Decay-time dependent CP-violation at Belle II Michele Veronesi, on behalf of the Belle II collaboration Moriond EW, 18-25 March 2023

Time-dependent CPV as discovery tool

- Measurements of sin2\$\overline{1}\$ in b->qqs transitions as a probe of beyond SM physics
 - Clean theory prediction (~few %)
 - Loop-suppressed, potentially affected by competing BSM amplitudes
- Experimentally challenging, due to
 - Small BF (~10⁻⁶) and neutrals in the final state (Ks, π^{0})
 - Sophisticated analysis techniques (tagging and Δt resolution)
- Validated with benchmark mixing and CPV analyses (B->D(*) π and B->J/ ψK_s)

M. Veronesi | Moriond EW 2023

NEW FOR MORIOND

Belle II at SuperKEKB

- Asymmetric e⁺e⁻ collisions at the SuperKEKB accelerator complex in Japan
 - Recorded world's highest instantaneous luminosity $(4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1})$
 - Collected 362 fb⁻¹ dataset at the Y(4s) in 2019-22, corresponding to 387M BB pairs
- Brand new detector, especially important for timedependent measurements
 - Excellent vertex resolution from pixel and silicon vertex detectors
 - Efficient neutrals reconstruction (π^{0} , K_s) and K/ π separation

M. Veronesi | Moriond EW 2023

e+e- collision

B-factory analysis 101

Beam-constrained mass [GeV/c²]

- High resolution (~2-10 MeV) high-level analysis variables (M_{bc}, ΔE),

M. Veronesi | Moriond EW 2023

Energy difference [GeV]

Event shape

separating signal from backgrounds, using to the knowledge of beam energy

Several event shape variables exploiting the correlations in e+e- collision

Time measurement Beam spot constraint

- Measuring the time difference Δt of coherently produced BB pairs from the decay of a Y(4S), boosted along z
- Improved vertex resolution from pixel in spite of lower boost ► Belle: $\beta\gamma=0.43$, $\Delta z\approx 200\mu m$ —> Belle II: $\beta\gamma=0.29$, $\Delta z\approx 130\mu m$
- Enhanced Δt resolution from the beam spot profile in combination with the new nano-beam scheme

M. Veronesi | Moriond EW 2023

Pixel detector radius ≈ 1.4 cm

Δm and sin $2\phi_1$

- measurements of time-dependent observables
- Main challenge: accurate understanding of vertex

M. Veronesi | Moriond EW 2023

• High-yield, low-background modes used for benchmark

resolution (Δt resolution ~1 ps) and tagging (ϵ_{tag} ~30%)

Δm and sin $2\phi_1$

$B \rightarrow \phi K_s$ new for moriond

Candidates / (3 MeV/c²)

- Clean experimental signature with similar Δt resolution as B->J/ ψK_s
- Main challenge: dilution from nonresonant decays with opposite CP
- Quasi-two body analysis of resonant B-> $\phi\,\text{K}_{\text{s}}$ decays
 - Non-resonant B->K+K-K_s component disentangled in cosθ
 - Effect of neglecting interference estimated with inputs from previous Dalitz measurements

M. Veronesi | Moriond EW 2023

$162\pm17 \text{ B->} \phi \text{K}_{s} \text{ signal}$ events with 387M BB pairs

$B \rightarrow \phi K_s$ new for moriond

- Simultaneous Δt fit to extract the CP asymmetries
 - ► B->K+K-K_s fixed from HFLAV
 - Validated on the B+ control sample (null asymmetry)
- Mostly unique to Belle II
 - On par with most precise determinations of ACP
 - ► 10-20% improvement on SCP for the same signal yield wrt Belle/BaBar determinations

M. Veronesi | Moriond EW 2023

(background subtracted)

HFLAV: $S = 0.74^{+0.11} - 0.13$, $A = -0.01 \pm 0.14$

$B \rightarrow K_s K_s K_s$ new for moriond

- Same underlying quark transition as $B \rightarrow \phi K_s$, w/o contributions from opposite-CP backgrounds
- Main challenge: no prompt tracks to form a vertex
 - Decay vertex reconstruction relies on the K_s trajectory and profile of the interaction point
 - Dataset divided into events with (TD) and without (TI) information from the vertex detector
- 2 BDTs to suppress fake K_s (kinematic/hits π^{\pm} tracks) and continuum (event shape variables)

 158^{+14}_{-13} 62±9 (II) B-> signal events with 387M BB pairs

M. Veronesi | Moriond EW 2023

Beam-constrained mass

$B \rightarrow K_s K_s K_s$ new for moriond

- Simultaneous fit to TI, TD events and $B^+->K_sK_sK^+$
 - TD events used in the Δt fit for the determination of ACP and SCP
 - TI events used only to constrain the timeintegrated asymmetry ACP
 - \blacktriangleright B+->K_sK_sK+ control sample to constrain background shapes and Δt resolution function
- On par with most precise determination of ACP and unique to Belle II

$$A_{CP} = 0.07^{+0.15}_{-0.20} \pm 0.02$$
$$S_{CP} = -1.37^{+0.35}_{-0.45} \pm 0.03$$

HFLAV: $S = -0.83 \pm 0.17$, $A = 0.15 \pm 0.12$

M. Veronesi | Moriond EW 2023

(background subtracted)

 $- q = +1, B_{tag}^0$

-- q = -1, \overline{B}_{tag}^{0}

60

50

30

20

10

Events per 3.0 ps

Belle II preliminary

 $Ldt = 362 \text{ fb}^{-1}$

 $40 \models B^0 \rightarrow K^0_S K^0_S K^0_S TD$

$B \rightarrow K_s T^0$ NEW FOR MORIOND

- Sensitive to effective value of $sin 2\phi_1$ and providing inputs to isospin sum-rule
 - See Sagar's talk this afternoon
- Needs excellent capabilities with neutrals, unique to Belle II
 - Validated on $B \rightarrow J/\psi K_s$ events reconstructed w/o J/ ψ vertex
 - Simultaneous TI/TD fit to maximize the sensitivity on ACP
- Competitive with world's best results with much less luminosity

M. Veronesi | Moriond EW 2023

Beam-constrained mass

HFLAV: $S = 0.57 \pm 0.17$, $A = -0.01 \pm 0.10$

Summary

- 3 new results on time-dependent CP observables with penguins for Moriond
 - Precision on par with world's best determinations in spite of much less luminosity
- These measurements are essential to probe generic BSM physics in loops
 - Belle II is in a unique position to improve our current experimental knowledge on these modes

Backup

Collected luminosity

- Collected 424 fb⁻¹ in 2019-2022
 - 362 fb⁻¹ at 4S (387x10⁶ BB pairs)
 - 42.3 fb⁻¹ at 4S off-resonance
 - 78 pb⁻¹ at 4S scan
 - 19.7 fb⁻¹ at energy scan

Long-shutdown activity and plans

Belle II stopped taking data in Summer 2022 for a long shutdown for

- replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- installation of 2-layered pixel vertex detector
- improved data-quality monitoring and alarm system
- complete transition to new DAQ boards (PCle40)
- replacing of ageing components
- additional shielding and increased resilience against beam background

Currently working on pixel detector installation:

- shipping to KEK in mid March
- final test in KEK scheduled in April

M. Veronesi | Moriond EW 2023

On track to resume data taking next Winter with new pixel detector.

e.g. B->J/ψKs

M. Veronesi | Moriond EW 2023

"Penguin" $b \rightarrow q\bar{q}s$ e.g. B-> ϕ K_s, B->K_s π^{0} , B->K_sK_sK_s

$b \rightarrow c \overline{c} s$

Experiment

Sample size

BABAR $b \to c \overline{c} s$	[324]
Belle $b \to c\overline{c}s$	[325]
LHCb $J/\psi K_S^0$	[326, 327]
LHCb $\psi(2S)K_s^0$	[327]

 $N(B\overline{B}) = 465M$ $N(B\overline{B}) = 772M$ $\int \mathcal{L} dt = 3 \text{ fb}^{-1}$ $\int \mathcal{L} dt = 3 \text{ fb}^{-1}$

Belle II (200M BB pairs) [arXiv:2302.12898]

M. Veronesi | Moriond EW 2023

 $-\eta S_{b\to c\overline{c}s}$

Most precise

 $0.687 \pm 0.028 \pm 0.012$ $0.667 \pm 0.023 \pm 0.012$ 0.75 ± 0.04 $0.84 \pm 0.10 \pm 0.01$

 $0.720 \pm 0.062 \pm 0.016$

 $C_{b \to c\overline{c}s}$

 $\begin{array}{l} 0.024 \pm 0.020 \pm 0.016 \\ -0.006 \pm 0.016 \pm 0.012 \\ -0.014 \pm 0.030 \\ -0.05 \pm 0.10 \pm 0.01 \\ -0.094 \pm 0.044 \substack{+0.042 \\ -0.017} \end{array}$

18

b qqs $N(B\overline{B})$ Experiment BABAR [262]470M0.66Belle [261] $657 \mathrm{M}$ 0.5 Belle II (362M BB pairs) [383]BABAR 468M0.9[384]Belle 722M0.71Belle II (362M BB pairs) -1 BABAR [381]467M0.55Belle [378]657M0.67 0.7 Belle II (362M BB pairs) M. Veronesi | Moriond EW 2023

$-\eta S_{b\to q\overline{q}s}$	$C_{b \to q \overline{q} s}$
ϕK^0	
$6\pm0.17\pm0.07$	$0.05 \pm 0.18 \pm 0.05$
$0.90 {}^{+0.09}_{-0.19}$	$-0.04 \pm 0.20 \pm 0.10 \pm 0.02$
$54 \pm 0.26^{+0.06}_{-0.08}$	$-0.31 \pm 0.20^{+0.05}_{-0.06}$
$K^{0}_{S}K^{0}_{S}K^{0}_{S}$	
$94^{+0.21}_{-0.24} \pm 0.06$	$-0.17 \pm 0.18 \pm 0.04$
$\pm 0.23 \pm 0.05$	$-0.12 \pm 0.16 \pm 0.05$
$1.37^{+0.35}_{-0.45} \pm 0.03$	$-0.07^{+0.15}_{-0.20} \pm 0.02$
$\pi^0 K^0$	
$5 \pm 0.20 \pm 0.03$	$0.13 \pm 0.13 \pm 0.03$
$7 \pm 0.31 \pm 0.08$	$-0.14 \pm 0.13 \pm 0.06$
$74^{+0.20}_{-0.23} \pm 0.04$	$-0.04 \pm 0.15 \pm 0.05$

Systematic uncertainties (1)

B->D(*)π

Source	$ au_{\!B^0}~\mathrm{[ps]}$	$\Delta m_d \ [\mathrm{ps}^{-1}]$
Fixed response-function parameters	0.006	0.003
Analysis bias	0.004	0.001
Detector alignment	0.003	0.002
Interaction-region precision	0.002	0.001
C-Distribution modeling	0.000	0.001
$\sigma_{\Delta t_{\ell}}$ -Distribution modeling	0.001	0.001
Correlations of ΔE or C and Δt_{ℓ}	0.001	0.000
Total systematic uncertainty	0.008	0.005
Statistical uncertainty	0.013	0.008

TABLE I. Systematic uncertainties.

M. Veronesi | Moriond EW 2023

B->J/ψKs

Source	$\overline{\sigma(S_{CP})}$	$\sigma(A_{CP})$
Statistical	0.0622	0.0439
Calibration with $B^0 \to D^{(*)-}\pi^+$ decays		
$B^0 \to D^{(*)-} \pi^+$ sample size	0.0111	0.0093
Signal charge-asymmetry	0.0027	0.0126
$w_6^+ = 0$ limit	0.0014	0.0001
Fit model		
Analysis bias	0.0080	0.0020
Fixed resolution parameters	0.0039	0.0008
$\sigma_{\Delta t}$ binning	0.0050	0.0051
$ au_{B^0},\Delta m_d$	0.0007	0.0002
Δt measurement		
Alignment	0.0020	0.0042
Beam spot	0.0024	0.0020
Momentum scale	0.0005	0.0013
$B^0 \to J/\psi K_S^0 \ \Delta E$ background shape	0.0037	0.0015
Multiple candidates	0.0005	0.0008
CP violation in B_{tag}^0 decays	0.0020	$+0.0380 \\ -0.0000$
Total systematic	0.0163	$+0.0418 \\ -0.0174$

Systematic uncertainties (2)

B->K_sπ⁰

Source	δA_{CP}	δS_{CP}
Flavor tagging	0.013	0.011
Resolution function	0.014	0.022
$Bar{B}$ background asymmetry	0.030	0.018
qq background asymmetry	0.028	< 0.001
Signal modelling	0.004	0.003
Background modelling	0.006	0.018
Possible fit bias	0.005	0.011
External inputs	< 0.001	< 0.001
Tag-side interference	0.008	0.010
VXD misalignment	0.004	0.005
Total	0.045	0.039

Source	$\delta \mathcal{S}$	$\delta \mathcal{A}$
Signal probability	0.014	0.008
Fit bias	0.014	0.004
Flavor tagging	0.013	0.012
Resolution function	0.013	0.008
Tag-side interference	0.011	0.006
Vertex reconstruction	0.011	0.004
Physics parameters	0.009	0.000
Detector misalignment	0.008	0.007
Background Δt shape	0.004	0.002
Total	0.032	0.020

M. Veronesi | Moriond EW 2023

B->KsKsKs

B->¢Ks

Source	$\sigma(A_{CP})$	σ
Calibration with $B^0 \to D^{(*)-}\pi^+$ dec	cays	
Calibration sample size	0.010	(
Calibration sample systematic	0.010	(
Portability to $B^0 \to \phi K_s^0$	$+0.000 \\ -0.005$	+
Analysis model	0.000	
Fit bias	+0.017 -0.028	+
Correlations between observables	+0.000 -0.030	+
$B^0 \to K^+ K^- K^0_{\alpha}$ backgrounds	+0.000 +0.000	-+
Fixed fit shapes	-0.020 0.009	(
$\tau_d \text{ and } \Delta m_d$	0.006	(
$A_{CP}^{K^+K^-K}$ and $S_{CP}^{K^+K^-K}$	0.014	(
$B\overline{B}$ backgrounds	+0.030	+
Tag-side interference	+0.000	-+
Multiple candidates	+0.032	- +
Δt measurement	-0.000	_
Detector misalignment	+0.002	+
Momentum scale	-0.000 0.001	(
Beam spot	0.002	(
Δt approximation	+0.000	+
Total systematic	+0.000 +0.052	- +
Statistical	<u> </u>	
DuauISuICal	U.4U1	U

Flavor tagging and resolution

M. Veronesi | Moriond EW 2023

arXiv:2302.12791

B->D(*)π

$B \rightarrow \phi K_s$

$B -> K_s \pi^0$

$B \rightarrow K_s K_s K_s$

