) ullet[Phys. Rev. D56, 6895 (1997)]:

Caprini, Lellouch, Neubert (CLN) [Nucl. Phys. B530, 153 (1998)]

$$g(z) = \frac{1}{P_g(z)\phi_g(z)} \sum_{n=0}^{n_a-1} a_n z^n,$$

$$f(z) = \frac{1}{P_f(z)\phi_f(z)} \sum_{n=0}^{n_b-1} b_n z^n, \qquad z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

$$\mathcal{F}_1(z) = \frac{1}{P_{\mathcal{F}_1}(z)\phi_{\mathcal{F}_1}(z)} \sum_{n=0}^{n_c-1} c_n z^n,$$

$$h \cdot (z) = h \cdot (w-1) \left(1 - 8a^2 z + (53a^2 - 15)z^2 - (231a^2 - 91)z^2\right)$$

$$h_{A_1}(z) = h_{A_1}(w = 1) \left(1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right)$$

$$R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2$$

$$R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2$$

Measurement

- $D^{*+} \rightarrow D^0(\rightarrow K^-\pi^+)\pi^+$ is reconstructed and combined with an appropriately charged lepton (*e* or μ)
- The neutrino direction is reconstructed inclusively using the known angle $\cos \theta_{BY}$ between the B and the $Y = D^* + \ell$ direction

$$\cos \theta_{BY} = \frac{2E_B^{\rm CM} E_Y^{\rm CM} - m_B^2 c^4 - m_Y^2 c^4}{2|\vec{p}_B^{\rm CM}||\vec{p}_Y^{\rm CM}|c^2}$$

- The yield in 10 (8) bins of w, $\cos \theta_{\ell}$, $\cos \theta_{V}$ and χ is extracted by fitting $\cos \theta_{BY}$ and $\Delta M = M(K\pi\pi) M(K\pi)$
- Bin-to-bin migration is corrected with SVD unfolding [arXiv:hep-ph/9509307]
- Main challenges: accurate background model, slow pion tracking and statistical correlations between bins

BGL fit result

BGL truncation order determined by Nested Hypothesis Test [Phys. Rev. D100, 013005]

	Values		Correl	ations		χ^2/nd
$\tilde{a}_0 \times 10^3$	0.89 ± 0.05	1.00	0.26	-0.27	0.07	
$\tilde{b}_0 imes 10^3$	0.54 ± 0.01	0.26	1.00	-0.41	-0.46	10/31
$\tilde{b}_1 \times 10^3$	-0.44 ± 0.34	-0.27	-0.41	1.00	0.56	40/31
$\tilde{c}_1 \times 10^3$	-0.05 ± 0.03	0.07	-0.46	0.56	1.00	

Belle II 60 GeV 20 10^{-15} 40 × 30 20 20 10 0 _____ **Belle II** 21 F [18] GeV $d\Gamma/d\cos\theta_V$ [×10⁻¹⁵ (w 9 6 7 5 15

Preliminary

Relative uncertainty (%)	Pre	liminary		
	\tilde{a}_0	$ ilde{b}_0$	${ ilde b}_1$	\tilde{c}_1
Statistical	3.3	0.7	44.8	35.4
Finite MC samples	3.0	0.7	39.4	33.0
Signal modelling	3.0	0.4	40.0	30.8
Background subtraction	1.2	0.4	24.8	18.1
Lepton ID efficiency	1.5	0.3	3.1	2.5
Slow pion efficiency	1.5	1.5	18.4	22.0
Tracking of K, π, ℓ	0.5	0.5	0.6	0.5
$N_{B\overline{B}}$	0.8	0.8	1.1	0.8
$f_{+-}/f00$	1.3	1.3	1.7	1.3
$\mathcal{B}(D^{*+} \to D^0 \pi^+)$	0.4	0.4	0.5	0.4
$\mathcal{B}(D^0 \to K^- \pi^+)$	0.4	0.4	0.5	0.4
B^0 lifetime	0.1	0.1	0.2	0.1
Total	6.1	2.5	78.3	64.1

LQCD used only for normalisation at zero recoil (w = 1)

Adding LQCD at w > 1

LQCD constraints on $h_{A_1}(w)$ at w = 1.03, 1.10, 1.17[Eur. Phys. J. C 82, 1141 (2022)] Preliminary

	Values			Correl	ations		
$ V_{cb} imes 10^3$	40.4 ± 1.2	1	-0.31	-0.57	-0.1	0.02	-0.26
$a_0 imes 10^3$	22.0 ± 1.4	-0.31	1	0.27	0.1	-0.18	0.31
$b_0 imes 10^3$	13.2 ± 0.2	-0.57	0.27	1	-0.18	0.13	-0.12
$b_1 imes 10^3$	9.0 ± 14.5	-0.1	0.1	-0.18	1	-0.88	0.52
b_2	-0.5 ± 0.4	0.02	-0.18	0.13	-0.88	1	-0.36
$c_1 imes 10^3$	-0.7 ± 0.8	-0.26	0.31	-0.12	0.52	-0.36	1

LQCD constraints on $h_{A_1}(w)$, $R_1(w)$ and $R_2(w)$ at w = 1.03, 1.10, 1.17[Eur. Phys. J. C 82, 1141 (2022)] Preliminary

	Values			Co	orrelatio	ons		
$ V_{cb} imes 10^3$	40.0 ± 1.2	1	-0.16	0.02	-0.09	-0.61	-0.17	0.1
$a_0 imes 10^3$	28.3 ± 1.0	-0.16	1	-0.08	-0.19	0.17	0.12	-0.0
$a_1 imes 10^3$	-31.5 ± 66.6	0.02	-0.08	1	-0.85	-0.04	-0.07	0.1
a_2	-5.8 ± 2.5	-0.09	-0.19	-0.85	1	0.1	0.1	-0.1
$b_0 imes 10^3$	13.3 ± 0.2	-0.61	0.17	-0.04	0.1	1	0.11	-0.1
$c_1 imes 10^3$	-3.2 ± 1.4	-0.17	0.12	-0.07	0.1	0.11	1	-0.9
$c_2 imes 10^3$	59.1 ± 31.1	0.1	-0.03	0.11	-0.13	-0.13	-0.9	1

03 l13

11

Summary of the measurement Branching fraction Preliminary • $\mathcal{B}(B^0 \to D^{*+}\ell^-v) = (4.94 \pm 0.02_{stat} \pm 0.22_{syst})\%$ • Value of $|V_{ch}|$ Preliminary $|V_{cb}|_{BGL} = (40.9 \pm 0.3_{stat} \pm 1.0_{syst} \pm 0.6_{theo}) \times 10^{-3}$ $|V_{cb}|_{CLN} = (40.4 \pm 0.3_{stat} \pm 1.0_{syst} \pm 0.6_{theo}) \times 10^{-3}$ Lepton flavour universality tests Preliminary $R_{e/\mu} = 1.001 \pm 0.009_{stat} \pm 0.021_{syst}$ $\Delta AFB = (-4 \pm 16_{stat} \pm 18_{syst}) \times 10^{-3}$ $\Delta FL = 0.013 \pm 0.007_{stat} \pm 0.007_{syst}$

$B \rightarrow D\ell^+ \nu \text{ untagged (189/fb)}$ preliminary [arXiv:2210.13143]

Measurement

- $D\ell\nu$ kinematics are described by w only and the decay form factor contains a single function $f_+(w)$
- $D^+ \to K^- \pi^+ \pi^+$ and $D^0 \to K^- \pi^+$ are reconstructed and combined with an appropriately charged lepton (e or μ)
- Yields are extracted in 10 bins of w by fitting the $\cos \theta_{BY}$ distributions
- Main challenges: background model, in particular $B \to D^* \ell \nu$ downfeed (significant despite active D^* veto)

• Together with LQCD data by FNAL/MILC [Phys. Rev. D92, 034506] and HPQCD [Phys. Rev. D92, 054510]

Average over B^0 and B^+ , and e and μ

15

 $B \rightarrow \pi \ell \nu$

The golden mode for $|V_{\mu b}|$ exclusive

- Differential rate in terms of $q^2 = (p_{\ell} + p_{\nu})^2$ $\frac{d\Gamma(B^0 \to \pi^- \ell^+ \nu)}{da^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |p_\pi|^3 |f_+(q^2)|^2$
- BCL extraction of $|V_{\mu b}|$ [Phys.Rev.D79, 013008; Erratum-ibid. D82, 099902]
 - Measure the differential rate in bins of q^2
 - Theory calculates $f_+(q^2)$ at values of q^2
 - Combined fit to the BCL expansion to determine $|V_{ub}|$ and b_k (z is a map of q^2)

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{k=0}^{K-1} b_{k} \left[z^{k} - (-1)^{k-K} \frac{k}{K} z^{K} \right]$$

Measurement

- The yield in 6 bins of q^2 is determined from $\Delta E = E_B^* - E_{\text{beam}}^*$
- Bin-by-bin unfolding to correct migration

• Charged π mesons are combined with e or μ , the neutrino direction is reconstructed inclusively

a fit to
$$M_{bc} = \sqrt{E_{\text{beam}}^{*2} - |\vec{p}_B^*|^2} \text{ vs}$$

BCL fit result

LQCD input from FNAL/MILC [Phys. Rev. D92, 014024]

$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) = (1.426 \pm 0.056(\text{stat}) \pm 0.125(\text{syst})) \times 10^{-4}$ $|V_{ub}|_{B^0 \to \pi^- \ell^+ \nu_\ell} = (3.55 \pm 0.12 (\text{stat}) \pm 0.13 (\text{syst}) \pm 0.17 (\text{theo})) \times 10^{-3}$

Preliminary	Systematic uncertainties on the yield										
Source		В	$^{0} \rightarrow c$	$\pi^- e^+$	$ u_e$			B^{0}	$r^{0} \rightarrow \tau$	$\overline{r^-\mu^+}$	$ u_{\mu}$
	q1	q2	q3	q4	q5	q6	q1	q2	q3	q4	q5
Detector	1.2	1.0	1.1	1.4	2.3	2.4	2.3	3.2	3.3	1.2	1.9
MC sample size	4.0	2.0	2.4	2.8	3.9	5.6	3.9	2.0	2.3	2.7	3.4
Continuum	13.1	5.5	4.4	7.8	10.5	33.9	53.3	8.8	3.2	4.5	8.0
$B o ho \ell u$	9.5	12.5	9.7	6.9	3.4	12.9	8.7	11.6	8.6	6.3	3.3
$B\to X_u\ell\nu$	3.3	1.9	2.1	2.1	1.8	3.7	3.4	2.3	2.0	2.3	2.1
$B\to X_c\ell\nu$	2.3	3.0	1.1	0.8	0.5	2.4	2.4	1.5	1.5	0.8	0.5
Total syst.	17.2	14.3	11.2	11.1	12.0	37.0	53.4	15.2	10.3	8.7	9.7
Stat.	10.2	6.01	6.86	8.08	10.3	13.2	10.4	6.0	6.4	7.8	9.1
Total	20.2	15.5	13.2	13.7	15.9	39.2	54.5	16.4	12.2	11.6	13.

Summary and conclusion

- $|V_{ch}|$ and $|V_{\mu b}|$
 - Belle II is in a unique position for these measurements due to its low multiplicity events and the $\Upsilon(4S)$ kinematics
 - These determinations can be *exclusive* or *inclusive*
- There is a long-standing discrepancy between inclusive and exclusive determinations that limits our understanding of these fundamental parameters
- Belle II is aiming at resolving the situation by
 - Repeating the analyses on independent data sets with improved experimental tools
 - Addressing potential issues in previous analyses (form factor dependence, slow pion dependence, use of LQCD input, ...)

• Semileptonic B meson decays allow to determine the Cabibbo-Kobayashi-Maskawa matrix elements

Summary and conclusion (2)

• Recent Belle II results on exclusive decays

	$ V_{cb} \times 10^3$		Reference
Belle II $B^0 \to D^{*-} \ell^+ \nu$ untagged	40.9 ± 1.2 (BGL)	Prelimina	To be submitted to PRD
Belle II $B^0 \to D^{*-} \ell^+ \nu$ tagged	37.9 ± 2.7 (CLN)	Prelimina	ry [arXiv:2301.04716]
Belle II $B \to D\ell\nu$ untagged	38.28 ± 1.16 (BGL)	Prelimina	ry [arXiv:2210.13143]
	$ V_{ub} \times 10^3$		Reference
Belle II $B \to \pi e \nu$ tagged	3.88 ± 0.45	Prelimin	ary [arXiv:2206.08102]
Belle II $B \to \pi \ell \nu$ untagged	3.55 ± 0.25	Prelimin	ary [arXiv:2210.04224]

WA values [HFLAV 2021] $|V_{cb}|_{excl} = (39.10 \pm 0.50) \times 10^{-3}$ $|V_{ub}|_{excl} = (4.19 \pm 0.17) \times 10^{-3}$

Backup

Belle II timeline Luminosity projection

$B^0 \rightarrow D^{*-} \ell^+ \nu$ untagged (189/fb) Data & MC comparison (*e* channel)

$B^0 \rightarrow D^{*-} \ell^+ \nu$ untagged (189/fb) Data & MC comparison (μ channel)

$B^0 \rightarrow D^{*-} \ell^+ \nu$ untagged (189/fb) CLN fit

Preliminary

Fitted values w/o LQCD predictions

	Values	Correlations	χ^2/ndf
$ ho^2$	1.25 ± 0.06	1.00 0.37 -0.81 0.32	
$R_1(1)$	1.15 ± 0.07	0.37 1.00 -0.52 -0.08	30/31
$R_2(1)$	0.88 ± 0.04	-0.81 -0.52 1.00 -0.10	59/51
$ V_{cb} \times 10^3$	40.4 ± 1.2	0.32 -0.08 -0.10 1.00	

Relative uncertainties (in %)

	$ ho^2$	$R_{1}(1)$	$R_{2}(1)$	$ V_{cb} $	_
Statistical	2.8	3.7	2.9	0.6	-
Finite MC samples	2.5	3.3	2.4	0.6	
Signal modelling	2.7	3.2	2.1	0.4	
Background subtraction	1.5	1.3	1.4	0.3	
Lepton ID efficiency	0.2	1.5	0.3	0.3	
Slow pion efficiency	1.1	0.6	0.8	1.5	
Tracking of K, π, ℓ	-	-	-	0.5	>
$N_{B\overline{B}}$	-	-	-	0.8	Eully com
$f_{+-}/f00$	-	-	-	1.3	
$\mathcal{B}(D^{*+} \to D^0 \pi^+)$	-	-	-	0.4	> therefor
$\mathcal{B}(D^0 \to K^- \pi^+)$	-	-	-	0.4	doesn't c
B^0 lifetime	-	-	-	0.1	J
Total	5.0	6.2	4.7	2.5	-

$|V_{cb}|_{CLN} = (40.4 \pm 0.3_{stat} \pm 1.0_{syst} \pm 0.6_{theo}) \times 10^{-3}$ Preliminary

Preliminary Fitted values with LQCD predictions

	Constraints on	Constraints on
	$h_{A_1}(w)$	$h_{A_1}(w), R_1(w), R_2(w)$
$h_{A_1}(1)$	0.91 ± 0.02	0.94 ± 0.02
$ ho^2$	1.24 ± 0.05	1.22 ± 0.05
$R_1(1)$	1.15 ± 0.07	1.27 ± 0.04
$R_{2}(1)$	0.88 ± 0.04	0.90 ± 0.03
$ V_{cb} \times 10^3$	40.5 ± 1.2	39.1 ± 1.1
χ^2/ndf	39/33	67/39
p-value	0.22	0.003

related between $\Delta\Gamma$, re only affects normalization, contribute to shape

$B^0 \rightarrow D^{*-} \ell^+ \nu$ untagged (189/fb) Lepton flavour universality tests

Preliminary Angular asymmetry Obtained results: $\mathcal{A}_{\rm FB}^e = 0.219 \pm 0.011 \pm 0.020$, Preliminary ${\cal A}^{\mu}_{\rm FB} = 0.215 \pm 0.011 \pm 0.022 \,,$

lacksquare

