Twin Pati-Salam theory for new and old puzzles in B-physics and the SM

Mario Fernández Navarro ${ }^{\dagger}$

57th Rencontres de Moriond (EW), 20th March 2023

$$
\text { Based on JHEP } 02 \text { (2023) 188, [2209.00276] [hep-ph] in }
$$ collaboration with Steve King

An old puzzle in the flavour sector of the SM

- Suggests BSM dynamics behind the origin of Yukawa couplings.

A new puzzle in B-physics

- Theoretically clean observables:

Deviations in the $R_{K^{(*)}}$ ratios are gone LHCb [2212.09152], and the combination of $\mathcal{B}\left(B_{s} \rightarrow \mu \mu\right)$ measurements (see talk by Ben Allanach!) is closer to the SM after new data by CMS [CMS PAS BPH-21-006].

A new puzzle in B-physics

- Theoretically clean observables:

Deviations in the $R_{\left.K^{*}\right)}$ ratios are gone LHCb [2212.09152], and the combination of $\mathcal{B}\left(B_{s} \rightarrow \mu \mu\right)$ measurements (see talk by Ben Allanach!) is closer to the SM after new data by CMS [CMS PAS BPH-21-006].

A new puzzle in B-physics

- Theoretically clean observables:

Deviations in the $R_{K^{(*)}}$ ratios are gone LHCb [2212.09152], and the combination of $\mathcal{B}\left(B_{s} \rightarrow \mu \mu\right)$ measurements (see talk by Ben Allanach!) is closer to the SM after new data by CMS [CMS PAS BPH-21-006].

- However, now an important tension exists between the $R_{K^{(*)}}$ ratios and the remaining $b \rightarrow s \mu \mu$ data (caveat: hadronic uncertainties Gubernari et al, [2206.03797] and fit mostly driven by LHCb).

An old puzzle in B-physics

- Deviations in $R_{D^{(*)}}$ remain at $>3 \sigma$.

An old puzzle in B-physics

- Deviations in $R_{D^{(*)}}$ remain at $>3 \sigma$.

- Measurements by meson factories reinforced by LHCb in late 2022 (plus new LHCb update on $R_{D^{*}}$ coming tomorrow!).

An old puzzle in B-physics

- Deviations in $R_{D^{(*)}}$ remain at $>3 \sigma$.

- Measurements by meson factories reinforced by LHCb in late 2022 (plus new LHCb update on $R_{D^{*}}$ coming tomorrow!).
- BSM interpretation? Strong NP coupled to the third family, competing with SM charged currents.

U_{1} vector leptoquark?

- $U_{1}(\mathbf{3}, \mathbf{1}, 2 / 3)$ can explain $R_{D^{(*)}}$ at tree-level, and provides an important LFU vector contribution to $b \rightarrow$ sl at 1-loop (C_{9}^{U}) Crivellin et al, [1807.02068]

U_{1} vector leptoquark?

- $U_{1}(\mathbf{3}, \mathbf{1}, 2 / 3)$ can explain $R_{D^{(*)}}$ at tree-level, and provides an important LFU vector contribution to $b \rightarrow$ sll at 1-loop (C_{9}^{U}) Crivellin et al, [1807.02068]

- The LFU loop effects that contribute to $b \rightarrow s \ell$ are correlated to $R_{D^{(*)}}$ $\Rightarrow U_{1}$ provides a natural link between anomalies.

U_{1} vector leptoquark?

- $U_{1}(\mathbf{3}, \mathbf{1}, 2 / 3)$ can explain $R_{D^{(*)}}$ at tree-level, and provides an important LFU vector contribution to $b \rightarrow$ sll at 1-loop (C_{9}^{U}) Crivellin et al, [1807.02068]

- The LFU loop effects that contribute to $b \rightarrow s$ sl are correlated to $R_{D^{(*)}}$ $\Rightarrow U_{1}$ provides a natural link between anomalies.
- Gauge origin of U_{1} at the TeV scale? UV completion?

U_{1} vector leptoquark?

- $U_{1}(\mathbf{3}, \mathbf{1}, 2 / 3)$ can explain $R_{D^{(*)}}$ at tree-level, and provides an important LFU vector contribution to $b \rightarrow s \ell \ell$ at 1-loop (C_{9}^{U}) Crivellin et al, [1807.02068]

- The LFU loop effects that contribute to $b \rightarrow s \ell$ are correlated to $R_{D^{(*)}}$ $\Rightarrow U_{1}$ provides a natural link between anomalies.
- Gauge origin of U_{1} at the TeV scale? UV completion?
\Rightarrow perfect opportunity for model builders
\Rightarrow Relate B-physics with theoretical questions like quark-lepton unification or the origin of flavour hierarchies.

4321 embedding and beyond

$S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)_{Y^{\prime}} \Rightarrow U_{1}, g^{\prime}, Z^{\prime}+$ vector-like fermions
4321 group proposed as the TeV -scale gauge origin of U_{1}, but two different approaches:

4321 embedding and beyond

$S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)_{Y^{\prime}} \Rightarrow U_{1}, g^{\prime}, Z^{\prime}+$ vector-like fermions
4321 group proposed as the TeV -scale gauge origin of U_{1}, but two different approaches:

- The third family transforms under $S U(4)$ (the rest are singlets)

Bordone et al [1712.01368], Fuentes-Martin et al [2203.01952], Davighi, Isidori, Pesut, [2212.06163]..

4321 embedding and beyond

$S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)_{Y^{\prime}} \Rightarrow U_{1}, g^{\prime}, Z^{\prime}+$ vector-like fermions
4321 group proposed as the TeV -scale gauge origin of U_{1}, but two different approaches:

- The third family transforms under $S U(4)$ (the rest are singlets)

Bordone et al [1712.01368], Fuentes-Martin et al [2203.01952], Davighi, Isidori, Pesut, [2212.06163]..
$\Rightarrow U_{1}$ couples to both left-handed and right-handed 3rd family fermions

4321 embedding and beyond

$S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)_{Y^{\prime}} \Rightarrow U_{1}, g^{\prime}, Z^{\prime}+$ vector-like fermions
4321 group proposed as the TeV -scale gauge origin of U_{1}, but two different approaches:

- The third family transforms under $S U(4)$ (the rest are singlets)

Bordone et al [1712.01368], Fuentes-Martin et al [2203.01952], Davighi, Isidori, Pesut, [2212.06163]..
$\Rightarrow U_{1}$ couples to both left-handed and right-handed 3rd family fermions
\Rightarrow is tightly constrained by high- p_{T} searches ATLAS [2002.12223], CMS [2208.02717], Aebischer et al, [2210.13422].

4321 embedding and beyond

$S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)_{Y^{\prime}} \Rightarrow U_{1}, g^{\prime}, Z^{\prime}+$ vector-like fermions
4321 group proposed as the TeV -scale gauge origin of U_{1}, but two different approaches:

- The third family transforms under $S U(4)$ (the rest are singlets)

Bordone et al [1712.01368], Fuentes-Martin et al [2203.01952], Davighi, Isidori, Pesut, [2212.06163].
$\Rightarrow U_{1}$ couples to both left-handed and right-handed 3rd family fermions
\Rightarrow is tightly constrained by high $-p_{T}$ searches ATLAS [2002.12223], CMS [2208.02717], Aebischer et al, [2210.13422].

- Fermiophobic approach (all SM-like families are $S U(4)$ singlets)

Di Luzio, Greljo, Nardecchia, [1708.08450]

4321 embedding and beyond

$S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)_{Y^{\prime}} \Rightarrow U_{1}, g^{\prime}, Z^{\prime}+$ vector-like fermions
4321 group proposed as the TeV -scale gauge origin of U_{1}, but two different approaches:

- The third family transforms under $S U(4)$ (the rest are singlets)

Bordone et al [1712.01368], Fuentes-Martin et al [2203.01952], Davighi, Isidori, Pesut, [2212.06163].
$\Rightarrow U_{1}$ couples to both left-handed and right-handed 3rd family fermions
\Rightarrow is tightly constrained by high- p_{T} searches ATLAS [2002.12223], CMS [2208.02717], Aebischer et al, [2210.13422].

- Fermiophobic approach (all SM-like families are $S U(4)$ singlets)

Di Luzio, Greljo, Nardecchia, [1708.08450]
$\Rightarrow U_{1}$ fermion currents can be dominantly left-handed, most constraints are relaxed, but is not a theory of flavour (flavour structure rather ad-hoc)

4321 embedding and beyond

$S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)_{Y^{\prime}} \Rightarrow U_{1}, g^{\prime}, Z^{\prime}+$ vector-like fermions
4321 group proposed as the TeV -scale gauge origin of U_{1}, but two different approaches:

- The third family transforms under $S U(4)$ (the rest are singlets)

Bordone et al [1712.01368], Fuentes-Martin et al [2203.01952], Davighi, Isidori, Pesut, [2212.06163].
$\Rightarrow U_{1}$ couples to both left-handed and right-handed 3rd family fermions
\Rightarrow is tightly constrained by high- p_{T} searches ATLAS [2002.12223], CMS [2208.02717], Aebischer et al, [2210.13422].

- Fermiophobic approach (all SM-like families are $S U(4)$ singlets)

Di Luzio, Greljo, Nardecchia, [1708.08450]
$\Rightarrow U_{1}$ fermion currents can be dominantly left-handed, most constraints are relaxed, but is not a theory of flavour (flavour structure rather ad-hoc)

- We will present here a theory of flavour featuring a fermiophobic 4321 at TeV scale, with extended phenomenology

Twin Pati-Salam theory of flavour

Field	$S U(4)_{P S}^{\prime}$	$S U(2)_{L}^{l}$	$S \cup(2)_{R}^{l}$	$S U(4)_{P S}^{\prime \prime}$	$S U(2)_{L}^{\prime \prime}$	$S U(2)_{R}^{\prime \prime}$	3 SM-like chiral fermion families
$\Psi_{L(1,2,3)}$	1	1	1	4	2	1	
$\psi_{R(1,2,3)}$	1	1	1	4	1	2	
$\Psi_{L(4,5,6)}$	4	2	1	1	1	1	3 vector-like complete fermion families
$\tilde{\sim}_{\sim}^{\sim}(4,5,6)$	4	2	1	1	1	1	
$\tilde{\psi}_{L(4,5,6}$	4	1	2	1	1	1	
$\psi_{R(4,5,6)}$	4	1	2	1	1	1	
ϕ	$\overline{4}$	$\overline{2}$	1	4	2	1	Break 4321 to SM and mix VL-chiral fermions
$\bar{\phi}$	4	1	2	$\overline{4}$	1	$\overline{2}$	
H	4	2	1	$\overline{4}$	1	$\overline{2}$	Break EW symmetry
\bar{H}	4	1	$\overline{2}$	4	2	1	
Ω_{15}	15	1	1	1	1	1	Splits VL quark-lepton
(plus shaping discrete symmetry Z_{4}, extra content for high scale SSB and 1st family masses)							masses

Twin Pati-Salam theory of flavour

Field	$S U(4)_{P S}^{\prime}$	$S U(2)_{L}^{L}$	$S U(2)_{R}^{l}$	$S U(4)_{P S}^{\prime \prime}$	$S U(2)_{L}^{\prime \prime}$	$S U(2)_{R}^{\prime \prime}$	3 SM-like chiral fermion families
$\Psi_{L(1,2,3)}$	1	1	1	4	2	1	
$\psi_{R(1,2,3)}$	1	1	1	4	1	2	
$\Psi_{L(4,5,6)}$	4	2	1	1	1	1	3 vector-like complete fermion families
${\underset{\sim}{\Psi}}_{R(4,5,6)}$	4	2	1	1	1	1	
$\tilde{\psi}_{L(4,5,6}$	4	1	2	1	1	1	
$\psi_{R(4,5,6)}$	4	1	2	1	1	1	
ϕ	$\overline{4}$	$\overline{2}$	1	4	2	1	Break 4321 to SM and mix VL-chiral fermions
$\bar{\phi}$	4	1	2	$\overline{4}$	1	$\overline{2}$	
H	4	2	1	$\overline{4}$	1	$\overline{2}$	Break EW symmetry
H	$\overline{4}$	1	$\overline{2}$	4	2	1	
Ω_{15}	15	1	1	1	1	1	Splits VL quark-lepton masses
(plus shap and 1st fa	ing discrete mily masse	symmetr)	$y Z_{4} \text {, extra }$	content	high scal		

- High scale PS for chiral (SM-like) fermions: Quark-lepton unification, crucial universality constraints for a predictive framework

Twin Pati-Salam theory of flavour

Field	$S U(4)_{P S}^{\prime}$	$S U(2)_{L}^{\prime}$	$S U(2)_{R}^{l}$	$S U(4)_{P S}^{\prime \prime}$	$S U(2)_{L}^{\prime \prime}$	$S U(2)_{R}^{\prime \prime}$	3 SM-like chiral fermion families
$\Psi_{L(1,2,3)}$	1	1	1	4	2	1	
$\psi_{R(1,2,3)}$	1	1	1	4	1	2	
$\Psi_{L(4,5,6)}$	4	2	1	1	1	1	3 vector-like complete fermion families
${\underset{\sim}{\sim}}_{R(4,5,6)}$	4	2	1	1	1	1	
$\tilde{\psi}_{L(4,5,6}$	4	1	2	1	1	1	
$\psi_{R(4,5,6)}$	4	1	2	1	1	1	
ϕ	$\overline{4}$	$\overline{2}$	1	4	2	1	Break 4321 to SM and mix VL-chiral fermions
$\bar{\phi}$	4	1	2	$\overline{4}$	1	$\overline{2}$	
H	4	2	1	$\overline{4}$	1	$\overline{2}$	Break EW symmetry
H	$\overline{4}$	1	$\overline{2}$	4	2	1	
Ω_{15}	15	1	1	1	1	1	Splits VL quark-lepton masses
(plus shap and 1st f	ing discrete mily masses)	symmetr)	$y Z_{4} \text {, extra }$	content	high scal		

- High scale PS for chiral (SM-like) fermions: Quark-lepton unification, crucial universality constraints for a predictive framework
- Low scale PS for vector-like fermions: TeV scale U_{1} coupled to vector-like fermions

Twin Pati-Salam theory of flavour

Field	$S U(4)_{P S}^{\prime}$	$S U(2)_{L}^{\prime}$	$S U(2)_{R}^{l}$	$S U(4)_{P S}^{\prime \prime}$	$S U(2)_{L}^{\prime \prime}$	$S U(2)_{R}^{\prime \prime}$	3 SM-like chiral fermion families
$\Psi_{L(1,2,3)}$	1	1	1	4	2	1	
$\psi_{R(1,2,3)}$	1	1	1	4	1	2	
$\Psi_{L(4,5,6)}$	4	2	1	1	1	1	3 vector-like complete fermion families
${\underset{\sim}{\sim}}_{R(4,5,6)}$	4	2	1	1	1	1	
$\tilde{\psi}_{L(4,5,6}$	4	1	2	1	1	1	
$\psi_{R(4,5,6)}$	4	1	2	1	1	1	
ϕ	$\overline{4}$	$\overline{2}$	1	4	2	1	Break 4321 to SM and mix VL-chiral fermions
$\bar{\phi}$	4	1	2	$\overline{4}$	1	$\overline{2}$	
H	4	2	1	$\overline{4}$	1	$\overline{2}$	Break EW symmetry
H	$\overline{4}$	1	$\overline{2}$	4	2	1	
Ω_{15}	15	1	1	1	1	1	Splits VL quark-lepton masses
(plus shap and 1st f	ing discrete mily masses)	symmetr)	$y Z_{4} \text {, extra }$	content	high scal		

- High scale PS for chiral (SM-like) fermions: Quark-lepton unification, crucial universality constraints for a predictive framework
- Low scale PS for vector-like fermions: TeV scale U_{1} coupled to vector-like fermions
- Choice of the scalar sector and twin PS symmetry forbids SM-like Yukawa couplings

Twin Pati-Salam theory of flavour

Field	$S U(4)_{P S}^{\prime}$	$S U(2)_{L}^{\prime}$	$S U(2)_{R}^{l}$	$S U(4)_{P S}^{\prime \prime}$	$S U(2)_{L}^{\prime \prime}$	$S U(2)_{R}^{\prime \prime}$	3 SM-like chiral fermion families
$\Psi_{L(1,2,3)}$	1	1	1	4	2	1	
$\psi_{R(1,2,3)}$	1	1	1	4	1	2	
$\Psi_{L(4,5,6)}$	4	2	1	1	1	1	3 vector-like complete fermion families
${\underset{\sim}{\sim}}_{R(4,5,6)}$	4	2	1	1	1	1	
$\tilde{\psi}_{L(4,5,6}$	4	1	2	1	1	1	
$\psi_{R(4,5,6)}$	4	1	2	1	1	1	
ϕ	$\overline{4}$	$\overline{2}$	1	4	2	1	Break 4321 to SM and mix VL-chiral fermions
$\bar{\phi}$	4	1	2	$\overline{4}$	1	$\overline{2}$	
H	4	2	1	$\overline{4}$	1	$\overline{2}$	Break EW symmetry
\bar{H}	$\overline{4}$	1	2	4	2	1	
Ω_{15}	15	1	1	1	1	1	Splits VL quark-lepton masses
(plus shap and 1st f	ing discrete mily masses)	symmetr)	$Z_{4} \text {, extr }$	content	high scal		

- High scale PS for chiral (SM-like) fermions: Quark-lepton unification, crucial universality constraints for a predictive framework
- Low scale PS for vector-like fermions: TeV scale U_{1} coupled to vector-like fermions
- Choice of the scalar sector and twin PS symmetry forbids SM-like Yukawa couplings
- Scalar sector is a link between PS groups, generates VL-chiral fermion mixing \Rightarrow Leads to 2nd-3rd family SM Yukawas, also to U_{1} couplings for B-anomalies

Yukawa couplings \& U_{1} couplings

- Fermiophobic model: SM-like Yukawa and U_{1} couplings forbidden for chiral fermions.

Yukawa couplings \& U_{1} couplings

- Fermiophobic model: SM-like Yukawa and U_{1} couplings forbidden for chiral fermions.
- Effective Yukawa and U_{1} couplings arise from mixing between VL and chiral fermions.

Yukawa couplings \& U_{1} couplings

- Fermiophobic model: SM-like Yukawa and U_{1} couplings forbidden for chiral fermions.
- Effective Yukawa and U_{1} couplings arise from mixing between VL and chiral fermions.

$$
y_{t} \sim \frac{\left\langle\phi_{3}\right\rangle}{M_{4}^{Q}} \sim 1
$$

$$
y_{c} \sim \frac{\left\langle\bar{\phi}_{3}\right\rangle}{M_{4}^{\psi}} \ll 1
$$

Yukawa couplings \& U_{1} couplings

- Fermiophobic model: SM-like Yukawa and U_{1} couplings forbidden for chiral fermions.
- Effective Yukawa and U_{1} couplings arise from mixing between VL and chiral fermions.

$$
i, j=2,3
$$

$$
y_{t} \sim \frac{\left\langle\phi_{3}\right\rangle}{M_{4}^{Q}} \sim 1
$$

$$
y_{c} \sim \frac{\left\langle\bar{\phi}_{3}\right\rangle}{M_{4}^{\psi}} \ll 1
$$

- $\left\langle\phi_{3}\right\rangle \approx\left\langle\bar{\phi}_{3}\right\rangle \sim 1 \mathrm{TeV}$ break 4321, then $M_{4}^{Q} \sim M_{4}^{L} \sim 1 \mathrm{TeV}$ (light VL fermions!)

Yukawa couplings \& U_{1} couplings

- Fermiophobic model: SM-like Yukawa and U_{1} couplings forbidden for chiral fermions.
- Effective Yukawa and U_{1} couplings arise from mixing between VL and chiral fermions.

$$
y_{t} \sim \frac{\left\langle\phi_{3}\right\rangle}{M_{4}^{Q}} \sim 1
$$

$$
y_{c} \sim \frac{\left\langle\bar{\phi}_{3}\right\rangle}{M_{4}^{\psi}} \ll 1
$$

- $\left\langle\phi_{3}\right\rangle \approx\left\langle\bar{\phi}_{3}\right\rangle \sim 1 \mathrm{TeV}$ break 4321, then $M_{4}^{Q} \sim M_{4}^{L} \sim 1 \mathrm{TeV}$ (light VL fermions!)
- Extended Higgs sector not to be discussed here (but feel free to ask!)

Yukawa couplings \& U_{1} couplings

- Fermiophobic model: SM-like Yukawa and U_{1} couplings forbidden for chiral fermions.
- Effective Yukawa and U_{1} couplings arise from mixing between VL and chiral fermions.

$\beta_{b \tau}^{L} \propto \frac{\left\langle\phi_{3}\right\rangle}{M_{4}^{Q}} \frac{\left\langle\phi_{1}\right\rangle}{M_{4}^{L}} \sim \mathcal{O}(1)$

$$
y_{t} \sim \frac{\left\langle\phi_{3}\right\rangle}{M_{4}^{Q}} \sim 1
$$

$\beta_{b \tau}^{R} \propto \frac{\left\langle\bar{\phi}_{3}\right\rangle}{M_{4}^{\psi}} \frac{\left\langle\bar{\phi}_{1}\right\rangle}{M_{4}^{\psi}} \ll 1$

$$
y_{c} \sim \frac{\left\langle\bar{\phi}_{3}\right\rangle}{M_{4}^{\psi}} \ll 1
$$

- $\left\langle\phi_{3}\right\rangle \approx\left\langle\bar{\phi}_{3}\right\rangle \sim 1 \mathrm{TeV}$ break 4321, then $M_{4}^{Q} \sim M_{4}^{L} \sim 1 \mathrm{TeV}$ (light VL fermions!)
- Extended Higgs sector not to be discussed here (but feel free to ask!)

Yukawa couplings \& U_{1} couplings

- Fermiophobic model: SM-like Yukawa and U_{1} couplings forbidden for chiral fermions.
- Effective Yukawa and U_{1} couplings arise from mixing between VL and chiral fermions.

$\beta_{b \tau}^{L} \propto \frac{\left\langle\phi_{3}\right\rangle}{M_{4}^{Q}} \frac{\left\langle\phi_{1}\right\rangle}{M_{4}^{L}} \sim \mathcal{O}(1)$

$$
y_{t} \sim \frac{\left\langle\phi_{3}\right\rangle}{M_{4}^{Q}} \sim 1
$$

$$
\beta_{b \tau}^{R} \propto \frac{\left\langle\bar{\phi}_{3}\right\rangle}{M_{4}^{\psi}} \frac{\left\langle\bar{\phi}_{1}\right\rangle}{M_{4}^{\psi}} \ll 1
$$

$$
y_{c} \sim \frac{\left\langle\bar{\phi}_{3}\right\rangle}{M_{4}^{\psi}} \ll 1
$$

- $\left\langle\phi_{3}\right\rangle \approx\left\langle\bar{\phi}_{3}\right\rangle \sim 1 \mathrm{TeV}$ break 4321, then $M_{4}^{Q} \sim M_{4}^{L} \sim 1 \mathrm{TeV}$ (light VL fermions!)
- Extended Higgs sector not to be discussed here (but feel free to ask!)
- Predicting the flavour hierarchies naturally leads to dominantly left-handed U_{1} couplings!

GIM-like mechanism and FCNCs

- If VL fermions mix themselves before they mix with chiral fermions, then large flavour-violating U_{1} couplings and flavour diagonal g^{\prime}, Z^{\prime} couplings for chiral fermions.

GIM-like mechanism and FCNCs

- If VL fermions mix themselves before they mix with chiral fermions, then large flavour-violating U_{1} couplings and flavour diagonal g^{\prime}, Z^{\prime} couplings for chiral fermions.

$$
\frac{g_{4}}{\sqrt{2}}\left(\begin{array}{lll}
\bar{Q}_{L 4} & \bar{Q}_{L 5} & \bar{Q}_{L 6}
\end{array}\right) \gamma_{\mu}\left(\begin{array}{ccc}
c_{\theta_{L Q}} & -s_{\theta_{L Q}} & 0 \\
s_{\theta_{L Q}} & c_{\theta_{L Q}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
L_{L 4} \\
L_{L 5} \\
L_{L 6}
\end{array}\right) U_{1}^{\mu}+\text { h.c. }
$$

Looks familiar? CKM-like matrix in (VL quark-lepton) flavour space.

GIM-like mechanism and FCNCs

- If VL fermions mix themselves before they mix with chiral fermions, then large flavour-violating U_{1} couplings and flavour diagonal g^{\prime}, Z^{\prime} couplings for chiral fermions.

$$
\frac{g_{4}}{\sqrt{2}}\left(\begin{array}{lll}
\bar{Q}_{L 4} & \bar{Q}_{L 5} & \bar{Q}_{L 6}
\end{array}\right) \gamma_{\mu}\left(\begin{array}{ccc}
c_{\theta_{L Q}} & -s_{\theta_{L Q}} & 0 \\
s_{\theta_{L Q}} & c_{\theta_{L Q}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
L_{L 4} \\
L_{L 5} \\
L_{L 6}
\end{array}\right) U_{1}^{\mu}+\text { h.c. }
$$

Looks familiar? CKM-like matrix in (VL quark-lepton) flavour space.

- Each VL family mixes with only one chiral family, i.e. we have only (3-4), (2-5) and (1-6) VL-chiral mixing

$$
\frac{g_{4}}{\sqrt{2}}\left(\begin{array}{ccc}
\bar{Q}_{L 1} & \bar{Q}_{L 2} & \bar{Q}_{L 3}
\end{array}\right) \gamma_{\mu}\left(\begin{array}{ccc}
s_{16}^{Q} s_{26}^{Q} & 0 & 0 \\
0 & c_{\theta_{L Q}} s_{25}^{Q} s_{25}^{Q} & s_{\theta_{L Q}} s_{25}^{Q} s_{34}^{L} \\
0 & -s_{\theta_{L Q}} s_{34}^{Q} s_{25}^{L} & c_{\theta_{L Q}} s_{34}^{Q} s_{34}^{Q}
\end{array}\right)\left(\begin{array}{c}
L_{L 1} \\
L_{L 2} \\
L_{L 3}
\end{array}\right) U_{1}^{\mu}+\text { h.c. }
$$

but g^{\prime}, Z^{\prime} currents remain flavour diagonal, up to chiral fermion mixing (CKM and leptons)

GIM-like mechanism and FCNCs

- If VL fermions mix themselves before they mix with chiral fermions, then large flavour-violating U_{1} couplings and flavour diagonal g^{\prime}, Z^{\prime} couplings for chiral fermions.

$$
\frac{g_{4}}{\sqrt{2}}\left(\begin{array}{ccc}
\bar{Q}_{L 4} & \bar{Q}_{L 5} & \bar{Q}_{L 6}
\end{array}\right) \gamma_{\mu}\left(\begin{array}{ccc}
c_{\theta_{L Q}} & -s_{\theta_{L Q}} & 0 \\
s_{\theta_{L Q}} & c_{\theta_{L Q}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
L_{L 4} \\
L_{L 5} \\
L_{L 6}
\end{array}\right) U_{1}^{\mu}+\text { h.c. }
$$

Looks familiar? CKM-like matrix in (VL quark-lepton) flavour space.

- Each VL family mixes with only one chiral family, i.e. we have only (3-4), (2-5) and (1-6) VL-chiral mixing

$$
\frac{g_{4}}{\sqrt{2}}\left(\begin{array}{ccc}
\bar{Q}_{L 1} & \bar{Q}_{L 2} & \bar{Q}_{L 3}
\end{array}\right) \gamma_{\mu}\left(\begin{array}{ccc}
s_{16}^{Q} s_{26}^{Q} & 0 & 0 \\
0 & c_{\theta_{L Q}} s_{25}^{Q} s_{25}^{Q} & s_{\theta_{L Q}} s_{25}^{Q} s_{34}^{L} \\
0 & -s_{\theta_{L Q} s_{34}^{Q} s_{25}^{L}} c_{\theta_{L Q}} s_{34}^{Q} s_{34}^{Q}
\end{array}\right)\left(\begin{array}{c}
L_{L 1} \\
L_{L 2} \\
L_{L 3}
\end{array}\right) U_{1}^{\mu}+\text { h.c. }
$$

but g^{\prime}, Z^{\prime} currents remain flavour diagonal, up to chiral fermion mixing (CKM and leptons)

$$
\left.\begin{array}{c}
\beta_{b \tau}=c_{\theta_{L Q}} s_{34}^{Q} s_{34}^{L} \\
\beta_{s \tau}=s_{\theta_{L Q}} s_{25}^{Q} s_{34}^{L} \approx \beta_{c \nu_{\tau}}
\end{array}\right\} \Rightarrow R_{D^{(*)}} \propto \beta_{b \tau}^{*} \beta_{s \tau}
$$

$s_{\theta_{L Q}} \approx 1 / \sqrt{2}$ allows for the largest contribution to $R_{D^{(*)}}$
$\Rightarrow \beta_{b \tau} \approx 1 / \sqrt{2}<1$ protects from tight constraints at high- p_{T}.

GIM-like mechanism and FCNCs

$$
\mathcal{L}_{g^{\prime}} \approx g_{4}\left(\begin{array}{lll}
\bar{Q}_{L 1} & \bar{Q}_{L 2} & \bar{Q}_{L 3}
\end{array}\right) \gamma^{\mu} T^{2}\left(\begin{array}{ccc}
\left(s_{16}^{Q}\right)^{2} & 0 & 0 \\
0 & \left(s_{25}^{Q}\right)^{2} & 0 \\
0 & 0 & \left(s_{34}^{Q}\right)^{2}
\end{array}\right)\left(\begin{array}{l}
Q_{L 1} \\
Q_{L 2} \\
Q_{L 3}
\end{array}\right) g_{\mu}^{\prime \beta},
$$

GIM-like mechanism and FCNCs

$$
\mathcal{L}_{g^{\prime}} \approx g_{4}\left(\begin{array}{lll}
\bar{Q}_{L 1} & \bar{Q}_{L 2} & \bar{Q}_{L 3}
\end{array}\right) \gamma^{\mu} T^{a}\left(\begin{array}{ccc}
\left(s_{16}^{Q}\right)^{2} & 0 & 0 \\
0 & \left(s_{25}^{Q}\right)^{2} & 0 \\
0 & 0 & \left(s_{34}^{Q}\right)^{2}
\end{array}\right)\left(\begin{array}{c}
Q_{L 1} \\
Q_{L 2} \\
Q_{L 3}
\end{array}\right) g_{\mu}^{\prime a},
$$

- If $s_{34}^{Q, L}=s_{25}^{Q, L}=s_{16}^{Q, L}$ then all tree-level FCNCs forbidden, but angles either too small to explain anomalies or coloron production is left unsuppressed.

GIM-like mechanism and FCNCs

$$
\mathcal{L}_{g^{\prime}} \approx g_{4}\left(\begin{array}{lll}
\bar{Q}_{L 1} & \bar{Q}_{L 2} & \bar{Q}_{L 3}
\end{array}\right) \gamma^{\mu} T^{a}\left(\begin{array}{ccc}
\left(s_{10}^{Q}\right)^{2} & 0 & 0 \\
0 & \left(s_{25}^{Q}\right)^{2} & 0 \\
0 & 0 & \left(s_{34}^{\mathrm{Q}}\right)^{2}
\end{array}\right)\left(\begin{array}{l}
Q_{L 1} \\
Q_{L 2} \\
Q_{L 3}
\end{array}\right) g^{\prime \prime},
$$

- If $s_{34}^{Q, L}=s_{25}^{Q, L}=s_{16}^{Q, L}$ then all tree-level FCNCs forbidden, but angles either too small to explain anomalies or coloron production is left unsuppressed.
- If $s_{25}^{Q, L} \approx s_{16}^{Q, L}$ then no tree-level (1-2) FCNCs (but 2-3 FCNCs allowed!)

GIM-like mechanism and FCNCs

$$
\mathcal{L}_{g^{\prime}} \approx g_{4}\left(\begin{array}{lll}
\bar{Q}_{L 1} & \bar{Q}_{L 2} & \bar{Q}_{L 3}
\end{array}\right) \gamma^{\mu} T^{2}\left(\begin{array}{ccc}
\left(s_{10}^{Q}\right)^{2} & 0 & 0 \\
0 & \left(s_{25}^{Q}\right)^{2} & 0 \\
0 & 0 & \left(s_{34}^{Q}\right)^{2}
\end{array}\right)\left(\begin{array}{l}
Q_{L 1} \\
Q_{L 2} \\
Q_{L 3}
\end{array}\right) g_{\mu}^{\prime a},
$$

- If $s_{34}^{Q, L}=s_{25}^{Q, L}=s_{16}^{Q, L}$ then all tree-level FCNCs forbidden, but angles either too small to explain anomalies or coloron production is left unsuppressed.
- If $s_{25}^{Q, L} \approx s_{16}^{Q, L}$ then no tree-level (1-2) FCNCs (but 2-3 FCNCs allowed!)

$$
i, j=2,3, \mu-\tau \text { mixing predicted leading to } Z^{\prime} \text { FCNCs! }
$$

GIM-like mechanism and FCNCs

$$
\mathcal{L}_{g^{\prime}} \approx g_{4}\left(\begin{array}{lll}
\bar{Q}_{L 1} & \bar{Q}_{L 2} & \bar{Q}_{L 3}
\end{array}\right) \gamma^{\mu} T^{a}\left(\begin{array}{ccc}
\left(s_{10}^{Q}\right)^{2} & 0 & 0 \\
0 & \left(s_{25}^{Q}\right)^{2} & 0 \\
0 & 0 & \left(s_{34}^{Q}\right)^{2}
\end{array}\right)\left(\begin{array}{l}
Q_{L 1} \\
Q_{L 2} \\
Q_{L 3}
\end{array}\right) g_{\mu}^{\prime a},
$$

- If $s_{34}^{Q, L}=s_{25}^{Q, L}=s_{16}^{Q, L}$ then all tree-level FCNCs forbidden, but angles either too small to explain anomalies or coloron production is left unsuppressed.
- If $s_{25}^{Q, L} \approx s_{16}^{Q, L}$ then no tree-level (1-2) FCNCs (but 2-3 FCNCs allowed!)

$$
i, j=2,3, \mu-\tau \text { mixing predicted leading to } Z^{\prime} \text { FCNCs! }
$$

- We now fix all VEVs and VL masses to explore the parameter space of $s_{34}^{Q, L} \propto x_{34}^{\psi}$ and $s_{25}^{Q, L} \propto x_{25}^{\psi}$.

$R_{K^{(\cdot)}}$ and $R_{D^{(\cdot)}}, B_{s}-\bar{B}_{s}$ mixing

- $R_{D}=R_{D^{*}}$ predicted, $R_{D^{(*)}} \propto\left(x_{34}^{\psi}\right)^{3}\left(x_{25}^{\psi}\right)$.

$R_{K^{(\cdot)}}$ and $R_{D^{(\cdot)}}, B_{s}-\bar{B}_{s}$ mixing

- $R_{D}=R_{D^{*}}$ predicted, $R_{D^{(*)}} \propto\left(x_{34}^{\psi}\right)^{3}\left(x_{25}^{\psi}\right)$.
- Contribution to $R_{K^{(*)}}$ unavoidable and correlated to $R_{D^{(*)}}$, but suppressed $R_{K(*)} \propto\left(x_{34}^{\psi}\right)\left(x_{25}^{\psi}\right)^{3}$.

$R_{K^{(\cdot)}}$ and $R_{D^{(\cdot)}}, B_{s}-\bar{B}_{s}$ mixing

- $R_{D}=R_{D^{*}}$ predicted, $R_{D^{(*)}} \propto\left(x_{34}^{\psi}\right)^{3}\left(x_{25}^{\psi}\right)$.
- Contribution to $R_{K^{(*)}}$ unavoidable and correlated to $R_{D^{(*)}}$, but suppressed $R_{K(*)} \propto\left(x_{34}^{\psi}\right)\left(x_{25}^{\psi}\right)^{3}$.
- Light VL lepton required to relax $\Delta M_{s}, 2.8 \sigma$ excess at CMS searches of a VL lepton with these features [2208.09700]

Universal contribution to $b \rightarrow$ sll

- LFU contribution to $C_{9}^{U} \propto\left(x_{34}^{\psi}\right)^{3}\left(x_{25}^{\psi}\right)$ correlated to $R_{D^{(*)}} \propto\left(x_{34}^{\psi}\right)^{3}\left(x_{25}^{\psi}\right)$ and $R_{K^{(*)}} \propto\left(x_{34}^{\psi}\right)\left(x_{25}^{\psi}\right)^{3}$, agreement with the latter imposes $C_{9}^{U} \approx-0.4$.

Universal contribution to $b \rightarrow$ sll

- LFU contribution to $C_{9}^{U} \propto\left(x_{34}^{\psi}\right)^{3}\left(x_{25}^{\psi}\right)$ correlated to $R_{D^{(*)}} \propto\left(x_{34}^{\psi}\right)^{3}\left(x_{25}^{\psi}\right)$ and $R_{K^{(*)}} \propto\left(x_{34}^{\psi}\right)\left(x_{25}^{\psi}\right)^{3}$, agreement with the latter imposes $C_{9}^{U} \approx-0.4$.
- Reduces the tension in $b \rightarrow$ sll data, but cannot reach the values preferred by the global fits.

Universal contribution to $b \rightarrow$ sll

- LFU contribution to $C_{9}^{U} \propto\left(x_{34}^{\psi}\right)^{3}\left(x_{25}^{\psi}\right)$ correlated to $R_{D^{(*)}} \propto\left(x_{34}^{\psi}\right)^{3}\left(x_{25}^{\psi}\right)$ and $R_{K^{(*)}} \propto\left(x_{34}^{\psi}\right)\left(x_{25}^{\psi}\right)^{3}$, agreement with the latter imposes $C_{9}^{U} \approx-0.4$.
- Reduces the tension in $b \rightarrow$ sll data, but cannot reach the values preferred by the global fits.
- However, the fit to $b \rightarrow s \ell \ell$ data can change in the future (hadronic uncertainties and/or experimental numbers can shift).

LFV processes

- General 4321 models predict only the smaller U_{1} signal.

- General 4321 models predict only the smaller U_{1} signal.
- Z^{\prime} signal is intrinsic to the twin PS model due to the $\mu-\tau$ mixing predicted: a consequence of the mechanism explaining flavour hierarchies.

- General 4321 models predict only the smaller U_{1} signal.
- Z^{\prime} signal is intrinsic to the twin PS model due to the $\mu-\tau$ mixing predicted: a consequence of the mechanism explaining flavour hierarchies.
- Signals predicted also in $\tau \rightarrow \mu \gamma B_{s} \rightarrow \tau \mu, B \rightarrow K \tau \mu, \tau \rightarrow \mu \phi$ for LHCb and Belle II searches.

Rare decays

$$
\delta \mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)_{\mathrm{SM}}}-1
$$

Rare decays

$$
\delta \mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)_{\mathrm{SM}}}-1
$$

- $B \rightarrow K^{(*)} \nu \nu$ enhanced, all parameter space whithin the reach of Belle II.

Take home messages

- New (and old) puzzles still exist in B-physics and need to be addressed.

Take home messages

- New (and old) puzzles still exist in B-physics and need to be addressed.
- We propose a novel model building approach to connect the existing picture of B-anomalies with the origin of SM flavour hierarchies.

Take home messages

- New (and old) puzzles still exist in B-physics and need to be addressed.
- We propose a novel model building approach to connect the existing picture of B-anomalies with the origin of SM flavour hierarchies.
- U_{1} couplings and SM Yukawa couplings arise via mixing with VL fermions $\Rightarrow B$-anomalies and Yukawa couplings connected via the same dynamics $\Rightarrow U_{1}$ couples dominantly to left-handed fermions (not the case for trending U_{1} models in the literature).

Take home messages

- New (and old) puzzles still exist in B-physics and need to be addressed.
- We propose a novel model building approach to connect the existing picture of B-anomalies with the origin of SM flavour hierarchies.
- U_{1} couplings and SM Yukawa couplings arise via mixing with VL fermions $\Rightarrow B$-anomalies and Yukawa couplings connected via the same dynamics
$\Rightarrow U_{1}$ couples dominantly to left-handed fermions (not the case for trending U_{1} models in the literature).
- Testable theory of flavour (different predictions than other 4321 models):

Take home messages

- New (and old) puzzles still exist in B-physics and need to be addressed.
- We propose a novel model building approach to connect the existing picture of B-anomalies with the origin of SM flavour hierarchies.
- U_{1} couplings and SM Yukawa couplings arise via mixing with VL fermions $\Rightarrow B$-anomalies and Yukawa couplings connected via the same dynamics
$\Rightarrow U_{1}$ couples dominantly to left-handed fermions (not the case for trending U_{1} models in the literature).
- Testable theory of flavour (different predictions than other 4321 models):
- $R_{D}=R_{D^{*}}$ is predicted and correlated to LFU $b \rightarrow s \ell \ell, R_{K^{(*)}}$ is suppressed (but expect to see small deviations from 1 eventually).

Take home messages

- New (and old) puzzles still exist in B-physics and need to be addressed.
- We propose a novel model building approach to connect the existing picture of B-anomalies with the origin of SM flavour hierarchies.
- U_{1} couplings and SM Yukawa couplings arise via mixing with VL fermions $\Rightarrow B$-anomalies and Yukawa couplings connected via the same dynamics
$\Rightarrow U_{1}$ couples dominantly to left-handed fermions (not the case for trending U_{1} models in the literature).
- Testable theory of flavour (different predictions than other 4321 models):
- $R_{D}=R_{D^{*}}$ is predicted and correlated to LFU $b \rightarrow s \ell \ell, R_{K^{(*)}}$ is suppressed (but expect to see small deviations from 1 eventually).
- Tree-level LFV via Z^{\prime} associated to charged lepton mixing, $B \rightarrow K^{(*)} \nu \nu$ to be tested in Belle II, naturally light VL leptons below TeV (and more in the paper).

Acknowledgements

The author acknowledges support from the European Union's Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie grant agreement No. 860881-HIDDeN.

Hunting Invisibles: Dark sectors, Dark matter and Neutrinos

Backup: Gauge boson masses

$$
\begin{gathered}
M_{U_{1}}=\frac{1}{2} g_{4} \sqrt{3 v_{1}^{2}+3 v_{3}^{2}+\frac{4}{3} v_{15}^{2}}, \\
M_{g^{\prime}}=\frac{\sqrt{3}}{\sqrt{2}} \sqrt{g_{4}^{2}+g_{3}^{2}} v_{3}, \\
M_{Z^{\prime}}=\frac{1}{2} \sqrt{\frac{3}{2}} \sqrt{g_{4}^{2}+\frac{2}{3} g_{1}^{2}} \sqrt{3 v_{1}^{2}+v_{3}^{2}} .
\end{gathered}
$$

with

$$
\left\langle\phi_{3}\right\rangle=\left(\begin{array}{ccc}
\frac{v_{3}}{\sqrt{2}} & 0 & 0 \\
0 & \frac{v_{3}}{\sqrt{2}} & 0 \\
0 & 0 & \frac{v_{3}}{\sqrt{2}} \\
0 & 0 & 0
\end{array}\right), \quad\left\langle\phi_{1}\right\rangle=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\frac{v_{1}}{\sqrt{2}}
\end{array}\right), \quad\left\langle\Omega_{15}\right\rangle=\frac{1}{2 \sqrt{6}} \operatorname{diag}(1,1,1,-3) v_{15}
$$

The choice $v_{3} \gg v_{1}$ leads to $M_{g^{\prime}} \approx \sqrt{2} M_{U_{1}}$ (phenomenologically motivated).

Backup: Personal Higgses

$$
\begin{aligned}
& H(\overline{4}, \overline{2}, 1 ; 4,2,1) \rightarrow H_{t}(\overline{4}, 3, \overline{2}, 2 / 3), H_{b}(\overline{4}, 3, \overline{2},-1 / 3), H_{\tau}(\overline{4}, 1, \overline{2},-1), H_{\nu_{\tau}}(\overline{4}, 1, \overline{2}, 0), \\
& H(\overline{4}, \overline{2}, 1 ; \overline{4}, 1, \overline{2}) \rightarrow H_{c}(4, \overline{3}, \overline{2}, 1 / 3), H_{s}(4, \overline{3}, \overline{2},-2 / 3), H_{\mu}(\overline{4}, 1, \overline{2}, 0), H_{\nu_{\mu}}(\overline{4}, 1, \overline{2}, 1),
\end{aligned}
$$

Backup: Personal Higgses

$$
\begin{aligned}
& H(\overline{4}, \overline{2}, 1 ; 4,2,1) \rightarrow H_{t}(\overline{4}, 3, \overline{2}, 2 / 3), H_{b}(\overline{4}, 3, \overline{2},-1 / 3), H_{\tau}(\overline{4}, 1, \overline{2},-1), H_{\nu_{\tau}}(\overline{4}, 1, \overline{2}, 0), \\
& \bar{H}(\overline{4}, \overline{2}, 1 ; \overline{4}, 1, \overline{2}) \rightarrow H_{c}(4, \overline{3}, \overline{2}, 1 / 3), H_{s}(4, \overline{3}, \overline{2},-2 / 3), H_{\mu}(\overline{4}, 1, \overline{2}, 0), H_{\nu_{\mu}}(\overline{4}, 1, \overline{2}, 1)
\end{aligned}
$$

- FCNCs in the Higgs basis? \Rightarrow we assume that only one pair of Higgs doublets, H_{u} and H_{d} are light, given by linear combinations of the personal Higgs,

$$
H_{u}=\widetilde{\alpha}_{u} H_{t}+\widetilde{\beta}_{u} H_{c}+\widetilde{\gamma}_{u} H_{\nu_{\tau}}+\widetilde{\delta}_{u} H_{\nu_{\mu}}, H_{d}=\widetilde{\alpha}_{d} H_{b}+\widetilde{\beta}_{d} H_{s}+\widetilde{\gamma}_{d} H_{\tau}+\widetilde{\delta}_{d} H_{\mu}
$$

Backup: Personal Higgses

$$
\begin{aligned}
& H(\overline{4}, \overline{2}, 1 ; 4,2,1) \rightarrow H_{t}(\overline{4}, 3, \overline{2}, 2 / 3), H_{b}(\overline{4}, 3, \overline{2},-1 / 3), H_{\tau}(\overline{4}, 1, \overline{2},-1), H_{\nu_{\tau}}(\overline{4}, 1, \overline{2}, 0), \\
& \bar{H}(\overline{4}, \overline{2}, 1 ; \overline{4}, 1, \overline{2}) \rightarrow H_{c}(4, \overline{3}, \overline{2}, 1 / 3), H_{s}(4, \overline{3}, \overline{2},-2 / 3), H_{\mu}(\overline{4}, 1, \overline{2}, 0), H_{\nu_{\mu}}(\overline{4}, 1, \overline{2}, 1),
\end{aligned}
$$

- FCNCs in the Higgs basis? \Rightarrow we assume that only one pair of Higgs doublets, H_{u} and H_{d} are light, given by linear combinations of the personal Higgs,

$$
H_{u}=\widetilde{\alpha}_{u} H_{t}+\widetilde{\beta}_{u} H_{c}+\widetilde{\gamma}_{u} H_{\nu_{\tau}}+\widetilde{\delta}_{u} H_{\nu_{\mu}}, H_{d}=\widetilde{\alpha}_{d} H_{b}+\widetilde{\beta}_{d} H_{s}+\widetilde{\gamma}_{d} H_{\tau}+\widetilde{\delta}_{d} H_{\mu}
$$

- The orthogonal linear combinations are very heavy, only the light Higgs doublets get VEVs for EW SSB, $\left\langle H_{u}\right\rangle=v_{u},\left\langle H_{d}\right\rangle=v_{d}$,

Backup: Personal Higgses

$$
\begin{aligned}
& H(\overline{4}, \overline{2}, 1 ; 4,2,1) \rightarrow H_{t}(\overline{4}, 3, \overline{2}, 2 / 3), H_{b}(\overline{4}, 3, \overline{2},-1 / 3), H_{\tau}(\overline{4}, 1, \overline{2},-1), H_{\nu_{\tau}}(\overline{4}, 1, \overline{2}, 0), \\
& \bar{H}(\overline{4}, \overline{2}, 1 ; \overline{4}, 1, \overline{2}) \rightarrow H_{c}(4, \overline{3}, \overline{2}, 1 / 3), H_{s}(4, \overline{3}, \overline{2},-2 / 3), H_{\mu}(\overline{4}, 1, \overline{2}, 0), H_{\nu_{\mu}}(\overline{4}, 1, \overline{2}, 1)
\end{aligned}
$$

- FCNCs in the Higgs basis? \Rightarrow we assume that only one pair of Higgs doublets, H_{u} and H_{d} are light, given by linear combinations of the personal Higgs,

$$
H_{u}=\widetilde{\alpha}_{u} H_{t}+\widetilde{\beta}_{u} H_{c}+\widetilde{\gamma}_{u} H_{\nu_{\tau}}+\widetilde{\delta}_{u} H_{\nu_{\mu}}, H_{d}=\widetilde{\alpha}_{d} H_{b}+\widetilde{\beta}_{d} H_{s}+\widetilde{\gamma}_{d} H_{\tau}+\widetilde{\delta}_{d} H_{\mu}
$$

- The orthogonal linear combinations are very heavy, only the light Higgs doublets get VEVs for EW SSB, $\left\langle H_{u}\right\rangle=v_{u},\left\langle H_{d}\right\rangle=v_{d}$,
- Familiar from $S O(10)$ models, where 6 Higgs doublets arise as H_{10}, H_{120}, H_{126}, two from each, but below the $S O(10)$ scale only two Higgs are light. We invert the unitary transformations

$$
\begin{array}{llll}
H_{t}=\alpha_{u} H_{u}+\ldots, & H_{b}=\alpha_{d} H_{d}+\ldots, & H_{\tau}=\gamma_{d} H_{d}+\ldots, & H_{\nu_{\tau}}=\gamma_{u} H_{u}+\ldots \\
H_{c}=\beta_{u} H_{u}+\ldots, & H_{s}=\beta_{d} H_{d}+\ldots, & H_{\mu}=\delta_{d} H_{d}+\ldots, & H_{\nu_{\mu}}=\delta_{u} H_{u}+\ldots,
\end{array}
$$

the personal Higgses in the original basis can be thought of as gaining VEVs $\left\langle H_{t}\right\rangle=\alpha_{u} v_{u}=v_{S M} / \sqrt{2}$, etc and $\left\langle H_{b, s, \tau, \mu}\right\rangle \sim \mathcal{O}(\mathrm{GeV}),\left\langle H_{t, c}\right\rangle \sim v_{S M} / \sqrt{2}$

High- p_{T} signatures

Particle	Decay mode	\mathcal{B} (benchmark)
	$Q_{3} L_{5}+Q_{5} L_{3}$	~ 0.47
U_{1}	$Q_{3} L_{3}$	~ 0.22
	$Q_{5} L_{5}$	~ 0.24
	$Q_{i} L_{2}+Q_{3} L_{i}$	~ 0.07
	$Q_{3} Q_{3}$	~ 0.3
g^{\prime}	$Q_{5} Q_{5}$	~ 0.3
	$Q_{6} Q_{6}$	~ 0.3
	$Q_{1} Q_{6}+Q_{2} Q_{5}+Q_{3} Q_{4}$	~ 0.1
	$L_{5} L_{5}$	~ 0.29
Z^{\prime}	$L_{6} L_{6}$	~ 0.29
	$L_{3} L_{3}$	~ 0.27
	$Q_{3} Q_{3}+Q_{5} Q_{5}+Q_{6} Q_{6}$	~ 0.09
	$L_{1} L_{6}+L_{2} L_{5}+L_{3} L_{4}$	~ 0.06

- VL fermions with physical masses

$$
\tilde{M}_{a}^{Q}=\sqrt{\left(x_{i a}^{\psi}\left\langle\phi_{3}\right\rangle\right)^{2}+\left(M_{a}^{Q}\right)^{2}}, \quad \tilde{M}_{a}^{L}=\sqrt{\left(x_{i a}^{\psi}\left\langle\phi_{1}\right\rangle\right)^{2}+\left(M_{a}^{L}\right)^{2}},
$$

with VL leptons naturally predicted below 1 TeV (excess at CMS [2208.09700]).

Backup: VL-chiral mixing

$$
\begin{array}{cc}
s_{34}^{Q}=\frac{x_{34}^{\psi}\left\langle\phi_{3}\right\rangle}{\sqrt{\left(x_{34}^{\psi}\left\langle\phi_{3}\right\rangle\right)^{2}+\left(M_{44}^{Q}\right)^{2}},}, s_{34}^{L}=\frac{x_{34}^{\psi}\left\langle\phi_{1}\right\rangle}{\sqrt{\left(x_{34}^{\psi}\left\langle\phi_{1}\right\rangle\right)^{2}+\left(M_{44}^{L}\right)^{2}}}, \\
s_{25}^{Q}=\frac{x_{25}^{\psi}\left\langle\phi_{3}\right\rangle}{\sqrt{\left(x_{25}^{\psi}\left\langle\phi_{3}\right\rangle\right)^{2}+\left(M_{55}^{Q}\right)^{2}},} \quad s_{25}^{L}=\frac{x_{25}^{\psi}\left\langle\phi_{1}\right\rangle}{\sqrt{\left(x_{25}^{\psi}\left\langle\phi_{1}\right\rangle\right)^{2}+\left(M_{55}^{L}\right)^{2}},} \\
s_{16}^{Q}=\frac{x_{16}^{\psi}\left\langle\phi_{3}\right\rangle}{\sqrt{\left(x_{16}^{\psi}\left\langle\phi_{3}\right\rangle\right)^{2}+\left(M_{66}^{Q}\right)^{2}},} \quad s_{16}^{L}=\frac{x_{16}^{\psi}\left\langle\phi_{1}\right\rangle}{\sqrt{\left(x_{16}^{\psi}\left\langle\phi_{1}\right\rangle\right)^{2}+\left(M_{66}^{L}\right)^{2}},} \\
\tilde{M}_{5}^{Q}=\sqrt{\left(x_{25}^{\psi}\left\langle\phi_{3}\right\rangle\right)^{2}+\left(x_{35}^{\psi}\left\langle\phi_{3}\right\rangle\right)^{2}+\left(M_{55}^{Q}\right)^{2}}, & \tilde{M}_{5}^{L}=\sqrt{\left(x_{25}^{\psi}\left\langle\phi_{1}\right\rangle\right)^{2}+\left(x_{35}^{\psi}\left\langle\phi_{1}\right\rangle\right)^{2}+\left(M_{55}^{L}\right)^{2}}, \\
\tilde{M}_{6}^{Q}=\sqrt{\left(x_{16}^{\psi}\left\langle\phi_{3}\right\rangle\right)^{2}+\left(M_{66}^{Q}\right)^{2}}, & \tilde{M}_{6}^{L}=\sqrt{\left(x_{16}^{\psi}\left\langle\phi_{1}\right\rangle\right)^{2}+\left(M_{66}^{L}\right)^{2}} .
\end{array}
$$

Backup: Mass matrix, block-diagonalisation

Backup: Mass matrix, block-diagonalisation

Block-diagonalised via (effective mass matrices arise):

$$
\begin{aligned}
& V_{\psi}=V_{16}^{\psi} V_{35}^{\psi} V_{25}^{\psi} V_{34}^{\psi} V_{45}^{\psi} V_{45}^{\overline{\psi^{c}}}, \\
& V_{\psi^{c}}=V_{16}^{\psi^{c}} V_{35}^{\psi^{c}} V_{25}^{\psi^{c}} V_{34}^{\psi^{c}} V_{24}^{\psi^{c}} V_{45}^{\psi^{c}} V_{45}^{\bar{\psi}} .
\end{aligned}
$$

Backup: Effective Yukawa couplings (mass matrices)

- Zeroes enforced by Z_{4} :

$$
\begin{aligned}
& M_{\text {eff }}^{u}=\left(\begin{array}{cccc}
& u_{1}^{c^{\prime}} & u_{2}^{c^{\prime}} & u_{3}^{c^{\prime}} \\
Q_{1}^{\prime} \mid & 0 & 0 & 0 \\
Q_{2}^{\prime} \mid & 0 & 0 & s_{25}^{Q} y_{53}^{\psi} \\
Q_{3}^{\prime} \mid & 0 & 0 & s_{34}^{Q} y_{43}^{\psi}
\end{array}\right)\left\langle H_{t}\right\rangle+\left(\begin{array}{cccc}
& u_{1}^{c^{\prime}} & u_{2}^{c^{\prime}} & u_{3}^{c^{\prime}} \\
\begin{array}{c}
0 \\
Q_{1}^{\prime} \mid \\
Q_{2}^{\prime} \mid \\
0
\end{array} & c_{25}^{Q} s_{24}^{c^{c}} y_{24}^{\psi} & c_{25}^{Q} q_{34}^{c} y_{24}^{\psi} \\
Q_{3}^{\prime} \mid & 0 & c_{34}^{Q} s_{24}^{c} y_{34}^{\psi} & c_{34}^{Q} q_{34}^{c} y_{34}^{\psi}
\end{array}\right)\left\langle H_{c}\right\rangle+\text { h.c. }, \\
& M_{\text {eff }}^{d}=\left(\begin{array}{cccc}
& d_{1}^{c^{c^{\prime}}} & d_{2}^{c^{\prime}} & d_{3}^{c^{\prime}} \\
\hline Q_{1}^{\prime} \mid & 0 & 0 & 0 \\
Q_{2}^{\prime} \mid & 0 & 0 & s_{25}^{Q} y_{53}^{\psi} \\
Q_{3}^{\prime} \mid & 0 & 0 & s_{34}^{Q} y_{43}^{\psi}
\end{array}\right)\left\langle H_{b}\right\rangle+\left(\begin{array}{ccc}
& d_{1}^{c^{\prime}} & d_{2}^{c^{\prime}} \\
\hline 0 & 0 & d_{3}^{c^{\prime}} \\
Q_{1}^{\prime} \mid & 0 \\
Q_{2}^{\prime} \mid & 0 & c_{25}^{Q} s_{24}^{q^{c}} y_{24}^{\psi} \\
Q_{3}^{\prime} \mid & c_{25}^{Q} s_{34}^{q^{c}} y_{24}^{\psi} \\
0 & c_{34}^{Q} s_{24}^{q^{c}} y_{34}^{\psi} & c_{34}^{Q} s_{34}^{q^{c}} y_{34}^{\psi}
\end{array}\right) \\
& M_{\text {eff }}^{e}=\left(\begin{array}{cccc}
& e_{1}^{c^{\prime}} & e_{2}^{c^{\prime}} & e_{3}^{c^{\prime}} \\
\cline { 2 - 7 } \\
L_{1}^{\prime} \mid & 0 & 0 & 0 \\
L_{2}^{\prime} \mid & 0 & 0 & s_{25}^{L} y_{53}^{\psi} \\
L_{3}^{\prime} \mid & 0 & 0 & s_{34}^{L} y_{43}^{\psi}
\end{array}\right)\left\langle H_{\tau}\right\rangle+\left(\begin{array}{cccc}
& e_{1}^{c^{\prime}} & e_{2}^{c^{\prime}} & u_{3}^{c^{\prime}} \\
\left.\begin{array}{ll}
L_{1}^{\prime} \mid & 0 \\
L_{2}^{\prime} \mid & 0 \\
c_{25}^{L} s_{24}^{c^{c}} y_{24}^{\psi} & c_{25}^{L} s_{34}^{c^{c}} y_{24}^{\psi} \\
L_{3}^{\prime} \mid & 0 \\
c_{34}^{L} s_{24}^{e^{c}} y_{34}^{\psi} & c_{34}^{L} s_{34}^{c^{c}} y_{34}^{\psi}
\end{array}\right)\left\langle H_{\mu}\right\rangle+\text { h.c. }, ~
\end{array}\right.
\end{aligned}
$$

- CKM down alligned if

$$
\begin{aligned}
& s_{25}^{Q} y_{53}^{\psi}\left\langle H_{b}\right\rangle+c_{25}^{Q} s_{34}^{q^{c}} y_{24}^{\psi}\left\langle H_{s}\right\rangle \approx 0 \Rightarrow y_{53}^{\psi} \approx(-) \mathcal{O}(0.1-0.5) \Rightarrow \theta_{23}^{d} \approx 0 \\
& \quad \Rightarrow\left\{\begin{array}{c}
\theta_{23}^{u} \approx \frac{-s_{25}^{Q}\left|y_{53}^{\psi}\right|\left\langle H_{t}\right\rangle+c_{25}^{Q} s_{34}^{q^{c}} y_{24}^{\psi}\left\langle H_{c}\right\rangle}{s_{34}^{Q} y_{43}^{\psi}\left\langle H_{t}\right\rangle} \approx s_{25}^{Q}\left|y_{53}^{\psi}\right| \approx \mathcal{O}\left(V_{c b}\right), \\
\theta_{23}^{e} \approx \frac{-s_{25}^{L}\left|y_{53}^{\psi}\right|\left\langle H_{\tau}\right\rangle+c_{25}^{L} s_{34}^{c} y_{24}^{\psi}\left\langle H_{\mu}\right\rangle}{s_{34}^{L} y_{43}^{\psi}\left\langle H_{\tau}\right\rangle} \approx \mathcal{O}\left(V_{c b}-4 V_{c b}\right)
\end{array}\right.
\end{aligned}
$$

Backup: Top mass

In good approximation, the mass of the top quark is given by the $(3,3)$ entry in $M_{\text {eff }}^{u}$, i.e.

$$
m_{t} \approx s_{34}^{Q} y_{43}^{\psi}\left\langle H_{t}\right\rangle=s_{34}^{Q} y_{43}^{\psi} \alpha_{u} \frac{1}{\sqrt{1+\tan ^{-2} \beta}} \frac{v_{\mathrm{SM}}}{\sqrt{2}},
$$

where $v_{\mathrm{SM}}=246 \mathrm{GeV}$ and we have applied $\left\langle H_{t}\right\rangle=\alpha_{u} v_{u}$, where

$$
v_{u}=\frac{v_{\mathrm{SM}}}{\sqrt{2}} \sin \beta=\frac{1}{\sqrt{1+\tan ^{-2} \beta}} \frac{v_{\mathrm{SM}}}{\sqrt{2}}
$$

as in usual 2 HDM. If we consider $\tan \beta \approx 10$ and $\alpha_{u} \approx 1^{1}$, then we obtain

$$
m_{t} \approx s_{34}^{Q} y_{43}^{\psi} \frac{v_{\mathrm{SM}}}{\sqrt{2}} \equiv y_{t} \frac{v_{\mathrm{SM}}}{\sqrt{2}} .
$$

[^0]
Backup: 1st family masses

- Add one VL family split across both PS groups, take advantage of scalars performing high scale breaking, Z_{4} still provides flavour structure
- VL masses splitted via Ω_{15}. Texture zero and up-alligned structure in the (1-2) CKM sector.

Backup: Neutrino masses

Single right-handed neutrino dominance

$$
\begin{gather*}
M_{\nu}^{M}=\left(\begin{array}{ccc}
\tilde{\xi}^{2} & \tilde{\xi}^{5} & \tilde{\xi}_{4}^{4} \\
\tilde{\xi}^{5} & \tilde{\xi}_{2}^{2} & \tilde{\xi}^{2} \\
\tilde{\xi}^{4} & \tilde{\xi} & 1
\end{array}\right) \frac{\left\langle H^{\prime}\right\rangle\left\langle H^{\prime}\right\rangle}{\Lambda} \simeq\left(\begin{array}{ccc}
M_{1}^{M} & 0 & 0 \\
0 & M_{2}^{M} & \tilde{\xi} \\
0 & \xi & M_{3}^{M}
\end{array}\right) \tag{1}\\
M_{1}^{M} \simeq M_{2}^{M} \simeq \tilde{\xi}^{2} M_{3}^{M} \tag{2}\\
M_{3}^{M}=\frac{\left\langle H^{\prime}\right\rangle\left\langle H^{\prime}\right\rangle}{\Lambda} \tag{3}\\
M_{\nu}^{D}=\left(\begin{array}{ccc}
0 & a & a^{\prime} \\
e & b & b^{\prime} \\
f & c & c^{\prime}
\end{array}\right) \tag{4}
\end{gather*}
$$

Now we apply the seesaw formula:

$$
\begin{equation*}
m_{\nu}=M_{\nu}^{D}\left(M_{\nu}^{M}\right)^{-1}\left(M_{\nu}^{D}\right)^{T} \tag{5}
\end{equation*}
$$

If we neglect the off-diagonal $\tilde{\xi}$ terms

$$
m_{\nu}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{6}\\
0 & e^{2} & e f \\
0 & e f & f^{2}
\end{array}\right) \frac{1}{M_{1}^{M}}+\left(\begin{array}{ccc}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right) \frac{1}{M_{2}^{M}}+\left(\begin{array}{ccc}
a^{\prime 2} & a^{\prime} b^{\prime} & a^{\prime} c^{\prime} \\
a^{\prime} b^{\prime} & b^{\prime 2} & b^{\prime} c^{\prime} \\
a^{\prime} c^{\prime} & b^{\prime} c^{\prime} & c^{\prime 2}
\end{array}\right) \frac{1}{M_{3}^{M}} .
$$

Backup: $R_{K^{(*)}}$ and $R_{D^{(*)}}$

$$
\begin{gathered}
\mathcal{L}_{\text {eff }} \supset C_{b s \mu \mu}^{U_{1}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\mu}_{L} \gamma^{\mu} \mu_{L}\right)+C_{b c \tau \nu}^{U_{1}}\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma^{\mu} \nu_{\tau L}\right)+\text { h.c. } \\
C_{b s \mu \mu}^{U_{1}}=-\frac{g_{4}^{2}}{2 M_{U_{1}}^{2}} \beta_{b \mu}^{*} \beta_{s \mu}=\frac{g_{4}^{2}}{2 M_{U_{1}}^{2}} c_{\theta_{L Q}} s_{\theta_{L Q}} s_{25}^{Q} s_{34}^{Q}\left(s_{25}^{L}\right)^{2}, \\
C_{b c \tau \nu_{\tau}}^{U_{1}}=-\frac{g_{4}^{2}}{2 M_{U_{1}}^{2}} \beta_{b \tau}^{*} \beta_{c \nu_{\tau}}=-\frac{g_{4}^{2}}{2 M_{U_{1}}^{2}} c_{\theta_{L Q}} s_{\theta_{L Q}} s_{25}^{Q} s_{34}^{Q}\left(s_{34}^{L}\right)^{2}
\end{gathered}
$$

in order to fit

$$
\begin{gathered}
C_{b s \mu \mu}^{U_{1}}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \frac{\alpha}{4 \pi} 2 \delta C_{L}^{\mu}, \quad \delta C_{L}^{\mu}=-0.7_{-0.07}^{+0.07}, \\
C_{c b \tau \nu_{\tau}}^{U_{1}}=-2 \sqrt{2} G_{F} V_{c b} g_{V_{L}}, \quad g V_{L}=0.07 \pm 0.02
\end{gathered}
$$

Backup: ΔM_{s}

$$
\begin{gather*}
\delta\left(\Delta M_{s}\right) \equiv \frac{\Delta M_{s}-\Delta M_{s}^{\mathrm{SM}}}{\Delta M_{s}^{S \mathrm{M}}}=\left|1+\frac{C_{b s}^{\mathrm{NP}}}{C_{b s}^{\mathrm{SM}}}\right|-1=\frac{C_{b s}^{\mathrm{NP}}}{C_{b s}^{\mathrm{SM}}} \lesssim 0.11 \tag{7}\\
C_{b s}^{\mathrm{NP}-\text { loop }}=\frac{g_{4}^{4}}{\left(8 \pi M_{U_{1}}\right)^{2}} \sum_{\alpha, \beta}\left(\beta_{s \alpha}^{*} \beta_{b \alpha}\right)\left(\beta_{s \beta}^{*} \beta_{b \beta}\right) F\left(x_{\alpha}, x_{\beta}\right) \tag{8}
\end{gather*}
$$

where $\alpha, \beta=\mu, \tau, E_{4}, E_{5}$ run for all charged leptons, including the vector-like partners, and $x_{\alpha}=\left(m_{\alpha} / M_{U}\right)^{2}$. We have generalised the loop function in [Fuentes-Martin et al, 2009.11296] to the case of more than one VL families,

$$
\begin{equation*}
F\left(x_{\alpha}, x_{\beta}\right)=\left(1+\frac{x_{\alpha} x_{\beta}}{4}\right) B\left(x_{\alpha}, x_{\beta}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
B\left(x_{\alpha}, x_{\beta}\right)=\frac{1}{\left(1-x_{\alpha}\right)\left(1-x_{\beta}\right)}+\frac{x_{\alpha}^{2} \log x_{\alpha}}{\left(x_{\beta}-x_{\alpha}\right)\left(1-x_{\alpha}^{2}\right)}+\frac{x_{\beta}^{2} \log x_{\beta}}{\left(x_{\alpha}-x_{\beta}\right)\left(1-x_{\beta}^{2}\right)} \tag{10}
\end{equation*}
$$

The product of couplings $\beta_{s \alpha}^{*} \beta_{b \alpha}$ has the fundamental property

$$
\begin{equation*}
\sum_{\alpha} \beta_{s \alpha}^{*} \beta_{b \alpha}=0 \tag{11}
\end{equation*}
$$

Backup: Perturbativity

The low-energy 4321 theory must remain perturbative until the high scale of the twin Pati-Salam symmetry.

Backup: Gauge bosons couplings

$$
\begin{aligned}
& \mathcal{L}_{U_{1}}^{\text {gauge }}=\frac{g_{4}}{\sqrt{2}} Q_{i}^{\dagger^{\prime}} \gamma_{\mu}\left(\begin{array}{ccc}
s_{16}^{Q} s_{16}^{L} \epsilon & 0 & 0 \\
0 & c_{\theta_{L Q}} s_{25}^{Q} s_{25}^{L} & s_{\theta_{L Q}} s_{25}^{Q} s_{34}^{L} \\
0 & -s_{\theta_{L Q}} s_{34}^{Q} s_{25}^{L} & c_{\theta_{L Q}} s_{34}^{Q} s_{34}^{L}
\end{array}\right) L_{j}^{\prime} U_{1}^{\mu}+\text { h.c. }, \\
& \mathcal{L}_{g^{\prime}}^{\text {gauge }}=\frac{g_{4} g_{s}}{g_{3}} Q_{i}^{\dagger^{\prime}} \gamma^{\mu} T^{a}\left(\begin{array}{ccc}
\left(s_{16}^{Q}\right)^{2}-\left(c_{16}^{Q}\right)^{2} \frac{g_{3}^{2}}{g_{4}^{2}} & 0 & 0 \\
0 & \left(s_{25}^{Q}\right)^{2}-\left(c_{25}^{Q}\right)^{2} \frac{g_{3}^{2}}{g_{4}^{2}} & 0 \\
0 & 0 & \left(s_{34}^{Q}\right)^{2}-\left(c_{34}^{Q}\right)^{2} \frac{g_{3}^{2}}{g_{4}^{2}}
\end{array}\right) Q_{j}^{\prime} g_{\mu}^{a^{\prime}} . \\
& \mathcal{L}_{Z^{\prime}, \ell}^{\text {gauge }}=-\frac{\sqrt{3}}{\sqrt{2}} \frac{g_{4} g_{Y}}{g_{1}} L_{i}^{\dagger^{\prime}} \gamma^{\mu}\left(\begin{array}{ccc}
\frac{1}{2}\left(s_{16}^{L}\right)^{2}-\left(c_{16}^{L}\right)^{2} \frac{g_{1}^{2}}{3 g_{4}^{2}} & 0 & 0 \\
0 & \frac{1}{2}\left(s_{25}^{L}\right)^{2}-\left(c_{25}^{L}\right)^{2} \frac{g_{1}^{2}}{3 g_{4}^{2}} & 0 \\
0 & 0 & \frac{1}{2}\left(s_{34}^{L}\right)^{2}-\left(c_{34}^{L}\right)^{2} \frac{g_{1}^{2}}{3 g_{4}^{2}}
\end{array}\right) L_{j}^{\prime} Z_{\mu}^{\prime} .
\end{aligned}
$$

Backup: $B \rightarrow K \nu \bar{\nu}$

$$
\mathcal{L}_{b \rightarrow s \nu \nu}=-C_{\nu}^{\tau \tau}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\nu}_{L \tau} \gamma^{\mu} \nu_{L \tau}\right), C_{\nu}^{\tau \tau}=C_{\nu, \mathrm{NP}}^{\tau}+C_{\nu, \mathrm{SM}} .
$$

We parameterise corrections to the SM branching fraction as

$$
\delta \mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)_{\mathrm{SM}}}-1 \approx \frac{1}{3}\left|\frac{C_{\nu \nu}^{\mathrm{NP}}-C_{\nu \nu}^{\mathrm{SM}}}{C_{\nu \nu}^{\mathrm{SM}}}\right|^{2}-\frac{1}{3} .
$$

We split the NP effects into Z^{\prime}-mediated and U_{1}-mediated contributions as follows

$$
C_{\nu, \mathrm{NP}}^{\tau \tau}=C_{\nu, Z^{\prime}}^{\tau \tau}+C_{\nu, U}^{\tau \tau} .
$$

The U_{1} contribution at NLO accuracy reads

$$
C_{\nu, U}^{\tau \tau} \approx C_{\nu, U}^{\mathrm{RGE}}+\frac{g_{4}^{4}}{32 \pi^{2} M_{U_{1}}^{2}} \sum_{\alpha, j}\left(\beta_{s \alpha}^{*} \beta_{b \alpha}\right)\left(\beta_{j \nu \tau}\right)^{2} F\left(x_{\alpha}, x_{j}\right),
$$

where the second term arises from the semileptonic box diagram and the first term encodes the RGE-induced contribution from the tree-level leptoquark-mediated operator $\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma^{\mu} \tau_{L}\right)$,

$$
\begin{gathered}
C_{\nu, U}^{\mathrm{RGE}}=-0.047 \frac{g_{4}^{2}}{2 M_{U_{1}}^{2}} \beta_{b \tau} \beta_{s \tau} \\
C_{\nu, Z^{\prime}}^{\tau \tau} \approx \frac{3 g_{4}^{2}}{2 M_{Z^{\prime}}^{2}}\left[\xi_{b s} \xi_{\nu_{\tau} \nu_{\tau}}\left(1+\frac{3}{2} \frac{g_{4}^{2}}{16 \pi^{2}} \xi_{\nu_{\tau} \nu_{\tau}}^{2}\right)+\frac{g_{4}^{2}}{16 \pi^{2}} \beta_{s E_{5}}^{*} \beta_{b E_{5}} G_{\Delta Q=1}\left(x_{E_{5}}, x_{Z^{\prime}}, x_{R}\right)\right]
\end{gathered}
$$

where $x_{E_{5}} \equiv\left(M_{5}^{L}\right)^{2} / M_{U}^{2}, x_{Z^{\prime}} \equiv M_{Z^{\prime}}^{2} / M_{U}^{2}$ and $x_{R} \equiv M_{R}^{2} / M_{U}^{2}$ with M_{R} being a scale associated to the radial mode $h_{U}(3,1,2 / 3)$ arising from $\phi_{3,1}$. The loop function [Fuentes-Martin et al, 2009.11296]

$$
G_{\Delta Q=1}\left(x_{1}, x_{2}, x_{3}\right) \approx \frac{5}{4} x_{1}+\frac{x_{1}}{2}\left(x_{2}-\frac{3}{2}\right)\left(\ln x_{3}-\frac{5}{2}\right),
$$

Backup: Tests of universality in leptonic τ decays

$$
\begin{align*}
& \left(\frac{g_{\tau}}{g_{\mu}}\right)_{\ell}=1+\frac{9}{12} C_{Z^{\prime}}\left(\left|\xi_{\tau e}\right|^{2}-\left|\xi_{\mu e}\right|^{2}\right)-\eta C_{U}\left(\left|\beta_{b \tau}\right|^{2}-\left|\beta_{b \mu}\right|^{2}\right) \tag{12}\\
& \left(\frac{g_{\tau}}{g_{e}}\right)_{\ell}=1+\frac{9}{12} C_{Z^{\prime}}\left(\left|\xi_{\tau \mu}\right|^{2}-\left|\xi_{\mu e}\right|^{2}\right)-\eta C_{U}\left(\left|\beta_{b \tau}\right|^{2}-\left|\beta_{b e}\right|^{2}\right) \tag{13}
\end{align*}
$$

where $\eta=0.079$ parameterises the running from $\Lambda=2 \mathrm{TeV}$. Due to the hierarchy in leptoquark couplings, we find $\beta_{b \tau} \gg \beta_{b \mu}$ and $\beta_{b e} \approx 0$, hence in good approximation both ratios receive the same contribution proportional to $\beta_{b \tau}$, so we can approximate

$$
\begin{equation*}
\left(\frac{g_{\tau}}{g_{\mu, e}}\right)_{\ell+\pi+K} \approx 1-\eta C_{U}\left|\beta_{b \tau}\right|^{2} \tag{14}
\end{equation*}
$$

Backup: $K_{L} \rightarrow \mu e$

The LFV process $K_{L} \rightarrow \mu$ e sets a strong constraint over all models featuring a vector leptoquark U_{1} with first and second family couplings,

$$
\mathcal{B}\left(K_{L} \rightarrow \mu e\right)=\frac{\tau_{K_{L}} G_{\digamma}^{2} f_{K}^{2} m_{\mu}^{2} m_{K}}{8 \pi}\left(1-\frac{m_{\mu}^{2}}{m_{K}^{2}}\right)^{2} C_{U}^{2}\left|\beta_{d e} \beta_{s \mu}^{*}\right|^{2}
$$

The first family coupling $\beta_{d e}$ can be diluted via mixing with vector-like fermions, which we parameterised via the effective parameter ϵ, so that $\beta_{s e} \approx s_{16}^{Q} s_{16}^{L} \epsilon$.

Backup: $K_{L} \rightarrow \mu e$ (cont.)

$$
\begin{align*}
& \mathcal{L}_{\text {mix }}=x_{66} \chi \bar{\psi}_{6} \psi_{6}^{\prime}+x_{66}^{\prime} \chi^{*} \bar{\psi}_{6}^{\prime} \psi_{6}+\text { h.c. } \tag{15}\\
& \mathcal{L}_{\text {mass }}=\left(M_{66}^{\psi}+\lambda_{15}^{66} T_{15} \Omega_{15}\right) \bar{\psi}_{6} \psi_{6}+\left(M_{66^{\prime}}^{\psi}+\lambda_{15}^{66^{\prime}} T_{15} \Omega_{15}\right) \bar{\psi}_{6}^{\prime} \psi_{6}^{\prime}+\text { h.c. } \tag{16}
\end{align*}
$$

Then for LQ couplings

$$
\mathcal{L}_{U_{1}}=\frac{g_{4}}{\sqrt{2}}\left(\begin{array}{cc}
Q_{6}^{\dagger} & Q_{6}^{\dagger^{\prime}} \tag{17}
\end{array}\right) \gamma_{\mu} V_{66^{\prime}}^{Q} \operatorname{diag}(1,1) V_{66^{\prime}}^{L^{\prime}}\binom{L_{6}}{L_{6}^{\prime}} U_{1}^{\mu}+\text { h.c. }
$$

If we define

$$
v_{66^{\prime}}^{Q} v_{66^{\prime}}^{L \dagger} \equiv\left(\begin{array}{cc}
\cos \theta_{6} & \sin \theta_{6} \tag{18}\\
-\sin \theta_{6} & \cos \theta_{6}
\end{array}\right),
$$

then the $Q_{6}^{\dagger} L_{6} U_{1}$ coupling receives a suppression via $\cos \theta_{6}$ as

$$
\begin{equation*}
\beta_{d e}=s_{16}^{Q} s_{16}^{L} \cos \theta_{6} . \tag{19}
\end{equation*}
$$

which is identified with the suppression parameter ϵ,

$$
\begin{equation*}
\epsilon \equiv \cos \theta_{6} \tag{20}
\end{equation*}
$$

[^0]: ${ }^{1}$ This choice preserves $\left\langle H_{t}\right\rangle$ at the EW scale, larger values would break the decoupling approximation that we have assumed during the diagonalisation of the full mass matrix.

