Rare charm and beauty decays at LHCb

Fernando Abudinén on behalf of the LHCb collaboration

LHCD

57th Rencontres de Moriond March 20, 2023

Rare charm and beauty decays

Decays of *c* and *b* hadrons occurring via penguin or box diagrams in the Standard Model

- FCNC processes, suppressed by small size of offdiagonal CKM elements and GIM mechanism
- Sensitive to non-Standard Model contributions
- Offer multiple tests of symmetries of the SM
 - Measurements of angular and *CP* asymmetries
 - Measurements of lepton flavour universality
 - Searches for extremely rare and forbidden decays

Example: two possible contributions to

This talk

 μ^{-}

Outline

Recent results exploiting run I + II data set $(9fb^{-1})$ on searches for the decays

- FCNC decay with GIM and helicity suppression
- Key in constraining non-SM physics
- Receives two contributions within SM Short distance: $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 10^{-18}$ (*Z*-penguins, *W*-boxes) Long distance : $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 10^{-11}$ ($D^0 \to \gamma\gamma$ transitions) PRD.93.074001

PLB.2013.06.37

• Previous upper limit by LHCb (1fb⁻¹) $\mathcal{B}(D^0 \rightarrow \mu^+\mu^-) < 6.2 \cdot 10^{-9} \text{ at } 90\% \text{ CL}$

Analysis Strategy

- Reconstruct tagged $D^{*+} \rightarrow D^0 \pi^+$ decays
- Use a BDT against combinatorial background
- Use PID info to suppress $hh \rightarrow \mu\mu$ misID background
- Perform ML fit to $m(D^0)$ and $\Delta m = m(D^{*+}) m(D^0)$

Z-penguin contribution in the SM

LHCb-PAPER-2022-029

- Signal mode fit performed simultaneously in 3 BDT intervals
- MisID background yields constrained based on simulation and PDG
- Results from fit

 MeV/c^2

6.17

60 E

50

20

LHCb

 $0.666 \le BDT \le 1.0$

 $3 \, \text{fb}^{-1}$

Run I

 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 2.94 \,(3.25) \times 10^{-9} \text{ at } 90 \,(95)\% \text{ CL}$

Signal mode fit for most sensitive BDT interval

40

30

20

LHCb

 $0.666 \le BDT \le 1.0$

 $3 \, \text{fb}^{-1}$

Run I

145

145

 MeV/c^2

0.114

LHCb-PAPER-2022-029

Total

 $D^0 \rightarrow \mu^- \mu^+$

 $D^0 \rightarrow \pi^- \pi^+$

 $D^0 \rightarrow K^- \pi^+$

 $m(\mu^-\mu^+)$ [MeV/ c^2]

Combinatorial

Total

Total

- $D^0 \rightarrow \mu^- \mu^+$

Combinatorial

 $D^0 \rightarrow \pi^- \pi^+$

 $D^0 \rightarrow K^- \pi^+$

 $D^0 \rightarrow \mu^- \mu^+$

 $D^0 \rightarrow \pi^- \pi^+$

Combinatoria

150

150

 $\Delta m \left[\text{MeV}/c^2 \right]$

 $\Delta m \left[\text{MeV}/c^2 \right]$

Improvement by factor ≈ 2 wrt. previous result and most stringent limit of FCNC in charm sector

- $D^{*0} \rightarrow \mu^+ \mu^-$ decay probes same operators as $D^0 \rightarrow \mu^+ \mu^-$ decay \Rightarrow but not helicity suppressed
- D^{*0} decays strongly $\Rightarrow \mathcal{B}(D^{*0} \rightarrow \mu^+ \mu^-) \leq 10^{-19}$ within SM <u>JHEP11(2015)142</u>
- World's best limit by CMD-3:

 $\mathcal{B}(D^{*0} \rightarrow e^+e^-) < 1.7 \cdot 10^{-6} \text{ at } 90\% \text{ CL } \underline{\text{PAN83.954(2020)}}$

- High production rates of D*⁰ at LHCb
- \Rightarrow but bkg. level also high for decays at collision point
- Most promising approach EPJC82(2022)459 \Rightarrow Search within $B^- \rightarrow D^{*0} \pi^-$ decay chain
- \Rightarrow Exploit displaced B^- vertex signature to keep bkg. level low
- \Rightarrow LHCb run I sensitivity (10⁻⁷) better than world's best limit

LHCb-PAPER-2023-004 (in preparation)

Analysis Strategy

- Reconstruct $B^- \rightarrow D^{*0}(\mu^+\mu^-) \pi^-$ decays
- Use a BDT against combinatorial bkg.
- Use PID info to suppress $K \rightarrow \pi$ and $hh \rightarrow \mu\mu$ misID bkgs.
- Perform simultaneous ML fit to $m(D^{*0})$ and $m(B^{-})$
- Signal yield $N_{B^- \rightarrow D^{*0} \pi^-}$ from fit translated into BF via

$$\mathcal{B}\left(D^{*0} \to \mu^+ \mu^-\right) =$$

Efficiency ratio Known BFs

$$\frac{N_{D^{*0}\pi^{-}}}{N_{J/\psi K^{-}}} \cdot \frac{\varepsilon_{J/\psi K^{-}}}{\varepsilon_{D^{*0}\pi^{-}}} \cdot \frac{\mathcal{B}\left(B^{-} \to J/\psi K^{-}\right)}{\mathcal{B}\left(B^{-} \to D^{*0}\pi^{-}\right)} \cdot \mathcal{B}\left(J/\psi \to \mu^{+}\mu^{-}\right)$$

Normalisation yield

- Normalisation yield from fits to $m(J/\psi)$ and $m(B^-)$ of $B^- \rightarrow J/\psi(\mu^+\mu^-)K^-$ decays
- Efficiencies from sim. corrected for data/MC discrepancies

- Signal mode fit in 1 BDT interval (with max. sensitivity)
- Fit includes non-resonant $B^+ \to \pi^+ \mu^+ \mu^-$ and misID $B^+ \to K^+ \mu^+ \mu^-$ decays, and combinatorial bkg.
- Yields for all components vary freely in fit
- Fit converges to a slightly negative signal yield

$$N_{B^- \to D^{*0} \pi^-} = -2 \pm 3$$

Candidates per 20.5 MeV/c^2

14

12

10

 $16 \models LHCb 9 \text{ fb}^{-1}$

Preliminary

Signal mode fit

Data

Total fit

 $\rightarrow D^{*0}(\mu^+\mu^-)\pi^-$

 $\rightarrow \pi^{-}\mu^{+}\mu^{-}$

 $B^- \rightarrow K^- \mu^+ \mu^-$ Combinatorial

- Systematic uncertainties associated with normalisation, resolution and known BFs included as Gaussian constraints in signal mode fit
- Largest systematic originates from known BFs
- Results from fit to data

 $\mathcal{B}(D^{*0} \to \mu^+ \mu^-) = (-1.06 \pm 1.85) \cdot 10^{-8}$

⇒ Upper limit on branching fraction based on Feldman-Cousins method

 $\mathcal{B}(D^{*0} \to \mu^+ \mu^-) < 2.6 \,(3.4) \times 10^{-8} \text{ at } 90 \,(95)\% \text{ CL}.$

- \Rightarrow Most stringent upper limit on $D^{*0} \rightarrow \ell^+ \ell^-$ decays
- \Rightarrow First search of a rare charm-hadron decay exploiting production in beauty decays

LHCb-PAPER-2023-004 (in preparation)

10

Search for
$$B_{(s)}^0 \to p \mu^-$$
 decays

- Lepton number and baryon number violating decay
- Considering proton decay $\Rightarrow \mathcal{B}(\overline{b} \rightarrow uul^{-}) \leq 10^{-27} \text{ } \text{PRD.72.095001}$
- \Rightarrow Far from experimental sensitivity, but search feasible
- First search for this decay

Analysis Strategy

- Reconstruct $B_{(s)}^0 \to p \mu^-$ decays
- Use an MLP against combinatorial background
- Use PID info to suppress $hh \rightarrow p\mu$ misID background
- Perform ML fit to $m(p \mu^{-})$
- Use $B^- \to J/\psi(\mu^+\mu^-)K^-$ as normalisation mode

Search for $B_{(s)}^0 \to p \mu^-$ decays

- Signal mode fit performed simultaneously in 7 MLP intervals (least sensitive discarded)
- Semileptonic decays are dominant bkg. source
- Systematic uncertainties on normalisation included as Gaussian constraints in fit
- Results from fit to data

 $\mathcal{B}(B^0 \to p\mu^-) = (0.84 \pm 1.17 \pm 0.57) \times 10^{-9}$ $\mathcal{B}(B^0_s \to p\mu^-) = (4.28 \pm 3.99 \pm 2.29) \times 10^{-9}$

 \Rightarrow Upper limits based on CLs method at 90% (95)% CL

 $\mathcal{B}(B^0 \to p\mu^-) < 2.6 \ (3.1) \times 10^{-9}$ $\mathcal{B}(B^0_s \to p\mu^-) < 12.1 \ (14.0) \times 10^{-9}$

 \Rightarrow First upper limits on these decay modes

Search for $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$

- Lepton flavour violating decay
- Possible in SM with neutrino oscillation ($\mathcal{B} \leq 10^{-50}$)
- First search for this decay

Analysis Strategy

- Reconstruct $B^0 \rightarrow K^{*0} \tau^{\pm} \mu^{\mp}$ $\downarrow_{K^+\pi^-} \downarrow_{3\pi^{\pm}(\pi^0)\nu_{\tau}}$
- Use a BDT against combinatorial background
- Use a BDT against charmed mesons identified as τ
- Use PID info and veto background from D decays
- Fit to m_{corr} (partially recover missing energy)
- Use $B^0 \to D^-(K^+\pi^-\pi^-)D_s^+(K^+K^-\pi^+)$ as norm. mode

Contribution with neutrino oscillation

LHCb-PAPER-2022-021

Search for
$$B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$$

• Fit to $m_{\text{corr}} = \sqrt{p_{\perp}^2 + m_{K^*\tau\mu}^2 + p_{\perp}}$ Missing momentum perpendicular to B^0 direction

- Background modelled using control region in data with loosened combinatorial BDT requirement
- Systematic uncertainties on normalisation, bkg. model and BFs included as Gaussian constraints in signal fit
- Largest systematic uncertainty is choice of control region
- No excess observed over background-only hypothesis
- \Rightarrow Upper limits based on CLs method at 90% (95)% CL

$$\begin{aligned} \mathcal{B}(B^0 \to K^{*0} \tau^+ \mu^-) < 1.0 \ (1.2) \times 10^{-5} \\ \mathcal{B}(B^0 \to K^{*0} \tau^- \mu^+) < 8.2 \ (9.8) \times 10^{-6} \end{aligned}$$

- \Rightarrow First upper limits on these decay modes
- \Rightarrow Most stringent upper limits on $b \rightarrow s\tau\mu$

Summary and outlook

- Extremely rare and forbidden decays offer multiple constraints to non-SM contributions
- All measurements presented in this talk are world's best
- \Rightarrow But still a long way to go to get close to SM predictions
- Many new (and update) measurements exploiting run I + II data still to come
- ⇒ Decays into $e^{\pm} e^{\mp}$ modes, more LFV, LNV and BNV searches, baryonic decays, search for $V \rightarrow \mu^{+}\mu^{-}$ in B_{c}^{+} decays, ...
- LHCb Upgrade I (runs 3 4) will continue taking data (expect ~50 fb⁻¹ by 2030) and making measurements in the next few years
- \Rightarrow Stay tuned!

Backup

The LHCb experiment

- Single-arm forward spectrometer optimised for studies of beauty and charm hadrons
- Large cross sections: $\sigma_{b\bar{b}} \approx 280 (500) \,\mu b$, $\sigma_{c\bar{c}} \approx 1500 (3000) \,\mu b$ at 7(13) TeV

17

JHEP10(2015)172

JHEP03(2016)159

- Normalisation channel fits
- Used also as control channels to study data/MC agreement

Signal mode fit for all BDT bins using Run I data

 Signal mode fit for all BDT bins using Run II data

Search for $D^0 \rightarrow \mu^+ \mu^-$ decays

- π → μ PID efficiency obtained from simulation, cross checked with control samples in data
- Efficiency for two pions to pass the PID requirement (ProbNNmu variable)
- For D⁺_(s) → π⁺π⁻π⁺ data same-sign pions (π⁺π⁺) used to avoid contamination from hadronic resonances decaying into μ⁺μ⁻.

 \Rightarrow Agreement over the full range of the muon identification discriminant variable

Search for $D^0 \rightarrow \mu^+ \mu^-$ decays

Results of the CLs scan as a function of the branching fraction

Search for
$$B_{(s)}^0 \to p \mu^-$$
 decays

• Signal mode fit for all BDT bins using Run I data

23

Search for
$$B_{(s)}^0 \to p \mu^-$$
 decays

• Signal mode fit for all BDT bins using Run II data

24

Search for $B_{(s)}^0 \to p \mu^-$ decays

Results of the CLs scan as a function of the branching fraction

Search for $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$

- Normalisation channel fits
- Used also as control channels to study data/MC agreement

26

Search for $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$

Results of the CLs scan as a function of the branching fraction

