Lepton flavour universality tests in $b \rightarrow cl\nu$ decays at LHCb

Abhijit Mathad

On behalf of LHCb Collaboration 57th Recontres de Moriond EW 2023

University of Zurich^{UZH}

Credits: Link

Constrain CKM: |*V_{cb}*|

> b-hadron production properties

Test lepton flavour universality

> c-hadron decay/production properties

Neutral bhadron mixing properties

57th Recontres de Moriond 2023

 $b \rightarrow c l v$

decays

Lepton Flavour Universality (LFU)

- ➢In Standard Model, electroweak couplings to each lepton generation are identical (except Yukawa).
- ➢Couplings affected by New Physics (NP) contributions (particularly 3rd gen. of leptons).
- ➢Ratio of branching fraction (BF) of different lepton species ideal for testing LFU.

$$R(X_c) = \frac{BF(X_b \to X_c l\nu)}{BF(X_b \to X_c l'\nu)}$$
$$l, l' \in (e, \mu, \tau)$$

LFU ratio

$$R(X_c) = \frac{BF(X_b \to X_c l\nu)}{BF(X_b \to X_c l'\nu)}$$

$$l,l'\in(e,\mu,\tau)$$

Advantages

- Good statistical precision: Thanks to large b-hadron production and large BF.
- Theoretically and experimentally "clean": Common systematic and hadronic form factor uncertainties mostly cancel.

Challenges

- Missing neutrinos in the final state, affects the resolution of the observables @ LHCb.
 Large partially reconstructed background contamination.
 - Large simulation samples needed for modelling signal and bkg.

Hints of LFU

Two new players from LHCb

- Combined measurement of R(D) and R(D*) with muonic τ decay.
 Superseeding previous analysis (Run I data).
 - Announced in December 2022 [arXiv:2302.02886] (Submitted to PRL)

Measurement of R(D*) with hadronic τ decay.
 Updates previous analysis using partial Run II data.

Announced (a) La Thuile [LHCb-PAPER-2022-052] (In-preparation)

Combined measurement of $R(D^*)$ and R(D)

Credits: Nat Geo

Signal and normalisation

- ≻Use Run 1 (3 fb^{-1}) data.
- Use muonic τ decay with large BF (~17.4%).
- $\begin{array}{l} \succ \textbf{Signal decays:} \ \overline{B}{}^{0} \rightarrow D^{*+}\tau^{-}\overline{v}_{l}, \\ \text{B}^{-} \rightarrow D^{*0}\tau^{-}\overline{v}_{l} \text{ and } \text{B}^{-} \rightarrow D^{0}\tau^{-}\overline{v}_{l}. \end{array}$
- ≻Use two disjoint samples:
 - $[\mathbf{D}^{*+}\boldsymbol{\mu}^{-}]$: Signal $\overline{B}^{0} \to D^{*+}\tau^{-}\overline{v}_{l}$.
 - $[D^0\mu^-]$ veto D^{*+} : All 3 signals.
- ➢Use as normalisation semi-muonic decay (~ 20 times signal).

[arXiv:2302.02886]

(Submitted to PRL)

Separate signal and normalisation

- Require good separation w.r.t normalisation mode.
- ➢ For this, reconstruct B momentum (~20% resolution):
 - p_B^{\perp} using **flight direction**.
 - p_B^{\parallel} using **boost approx**. $p_B^{\parallel} \propto p_{vis}^{\parallel}$
- ► Use discriminating variables: q^2, m_{miss}^2 and E_l^* .

[arXiv:2302.02886]

(Submitted to PRL)

Feed-down bkg: Reduced with isolation requirement (MVA based) and modelled using simulation.

≻Misidentified K⁻/π⁻ → μ⁻ bkg: Reduced with PID cuts (improved muon ID) and modelling using data ($D^{(*)}h^-$ where $h \in [K, \pi, p, e, fake]$).

Fake *B* and fake *D**bkg: Reduced with vertex quality cuts and modelled using data $(D^{(*+)}\mu^+ \text{ and } D^0\pi^-\mu^-)$.

Fit for signal $(D^{*+}\mu^{-})$

[arXiv:2302.02886] (Submitted to PRL)

- >3D maximum likelihood template fit to q^2 (4 bins), m_{miss}^2 and E_l^* .
- Simultaneous fit to 8 samples: For each $[D^{*+}\mu^{-}]$ and $[D^{0}\mu^{-}]$:
 - >1 signal region
 - ➤3 control regions enriched in bkg (using reversed isolation requirements).

Fit for signal $(D^0 \mu^-)$

57th Recontres de Moriond 2023

Control regions $(D^0\mu^-)$

[arXiv:2302.02886] (Submitted to PRL)

Fit result

[arXiv:2302.02886] (Submitted to PRL)

Measurement of $R(D^*)$ with hadronic τ decay

Credits: Nat Geo

Signal and normalisation

Signal: $\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}$ \geq Use partial Run 2 (2 fb^{-1}) (~1.5 times more signal than Run 1). \succ Use hadronic $\tau \rightarrow 3\pi(\pi^0)$ decay with BF ~ 13.5%. PV v_{τ} \triangleright Use as normalisation hadronic \overline{B}^0 decay. Normalisation: $\overline{B}^0 \rightarrow D^{*+} 3\pi^{\pm}$ Measure $K(D^*) = \frac{BF(\bar{B}^0 \to D^{*+}\tau^-\bar{\nu}_{\tau})}{BF(\bar{B}^0 \to D^{*+}3\pi^{\pm})}$ External D π $R(D^*) = K(D^*) \times \frac{BF(\overline{B}^0 \to D^{*+} 3\pi^{\pm})}{BF(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_{\prime\prime})}$ input PV

[LHCb-PAPER-2022-052]

(In-preparation)

Background of $\overline{B}^0 \rightarrow D^{*+} 3\pi^{\pm} X^{\text{[LHCb-PAPER-2022-052]}}_{\text{(In-preparation)}}$

Reduce by requiring τ vertex to be downstream w.r.t. the B vertex along the beam direction + dedicated BDT classifier.

➢Bkg modelling using simulation.

[LHCb-PAPER-2022-052] "Double charm" background

(In-preparation)

 $\gg \bar{B}^0 \rightarrow D^{*+}D_s (\rightarrow 3\pi^{\pm}) X$ bkg reduced with dedicated BDT classifier based on kinematics and resonant structure.

- \triangleright Other bkgs $D^+(\rightarrow K^-2\pi^+)$ and $D^0(\rightarrow K^-3\pi^{\pm})$ reduced using PID cuts and dedicated BDT classifiers, respectively.
- >Modelled using simulations, with corrections from dedicated data control regions.

Modelling of $\overline{B}^0 \to D^{*+} D_S^+ X^{[LHCb-PAPER-2022-052]}_{(In-preparation)}$

$D_s^+ \rightarrow 3\pi^{\pm}X$ decay modes

- Control data region: Selected by reversing D_s^+ BDT cut.
- Resonant contrb. from fit to 4 kinematic variables and MC samples corrected.

D_s^+ production modes

Control data region: Events 20 MeV around D_s⁺ mass + remove D_s⁺ BDT cut.
Fractions constrained in the signal fit.

Fit for signal

[LHCb-PAPER-2022-052] (In-preparation)

➢ 3D maximum likelihood template fit to q^2 , anti- D_s^+ BDT output and τ lifetime. ► Form factor correction: $> D^{*+}$: CLN parametrisation [Nucl. Phys. B 50, 153 (1998)] Signal and norm. yield: $\bar{B}^{0} \to D^{*+} \tau^{-} \bar{\nu}_{\mu} = 2469 \pm 154$ $B_{B_{0}}^{\dagger} \rightarrow D^{*+} 3\pi^{\pm} = 30540 \pm 182^{+}$

Fit result

[LHCb-PAPER-2022-052] (In-preparation)

Connect to **CERN seminar** tomorrow!

WA: $3.2\sigma \rightarrow 3\sigma$ wrt SM

Outlook and Summary

Outlook

→ Many more $R(X_c)$ measurements in the pipeline e.g. $R(D^+), R(D^{*0}), R(\Lambda_c^+)$...

Summary

Systematic uncertainty

	Internal fit uncertainties	$\sigma_{\mathcal{R}(D^*)}(imes 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(imes 10^{-2})$	Correlation
	Statistical uncertainty	1.8	6.0	-0.49
	Simulated sample size	1.5	4.5	
	$B \rightarrow D^{(*)}DX$ template shape	0.8	3.2	
Model uncertainties	$\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$ form-factors	0.7	2.1	
Woder uncertainties	$\overline{B} \to D^{**} \mu^- \overline{\nu}_{\mu}$ form-factors	0.8	1.2	
(should scale with	$\mathcal{B} \ (\overline{B} \to D^* D_s^- (\to \tau^- \overline{\nu}_\tau) X)$	0.3	1.2	
size of the control	MisID template	0.1	0.8	
sample)	$\mathcal{B} \ (\overline{B} \to D^{**} \tau^- \overline{\nu}_\tau \)$	0.5	0.5	
Sumpre)	Combinatorial	< 0.1	0.1	
	Resolution	< 0.1	0.1	
	Additional model uncertainty	$\sigma_{\mathcal{R}(D^*)}(imes 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(imes 10^{-2})$	
	$B \to D^{(*)}DX \mod \text{uncertainty}$	0.6	0.7	
	$\overline{B}{}^0_s \to D^{**}_s \mu^- \overline{\nu}_\mu \mod \text{uncertainty}$	0.6	2.4	
External inputs to	Data/simulation corrections	0.4	0.8	
the fit	Coulomb correction to $\mathcal{R}(D^{*+})/\mathcal{R}(D^{*0})$	0.2	0.3	
	MisID template unfolding	0.7	1.2	
	Baryonic backgrounds	0.7	1.2	
	Normalization uncertainties	$\sigma_{\mathcal{R}(D^*)}(imes 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(imes 10^{-2})$	
Small multiplicative	Data/simulation corrections	$0.4 imes \mathcal{R}(D^*)$	$0.6 imes \mathcal{R}(D^0)$	
uncertainties	$\tau^- \to \mu^- \nu \overline{\nu}$ branching fraction	$0.2 imes \mathcal{R}(D^*)$	$0.2 imes \mathcal{R}(D^0)$	
	Total systematic uncertainty	2.4	6.6	-0.39
	Total uncertainty	3.0	8.9	-0.43

Relative systematic uncertainty on $K(D^*)$

	Source	Systematic uncertainty on $\mathcal{K}(D^*)$ (%)	
	PDF shapes uncertainty (size of simulation sample)	2.0	
	Fixing $B ightarrow D^{st -} D^+_s(X)$ bkg model parameters	1.1	
	Fixing $B ightarrow D^{st -} D^0(X)$ bkg model parameters	1.5	
	Fractions of signal $ au^+$ decays	0.3	
	Fixing the $\overline{D}^{**} au^+ u_ au$ and $D^{**+}_{m s} au^+ u_ au$ fractions	+1.8 -1.9	
Compared to Run 1	Knowledge of the $D_s^+ o 3\pi X$ decay model	1.0	BESIII results from
analyzia the size is	Specifically the $\stackrel{-}{D_s^+} ightarrow a_1 X$ fraction	1.5	$D \rightarrow 2\pi^{+}$ should
allarysis, the size is	Empty bins in templates	1.3	$D \rightarrow 5\pi^{-}$ should
nalved from employing	Signal decay template shape	1.8	help reduce this
	Signal decay efficiency	0.9	
tast simulation	Possible contributions from other $ au^+$ decays	1.0	systematic in future.
techniques [ReDecay]	$B ightarrow D^{st -} D^+(X)$ template shapes	+2.2 -0.8	
	$B ightarrow D^{st -} D^0(X)$ template shapes	1.2	
	$B ightarrow D^{st -} D^+_s(X)$ template shapes	0.3	
	$B ightarrow {D^*}^- 3\pi X$ template shapes	1.2	
	Combinatorial background normalisation	+0.5 -0.6	
Other dominant	Preselection efficiency	2.0	
	Kinematic reweighting	0.7	
sources include signal	Vertex error correction	0.9	
and hackground	PID efficiency	0.5	
	Signal efficiency (size of simulation sample)	1.1	
modelling	Normalisation mode efficiency (modelling of $m(3\pi))$	1.0	
	Normalisation efficiency (size of simulation sample)	1.1	
	Normalisation mode PDF choice	1.0	
	Total systematic uncertainty	+0.2 -5.9	
	Total statistical uncertainty	5.9	

Previous vs current leptonic τ

Previous

Table 1: Systematic uncertainties in the extraction of $\mathcal{R}(D^*)$.

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+} H_c (\to \mu \nu X') X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_{\tau})/\mathcal{B}(\overline{B} \to D^{**}\mu^-\overline{\nu}_{\mu})$	0.5
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_{\mu}$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
$\mathcal{B}(\tau^- o \mu^- \overline{ u}_\mu u_ au)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

Current

Internal fit uncertainties	$\sigma_{\mathcal{R}(D^*)}(imes 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(imes 10^{-2})$	Correlation
Statistical uncertainty	1.8	6.0	-0.49
Simulated sample size	1.5	4.5	
$B \rightarrow D^{(*)}DX$ template shape	0.8	3.2	
$\overline{B} \to D^{(*)} \ell^- \overline{\nu}_\ell$ form-factors	0.7	2.1	
$\overline{B} \to D^{**} \mu^- \overline{\nu}_{\mu}$ form-factors	0.8	1.2	
$\mathcal{B} \ (\overline{B} \to D^* D_s^- (\to \tau^- \overline{\nu}_\tau) X)$	0.3	1.2	
MisID template	0.1	0.8	
$\mathcal{B} \ (\overline{B} \to D^{**} \tau^- \overline{\nu}_\tau \)$	0.5	0.5	
Combinatorial	< 0.1	0.1	
Resolution	< 0.1	0.1	
Additional model uncertainty	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(\times 10^{-2})$	
$B \to D^{(*)}DX \mod \text{uncertainty}$	0.6	0.7	
$\overline{B}{}^0_s \to D^{**}_s \mu^- \overline{\nu}_\mu \mod \text{uncertainty}$	0.6	2.4	
Data/simulation corrections	0.4	0.8	
Coulomb correction to $\mathcal{R}(D^{*+})/\mathcal{R}(D^{*0})$	0.2	0.3	
MisID template unfolding	0.7	1.2	
Baryonic backgrounds	0.7	1.2	
Normalization uncertainties	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(\times 10^{-2})$	
Data/simulation corrections	$0.4 \times \mathcal{R}(D^*)$	$0.6 imes \mathcal{R}(D^0)$	
$\tau^- \to \mu^- \nu \overline{\nu}$ branching fraction	$0.2 imes \mathcal{R}(D^*)$	$0.2 imes \mathcal{R}(D^0)$	
Total systematic uncertainty	2.4	6.6	-0.39
Total uncertainty	3.0	8.9	-0.43

Previous vs current hadronic τ

Previous

Table	7:	List o	f the	individual	systematic	uncertainties	\mathbf{for}	the	measurement	\mathbf{of}	the	ratio
$\mathcal{B}(B^0)$	\rightarrow	$D^{*-}\tau^+$	$\nu_{\tau})/\mathcal{B}$	$B(B^0 \rightarrow D^{*-})$	3π).							

Contribution	Value in %		
$\mathcal{B}(\tau^+ \to 3\pi\overline{\nu}_{\tau})/\mathcal{B}(\tau^+ \to 3\pi(\pi^0)\overline{\nu}_{\tau})$	0.7		
Form factors (template shapes)	0.7		
Form factors (efficiency)	1.0		
au polarization effects	0.4		
Other τ decays	1.0		
$B \to D^{**} \tau^+ \nu_{\tau}$	2.3		
$B_s^0 \to D_s^{**} \tau^+ \nu_\tau$ feed-down	1.5		
$D_s^+ \to 3\pi X$ decay model	2.5		
D_s^+, D^0 and D^+ template shape	2.9		
$B \to D^{*-}D^+_s(X)$ and $B \to D^{*-}D^0(X)$ decay model	2.6		
$D^{*-}3\pi X$ from B decays	2.8		
Combinatorial background (shape + normalization)	0.7		
Bias due to empty bins in templates	1.3		
Size of simulation samples	4.1		
Trigger acceptance			
Trigger efficiency	1.0		
Online selection	2.0		
Offline selection	2.0		
Charged-isolation algorithm	1.0		
Particle identification	1.3		
Normalization channel			
Signal efficiencies (size of simulation samples)	1.7		
Normalization channel efficiency (size of simulation samples)	1.6		
Normalization channel efficiency (modeling of $B^0 \to D^{*-}3\pi$)	2.0		
Total uncertainty	9.1		

Current

Source	Systematic uncertainty on $\mathcal{K}(D^*)$ (%)
PDF shapes uncertainty (size of simulation sample)	2.0
Fixing $B \rightarrow D^{*-}D_{s}^{+}(X)$ bkg model parameters	1.1
Fixing $B \to D^{*-}D^{0}(X)$ bkg model parameters	1.5
Fractions of signal $ au^+$ decays	0.3
Fixing the $\overline{D}^{**} au^+ u_ au$ and $D_s^{**+} au^+ u_ au$ fractions	+1.8 -1.9
Knowledge of the $D_s^+ ightarrow 3\pi X$ decay model	1.0
Specifically the $D_s^+ o a_1 X$ fraction	1.5
Empty bins in templates	1.3
Signal decay template shape	1.8
Signal decay efficiency	0.9
Possible contributions from other $ au^+$ decays	1.0
$B ightarrow D^* {}^- D^+(X)$ template shapes	+2.2 -0.8
$B \rightarrow D^{*-}D^{0}(X)$ template shapes	1.2
$B ightarrow D^{*-}_{s}D^{+}_{s}(X)$ template shapes	0.3
$B ightarrow D^{*-} 3 \pi X$ template shapes	1.2
Combinatorial background normalisation	+0.5 -0.6
Preselection efficiency	2.0
Kinematic reweighting	0.7
Vertex error correction	0.9
PID efficiency	0.5
Signal efficiency (size of simulation sample)	1.1
Normalisation mode efficiency (modelling of $m(3\pi)$)	1.0
Normalisation efficiency (size of simulation sample)	1.1
Normalisation mode PDF choice	1.0
Total systematic uncertainty	+6.2 -5.9
Total statistical uncertainty	5.9

Track and Vertex reconstruction [LHCb-DP-2014-002]

Vertex locator

- > 42 silicon modules provide r and ϕ coord.
 - Retractable halves
 - ➢ 8mm from beam in data taking

Tracking stations

TT and IT: silicon microstrips
 OT: Straw-tube modules

Dipole magnet

- ➤ 4 Tm magnetic field
- Polarity inverted every few weeks

Muon stations

Consists of 5 stations (M1-M5)
 MWPCs + triple GEM

- Good decay time res. $\sigma_{\tau} \sim 45 fs wrt \tau_B \sim 1.5 ps$
- Good momentum res. $\frac{\delta p}{p} \sim 0.5\% 1\% (5 200 \, GeV)$

Particle identification (PID)

Ring imaging Cherenkov detectors

PID for kaons, pion and protonsCovers a wide momentum range

Calorimeters

> SPD,PS,ECAL,HCAL
 > PID for e, γ, π⁰
 > Energy and position for neutral objects and trigger for e, γ

Muon stations

 5 stations (M1-M5) have high purity PID for muons

SPD: Scintillating pad detector PS: Preshower

[LHCb-DP-2014-002]

Vertex reconstruction

Excellent vertexing in VELO! Can still reconstruct downstream decays (K_S, Λ) .

- ➢ Good resolution on Impact Parameter (IP) required for efficiently selecting B decays: $σ_{IP}$ ~20 µm for high p_T tracks.
- → Good resolution on **decay time crucial for time**dependent CP violation analyses: $\sigma_{\tau} \sim 45 \ fs \ wrt \ \tau_{B} \sim 1.5 \ ps$

Track reconstruction

Excellent track reconstruction!

- ϵ (tracking)~96%
- $\frac{\delta p}{p} \sim 0.5\% 1\% (5 200 \, GeV)$ $\sigma(m_{J/\psi}) \sim 15 \, MeV$

Particle identification performance

- Charged: Combine info from RICH, CALO, MUON.
 - $\epsilon_{PID}(K \to K) > 95\%$ (same for μ and lower for e)
 - $\epsilon_{misID}(\pi \rightarrow K/p/\mu/e) < 5\%$
- Neutral: Dedicated NN for identifying deuterons and separating γ from hadrons, e^{\pm} and high-energy π^0 s.

LHCb trigger (2015-2018)

[2019 JINST 14 P04006, Comput.Phys.Commun. 208 (2016) 35-42]

- Trigger needed to reduce storage and readout costs with good signal to background ratio.
- ≻Consists of three stages:
 - L0: Hardware, E_T/p_T thresholds. 40 MHz \rightarrow 1 MHz.
 - HLT1: Software, partial reconstruction, 1 MHz \rightarrow 150 kHz.
 - HLT2: Full event reconstruction, $100 \text{ kHz} \rightarrow 12.5 \text{ kHz}.$

LHCb past and present

LHCb future (HL-LHC, 2035-2042)

[CERN-LHCC-2021-012]

Upgrade II

