Novel lattice insights into heavy-light meson decays

Justus Tobias Tsang CERN

Electroweak Moriond

20 March 2023

Outline

Introduction

2 Paper 1: $B_s \rightarrow K \ell \nu$ form factors from RBC/UKQCD

Paper 2: Bayesian inference for form-factor fits regulated by unitarity and analyticity

Conclusions and Outlook

Exclusive semileptonic $B_s \rightarrow K \ell \nu$ decays on the lattice

J.M. Flynn,^{1, 2, *} R.C. Hill,^{3, †} A. Jüttner,^{1, 4, 2, †} A. Soni,^{5, §} J.T. Tsang,^{4, ¶} and O. Witzel^{6, **} (RBC/UKQCD)

¹ Physics and Astronomy. University of Southampton, Southampton SO17 1BJ, UK ²STAO Research Center, University of Southampton, Southampton SO17 1BJ, UK ³School of Physics and Astronomy, University of Edinburgh, Edinburgh,

Semileptonic $B_{1} \rightarrow Kcb$ decays provide an alternative b-decay channel to determine the CRM matrix element $|||_{A_{1}}$ and to obtain a fractistic to irresciptic lepton-flavor-universally violations. Results for the CKM matrix element may also also light on the discrepancies need between analyses with the the CKM matrix element may also also light on the discrepancies need between analyses with the comparison of the second sec Bayesian inference for form-factor fits regulated by unitarity and analyticity

J.M. Flynn,^{a,b} A. Jüttner,^{a,b,c} J.T. Tsang^c

^aSchool of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK ^bSTAG Research Centre, University of Southampton, Southampton, SO17 1BJ, UK ^c Theoretical Physics Department, CERN, Geneva, Switzerland E-mail: ⁱ, in flynm@soton.ac.uk, Andreas.Juttner@cern.ch.

j.t.tsang@cern.ch

ABSTRACT: We propose a model-independent framework for fitting hadronic form-factor data, which is often only available at discrets (hiermatical points, to unitarity- and analyticitybased parameterisations. In this novel approach the latter two properties of quantum-field theory regulate this ill-posed problem and allow to determine model-independent predictions over the entire physical range. Kienmatical constraints, which exist for example for the vector and scalar form factor of semileptonic meson decays can be imposed exactly. The core formulae are straight-forward to implementary material. As well as proposing a genealsed version of the Boyd Grinstein Lebed (BGL) unitarity constraint for form factors, we demonstrate the novel method for the case of exclusive semileptonic decay $B_{\rm sc} \rightarrow Kt\nu$, for which we make a number of phenomenologically relevant predictions, such as for instance the CKM matrix element $V_{\rm sol}$.

1/18

J. Tobias Tsang (CERN)

Novel lattice insights into heavy-light meson decays

Where to find New Physics?

- 1. Direct searches:
- \Rightarrow Bump in the spectrum
- Indirect searches:
 Precision tests of SM:

 → Quantum corrections due to new particles modify SM predictions
 → NP shows as discrepancy between experiment and theory

\Rightarrow Over-constrain SM

$$\begin{split} |V_{ub}|_{\rm exclusive}^{\rm FLAG21} &= 3.74(17)\times 10^{-3} \\ |V_{ub}|_{\rm inclusive}^{\rm PDG22} &= 4.13(26)\times 10^{-3} \end{split}$$

e.g. $|V_{ub}|$ can be determined from different, i.e. **complementary** channels:

• $B \to \pi \ell \nu$

•
$$B_s \to K \ell \nu$$

•
$$\Lambda_b \to p\ell\nu$$

Extracting $|V_{ub}|$ from $B_s \to K \ell \nu$

$$\begin{split} & \text{Experiment} \approx CKM \times \text{non-perturbative} \times (\text{PT+kinematics}) \\ & \frac{d\Gamma(B_s \to K\ell\nu_\ell)}{dq^2} \approx |V_{ub}|^2 \times \left[\left| f_+(q^2) \right|^2 \mathcal{K}_1 + \left| f_0(q^2) \right|^2 \mathcal{K}_2 \right] \end{split}$$

- L.H.S. has been measured by LHCb
- \mathcal{K}_1 and \mathcal{K}_2 contain η_{EW} , G_F , m_ℓ , M_{B_s} , M_K , E_K all known!
- Compute non-perturbative form factors $f_+(q^2)$ and $f_0(q^2)$ \Rightarrow e.g. from Lattice QCD.

Lattice QCD in a nutshell

Based on the Path Integral formulation.

$$\langle \mathcal{O} \rangle_{\mathcal{M}} = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi, \overline{\psi}, U] \mathcal{O}[\psi, \overline{\psi}, U] e^{iS[\psi, \overline{\psi}, U]}$$

Minkowski: Highly oscillatory, infinite dimensional integral.

 \Rightarrow Wick rotate to Euclidean (i.e. imaginary) time ($t \rightarrow i\tau$).

$$\langle \mathcal{O} \rangle_{\mathsf{E}} = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi, \overline{\psi}, U] \mathcal{O}_{\mathsf{E}}[\psi, \overline{\psi}, U] e^{-S_{\mathsf{E}}[\psi, \overline{\psi}, U]}$$

Euclidean: Exponentially decaying, infinite dimensional integral. X

 \Rightarrow Discretise space-time and interpret as a probability distribution.

- Lattice spacing a (UV regulator) $\int \rightarrow \sum, \partial \rightarrow$ finite differences
- Box of length *L* (IR regulator) Evaluate stochastically
- Lattice: Exponentially decaying and finite dimensional

Set up of our calculation and required extrapolations

Simulations

- 3 *a* ∈ [0.07, 0.11] fm.
- finite volume $L \Rightarrow$ discrete momenta $\boldsymbol{p} = \frac{2\pi}{L} \boldsymbol{n}$.
- heavier-than-physical $M_{\pi}^{sim} \in [270, 430] \, \mathrm{MeV}.$

Physics

- Need to recover $a \rightarrow 0$ limit.
- Need continuous description of $q^2 = M_{B_s}^2 + M_K^2 2M_{B_s}E_K$.
- Recover physical light quark masses.

Use HM χPT [NP B812 64,NP 840 54,PRD 67 054010] for extrapolation:

$$f_{X}^{B_{s} \to K}(M_{\pi}, E_{K}, a^{2}) = \frac{\Lambda}{E_{K} + \Delta_{X}} \Big[c_{X,0} \Big(1 + \frac{\delta f(M_{\pi}^{s}) - \delta f(M_{\pi}^{p})}{(4\pi f_{\pi})^{2}} \Big) \\ + c_{X,1} \frac{\Delta M_{\pi}^{2}}{\Lambda^{2}} + c_{X,2} \frac{E_{K}}{\Lambda} + c_{X,3} \frac{E_{K}^{2}}{\Lambda^{2}} + c_{X,4} (a\Lambda)^{2} \Big]$$

(+vary fit ansatz + estimate missing/H.O. terms)

RBC/UKQCD 23 Fit results f_+

 \Rightarrow take maximal deviation between the chosen fit and fit variation as fit-systematic value.

Assembling the error budget

- Dominated by statistical and fit systematic uncertainties ⇒ both improvable!
- Most precise near $q_{\rm max}^2$
- Data covers range $q^2 > 17\,{
 m GeV}^2$

Caveat: HM χ PT in terms of f_+ , f_0 or f_{\parallel} , f_{\perp} ?

Recall $1/(E_{\mathcal{K}} + \Delta_X)$ -term in HM χ PT

$$\begin{split} \Delta_+ &= M_{B^*(1^-)} - M_{B_s}, M_{B^*(1^-)} = 5.32471\,{\rm GeV} \qquad (\text{exp.}) \\ \Delta_0 &= M_{B^*(0^+)} - M_{B_s}, M_{B^*(0^+)} = 5.63\,{\rm GeV} \qquad (\text{the.}) \end{split}$$

 f_{\parallel}, f_{\perp} directly accessible from lattice.

$$\begin{split} f_0(q^2) &= \frac{\sqrt{2M_{B_s}}}{M_{B_s}^2 - M_K^2} \left[(M_{B_s} - E_K) f_{\parallel}(E_K) + (E_K^2 - M_K^2) f_{\perp}(E_K) \right] \\ f_+(q^2) &= \frac{1}{\sqrt{2M_e}} \left[f_{\parallel}(E_K) + (M_{B_s} - E_K) f_{\perp}(E_K) \right] \,, \end{split}$$

Is the assumption $\Delta_{\parallel} \sim \Delta_0$, $\Delta_{\perp} \sim \Delta_+$ and extrapolation in f_{\perp} , f_{\parallel} , <u>before</u> converting to f_+ , f_0 justified?

Extracting $|V_{ub}|$ from $B_s \rightarrow K \ell \nu$ – in practice

$$rac{d \Gamma(B_s
ightarrow K \ell
u_\ell)}{dq^2} pprox |V_{ub}|^2 imes \left[\left| f_+(q^2)
ight|^2 \mathcal{K}_1 + \left| f_0(q^2)
ight|^2 \mathcal{K}_2
ight]$$

• Two bins for LHCb measurement

$$R_{BF} \equiv \frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)}$$

$$\begin{split} q^2 &\leq 7 \, {\rm GeV^2} \colon \ \ R_{BF}^{\rm low} = 1.66(80)(86) \times 10^{-3} \,, \\ q^2 &\geq 7 \, {\rm GeV^2} \colon \ \ R_{BF}^{\rm high} = 3.25(21) \binom{+18}{-19} \times 10^{-3} \,. \end{split}$$

• Lattice: Controlled uncertainties for $17 \text{ GeV}^2 \lesssim q^2$. Way out: Model Independent *z*-expansion!

Extrapolating over the full kinematic range: z-expansion

- Lattice data typically limited to $q^2 \in [q^2_{\min, sim}, q^2_{\max}].$
- Want form factors over full range $[0, q_{\max}^2]$.
- Ff's satisfy kinematic constraint $f_+(0) = f_0(0)$.
- Map $q^2 \in [0,q^2_{\max}]$ to $z \in [z_{\min},z_{\max}]$ with |z| < 1 and branch cut $t_*.$

$$z(q^2; t_0) = rac{\sqrt{t_* - q^2} - \sqrt{t_* - t_0}}{\sqrt{t_* - q^2} + \sqrt{t_* - t_0}}$$

• Form factor is a polynomial in *z* after poles have been removed e.g. BGL: Boyd, Grinstein, Lebed [PRL 74 4603]:

$$f_X(q^2) = \left(\prod_{\text{poles}} rac{1}{B_X(q^2)}
ight) rac{1}{\phi_X(q^2)} \sum_{n\geq 0} a_{X,n} z^n$$

Goal: Determine some un-truncated number of coefficients $a_{X,n}$ to obtain model independent parameterisation

10 / 18

J. Tobias Tsang (CERN)

Novel lattice insights into heavy-light meson decays

Unitarity constraint

Substituting BGL into the unitarity constraint

$$\frac{1}{2\pi i} \oint_C \frac{dz}{z} |B_X(q^2)\phi_X(q^2,t_0)f_X(q^2)|^2 \leq 1,$$

gives

$$\left| \boldsymbol{a}_{X} \right|^{2} \leq 1$$

(see Paper 2 for details of a modified version of this constraint)

- MUST be satisfied for any believable fit!
- Any z-expansion fit must necessarily be truncated.
- Strong constraint on allowed size of coefficients $a_{X,i}$.
- How can we best make use of this?

Frequentist z-expansion fit: pro's and con's

Small number of coefficients "survive" in chiral-continuum limit

$$f_X^{B_s \to K} = \frac{\Lambda}{E_K + \Delta_X} \left(c_{X,0} + c_{X,2} \frac{E_K}{\Lambda} + c_{X,3} \frac{E_K^2}{\Lambda^2} \right)$$

 \Rightarrow limited number of independent data points N_X - typically \approx 2-4 per ff.

 \Rightarrow Maximum meaningful truncation K_X of the z-expansion requires

$$N_+ + N_0 - K_+ - K_0 + 1 = N_{\mathrm{dof}} \ge 1$$

Goal: Determine **a**, given data **f**, covariance C_f and Z (encoding ϕ_X, B_X , kinematic constraint)

$$\chi^2(\boldsymbol{a},\boldsymbol{f}) = [\boldsymbol{f} - \boldsymbol{Z}\boldsymbol{a}]^T C_{\boldsymbol{f}}^{-1} [\boldsymbol{f} - \boldsymbol{Z}\boldsymbol{a}]^T$$

pro Clear measure to assess quality of fit (*p*-value).

con No satisfactory way to assess systematic effect of truncation.

con Can only check unitarity constraint a posteriori.

12 / 18

Our prior knowledge

Our prior knowledge about probability distribution for

- 1. data points $\pi_{\boldsymbol{f}}(\boldsymbol{f}|\boldsymbol{f}_{p},C_{\boldsymbol{f}_{p}}) \propto \exp\left(-\frac{1}{2}(\boldsymbol{f}-\boldsymbol{f}_{p})^{T}C_{\boldsymbol{f}_{p}}^{-1}(\boldsymbol{f}-\boldsymbol{f}_{p})\right)$
- 2. BGL ansatz: $\pi_f(\boldsymbol{f}|\boldsymbol{a}, Z) \propto \delta(|\boldsymbol{f} Z\boldsymbol{a}|)$
- 3. unitarity (and possible extra knowledge \boldsymbol{a}_{p}, M): $\pi_{\boldsymbol{a}}(\boldsymbol{a}|\boldsymbol{a}_{p}, M) \propto \theta(1 - |\boldsymbol{a}_{+}|^{2}) \theta(1 - |\boldsymbol{a}_{0}|^{2}) \exp\left(-\frac{1}{2}(\boldsymbol{a} - \boldsymbol{a}_{p})^{T} M(\boldsymbol{a} - \boldsymbol{a}_{p})\right)$

Marginalising over f (using 1. and 2.) gives

$$\pi_{\boldsymbol{a}}(\boldsymbol{a}|\boldsymbol{f}_{p}, C_{\boldsymbol{f}_{p}}) \propto \exp\left(-rac{1}{2}\chi^{2}(\boldsymbol{a}, \boldsymbol{f}_{p})
ight)$$

Now combining these

$$\pi_{\boldsymbol{a}}(\boldsymbol{a}|\boldsymbol{f}_{p}, C_{\boldsymbol{f}_{p}})\pi_{\boldsymbol{a}}(\boldsymbol{a}|\boldsymbol{a}_{p}, M) \propto \theta(\boldsymbol{a}) \exp\left(-\frac{1}{2}\chi^{2}(\boldsymbol{a}, \boldsymbol{f}_{p}) - \frac{1}{2}(\boldsymbol{a} - \boldsymbol{a}_{p})^{T}M(\boldsymbol{a} - \boldsymbol{a}_{p})\right)$$
$$= \theta(\boldsymbol{a}) \exp\left(-\frac{1}{2}(\boldsymbol{a} - \tilde{\boldsymbol{a}})^{T}C_{\tilde{\boldsymbol{a}}}^{-1}(\boldsymbol{a} - \tilde{\boldsymbol{a}})\right)$$

with $\tilde{\pmb{a}} = \tilde{C}_{\pmb{f}_p}(Z^T C_{\pmb{f}_p}^{-1} \pmb{f}_p + M \pmb{a}_p)$ and $C_{\tilde{\pmb{a}}}^{-1} = Z^T C_{\pmb{f}_p}^{-1} Z + M$

Bayesian Inference regulated by unitarity and analyticity

Compute the expectation value g(a) in the presence of "prior knowledge B" via Bayes' theorem as (with normalisation $\mathcal{Z} = \int da \pi(a|B)$)

$$egin{aligned} \langle g(m{a})
angle &= rac{1}{\mathcal{Z}} \int dm{a} \, g(m{a}) \, \pi(m{a}|B) \,, \ &= rac{1}{\mathcal{Z}} \int dm{a} \, g(m{a}) \, heta(1 - |m{a}_+|^2) \, heta(1 - |m{a}_0|^2) \exp\left(-rac{1}{2}(m{a} - ilde{m{a}})^T C_{ ilde{m{a}}}^{-1}(m{a} - ilde{m{a}})
ight) \,. \end{aligned}$$

⇒ Computable via Monte-Carlo integration by drawing from multivariate normal distribution $\mathcal{N}(\tilde{a}, C_{\tilde{a}})^1$.

con No clear measure to assess quality of fit (*p*-value).

pro Unitarity constraint automatically satisfied

pro Remove truncation error by computing as many terms as relevant

¹See paper 2 for details about an efficient algorithm without any assumption of prior knowledge M

Results I: RBC/UKQCD

- B.I. converges from $(K_+, K_0) \sim (5, 5)$
- $10^3 \times |V_{ub}| = 3.78(61)$
- $R_{B_s \to K} = 0.77(16)$
- $R_{B_s \to K}^{impr} = 1.72(11)$

 \Rightarrow more pheno in paper 1

Novel lattice insights into heavy-light meson decays

Results II: Joint analysis to multiple datasets

• Easy to jointly fit multiple datasets without any truncation systematic

 \Rightarrow more pheno in paper 2

Results III: Bayesian Inference vs Dispersive Matrix Method

- BI and DM produce equivalent results
- BI simpler to implement + easily to combine with multiple data sets
- BI provides numerical value of the coefficients

Conclusions and Outlook

Paper 1

- RBC/UKQCD 23 update for $B_s \rightarrow K \ell \nu$
- Identified possible reason for tensions between lattice results
- Removed systematic due to truncation of *z*-expansion via Bayesian Inference procedure
- Proposed improved *R*-ratio to better test Lepton Flavour Universality (see paper)
- Pheno: $|V_{ub}|$, *R*, R^{imp} , FB and polarisation asym's, decay rates ... (see paper)

Paper 2

- Model-independent Bayesian Inference procedure based only on analyticity and unitarity
- easy to include multiple data sets
- modified unitarity constraint for $B_s \to K \ell \nu$ (see paper)
- proposed efficient algorithm and implementation (see paper)
- compatible with Dispersive Matrix method

 \Rightarrow More broadly applicable – we keep on working on other decays...

ADDITIONAL SLIDES

RBC/UKQCD 23 Fit results f₀

Improving lepton flavour universality tests

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} = \underbrace{\frac{\eta_{EW} |V_{qb}|^{2} G_{F}^{2}}{24\pi^{3}}}_{\Phi} \underbrace{\left(1 - \frac{m_{\ell}^{2}}{q^{2}}\right)^{2} \left[\left(1 + \frac{m_{\ell}^{2}}{2q^{2}}\right)}_{\omega_{\ell}} \underbrace{|\vec{p}|^{3} |f_{+}(q^{2})|^{2}}_{F_{V}^{2}} + \underbrace{\frac{3(m_{B_{s}}^{2} - m_{K}^{2})^{2}}{8q^{2}m_{B_{s}}^{2}} |\vec{p}| m_{\ell}^{2} |f_{0}(q^{2})|^{2}}_{(F_{s}^{\ell})^{2}/(1 + m_{\ell}^{2}/2q^{2})} + \underbrace{\frac{3(m_{B_{s}}^{2} - m_{K}^{2})^{2}}{8q^{2}m_{B_{s}}^{2}}}_{(F_{s}^{\ell})^{2}/(1 + m_{\ell}^{2}/2q^{2})}}$$

can be rewritten so that only ω_{ℓ} and F_{S}^{ℓ} depend on the lepton mass, i.e.

$$\frac{\mathrm{d}\boldsymbol{\Gamma}}{\mathrm{d}\boldsymbol{q}^2} = \boldsymbol{\Phi}\,\omega_\ell\left[\boldsymbol{F}_V^2 + (\boldsymbol{F}_S^\ell)^2\right]$$

Define $R_{\mathrm{imp}}^{ au/\mu}(K)$ as (changes in red) [motivated by Isidori, Sumensari'20]

$$R_{\rm imp}^{\tau/\mu}(K) \equiv \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} {\rm d}q^2 \frac{{\rm d}\Gamma}{{\rm d}q^2}(B_s \to K\tau\nu_\tau)}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} {\rm d}q^2 \left[\frac{\omega_\tau(q^2)}{\omega_\mu(q^2)}\right] \frac{{\rm d}\Gamma}{{\rm d}q^2}(B_s \to K\mu\nu_\mu)}$$

Noting that $(F_S^\ell)^2 \propto m_\ell^2 \sim 0$ for $\ell=\mu,e$ the SM prediction becomes

$$R^{\tau/\mu}(K) = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \mathrm{d}q^2 \Phi \,\omega_{\tau}(q^2) \left[F_V^2 + (F_S^{\tau})^2\right]}{\int_{q_{\min}^2}^{q_{\max}^2} \mathrm{d}q^2 \Phi \,\omega_{\tau}(q^2) F_V^2} \approx 1 + \frac{\int_{q_{\min}^2}^{q_{\max}^2} \mathrm{d}q^2 \Phi \,\omega_{\tau}(q^2) (F_S^{\tau})^2}{\int_{q_{\min}^2}^{q_{\max}^2} \mathrm{d}q^2 \Phi \,\omega_{\tau}(q^2) F_V^2}$$

 \Rightarrow Experiment and theory might profit from cancellations!

18 / 18

J. Tobias Tsang (CERN)

Novel lattice insights into heavy-light meson decays