$b \rightarrow s\ell\ell$ and Lepton Flavour Universality at LHCb

C. Langenbruch¹ on behalf of the LHCb collaboration ¹Heidelberg University

Moriond EW 2023 March 20th 2023

LHCD

 $b \rightarrow s \ell \ell$ decays as sensitive probes for New Physics

- $b \rightarrow s\ell\ell$ decays heavily (loop-)suppressed in the SM
- New heavy particles can significantly contribute and affect decay rates, angular distributions, and rate asymmetries

San

Effective field theory for $b \rightarrow s\ell\ell$ decays

Different $q^2 = m^2(\ell^+\ell^-)$ regions probe different operator combinations

For

completeness

Motivation and Introduction

Observables in $b \rightarrow s\ell\ell$ decays and their cleanliness

4 / 19

 $q^2 \, [{\rm GeV}^2/c^4]$

 $b \rightarrow s\ell\ell$ Observables

Increasing precision of SM prediction

Langenbruch (Heidelberg University), Moriond EW 2023 LFU at LHCb

Motivation and Introduction Lepton Flavour Universality tests in $b o s\ell\ell$ decays

- Lepton flavour universality central property of SM
- Testable using ratios of branching fractions of rare $b \rightarrow s\ell^+\ell^-$ decays:

$$R_{K,K^*} = \frac{\mathcal{B}(B^{(+,0)} \to K^{(+,*0)}\mu^+\mu^-)}{\mathcal{B}(B^{(+,0)} \to K^{(+,*0)}e^+e^-)}$$

- Exactly unity in SM, differences only through lepton mass effects
- QED corrections $\mathcal{O}(1\%)$ [EPJC 76 (2016) 440]
- Hadronic uncertainties (form-factors and cc-loop) cancel in the ratio

Motivation and Introduction

 R_K and R_{K^*} in different NP scenarios

Example NP models assuming NP only in muons

- Some ability to disentangle different scenarios with R_K and R_{K^*}
- Simultaneous R_K and R_{K^*} determination with 9 fb⁻¹ Run 1+2 data

イロト イボト イヨト イヨト

$$\begin{array}{ll} \mathsf{Iow-}q^2 \colon & q^2 \in [0.1, 1.0] \, \mathrm{GeV}^2/c^4 \\ \mathsf{central-}q^2 \colon & q^2 \in [1.1, 6.0] \, \mathrm{GeV}^2/c^4 \end{array}$$

200

The LHCb experiment: Optimized for heavy flavour

Large $\sigma_{b\bar{b}}$: $(284 \pm 53) \,\mu\text{b}$ at $7 \,\text{TeV}$ and $(495 \pm 52) \,\mu\text{b}$ at $13 \,\text{TeV} \left[\begin{smallmatrix} \text{PLB 694} & (2010) & 209-216 \\ \text{JHEP 10} & (2015) & 172 \end{smallmatrix} \right]$

Excellent IP resolution $\sim 20\, \mathrm{\mu m}$ to identify B decay vertices, $\Delta p/p = 0.5 - 1\%$

- Particle identification: $\epsilon_{K \to K} \sim 95\%$, $\epsilon_{\pi \to K} \sim 5\%$ and $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1 3\%$
- Low trigger thresholds: $p_{\rm T}(\mu) > 1.8 \,{
 m GeV}$, $E_{\rm T}(e) > 3.0 \,{
 m GeV}$

KC C. Langenbruch (Heidelberg University), Moriond EW 2023 LFU at LHCb

The LHCb detector The LHCb experiment: Optimized for heavy flavour

Large $\sigma_{b\bar{b}}$: (284 ± 53) µb at 7 TeV and (495 ± 52) µb at 13 TeV [PLB 694 (2010) 209-216] [JHEP 10 (2015) 172]

- Excellent IP resolution $\sim 20 \, \mu {
 m m}$ to identify B decay vertices, $\Delta p/p = 0.5 1\%$
- Particle identification: $\epsilon_{K \to K} \sim 95\%$, $\epsilon_{\pi \to K} \sim 5\%$ and $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1 3\%$
- Low trigger thresholds: $p_{\rm T}(\mu) > 1.8 \,{\rm GeV}$, $E_{\rm T}(e) > 3.0 \,{\rm GeV}$

🐝 C. Langenbruch (Heidelberg University), Moriond EW 2023 🛛 LFU at LHCb

Experimental challenges for electron modes at LHCb

Experimental Challenges for electron modes:

- I Low e trigger efficiencies due to higher thresholds compared to muons
- Electrons strongly emit Bremsstrahlung traversing material
- Contribution from several background sources, bkg. modeling critical

イロト イポト イヨト イヨト

200

Simultaneous measurement of R_{kc} and R_{kc*} Experimental challenge: 1. Electron trigger

- Trigger signatures for muon and electron modes very different
- Lower L0 $p_{\rm T}$ thresholds for muons $(1.5-1.8 \, {\rm GeV}/c)$ compared to electrons $(2.5-3.0 \, {\rm GeV}) \rightarrow$ challenging for e^+e^- modes
- Combine exclusive trigger categories to improve ϵ for electron modes:
 - Trigger on rest of event (independent of signal)
 - 2 Trigger on e/μ from signal

DQC

Simultaneous measurement of $R_{\mathcal{K}}$ and $R_{\mathcal{L}^{*}}$

Experimental challenge: 2. Bremsstrahlung

Correct electron momentum by adding matching photons ($E_{\rm T} > 75 \, {\rm MeV}/c^2$) reconstructed in the ECAL

I D > I D > I

4 E b

DQC

- Bremsstrahlung recovery $\sim 50\%$ efficient, well simulated
- Bremsstrahlung reconstruction impacts momentum resolution → higher background pollution and more sensitive to bkg. modeling

Simultaneous measurement of $R_{\,{\ensuremath{\mathcal K}}}$ and $R_{\,{\ensuremath{\mathcal K}}}*$

Experimental challenge: 3. Background suppression

- Combinatorial: multivariate classifier using kinematic quantities and vertex quality information
- Partially reconstructed: multivariate classifier in electron mode and corrected mass exploiting PV/SV reconstruction
- Misidentification: Lepton and hadron particle identification Residual backgrounds from misidentification explicitly modeled [see backup]

Muon mode fits

- Muon mode is very clean!
- Muon branching fraction compatible with published results [JHEP 06 (2014) 133] [JHEP 11 (2016) 047]

토 > 토

DQC

Electron mode fits

Brems. tails from J/ψ entering rare modes constrained in sim. fit

Partially reconstructed bgk. from $K^{*0}e^+e^-$ constrained in $K^+e^+e^-$

DQC

Simultaneous measurement of $R_{\,{\ensuremath{{\mbox{\tiny L}}}}}$ and $R_{\,{\ensuremath{{\mbox{\tiny L}}}}\ast}$

Crosschecks $r_{J/\psi}$ and $R_{\psi(2S)}$

Both $r_{J\!/\!\psi}$ and $R_{\psi(2S)}$ compatible with unity at better than $2\,\sigma$

<ロ> < @ > < E > < E > E の < @ <

Simultaneous measurement of $R_{K'}$ and $R_{K'*}$ R_{K} and $R_{K'*}$ results

- Most precise test of Lepton Flavour Universality in $b \rightarrow s \ell^+ \ell^-$ transitions
- Supersedes previous results
- Compatible with the SM at $0.2\,\sigma$ using a simple χ^2 test
- Statistical uncertainty dominates
- Scaling R_{K,K^*} with measured muon \mathcal{B} [JHEP 06 (2014) 133] [JHEP 11 (2016) 047]

$$\frac{\mathrm{d}\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathrm{d}q^2} = (25.5^{+1.3}_{-1.2} \pm 1.1) \times 10^{-9} \ \mathrm{GeV}^{-2}$$
$$\frac{\mathrm{d}\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathrm{d}q^2} = (33.3^{+2.7}_{-2.6} \pm 2.2) \times 10^{-9} \ \mathrm{GeV}^{-2}$$

 Dedicated *B* measurements of *ee* modes and angular analyses ongoing see also [talk by A. Snoch]

Simultaneous measurement of $R_{K'}$ and $R_{K'*}$ R_{K} and $R_{K'*}$ results

- Most precise test of Lepton Flavour Universality in $b \rightarrow s \ell^+ \ell^-$ transitions
- Supersedes previous results
- Compatible with the SM at $0.2\,\sigma$ using a simple χ^2 test
- Statistical uncertainty dominates
- Scaling R_{K,K*} with measured muon B: [JHEP 06 (2014) 133] [JHEP 11 (2016) 047]

$$\frac{\mathrm{d}\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathrm{d}q^2} = (25.5^{+1.3}_{-1.2} \pm 1.1) \times 10^{-9} \text{ GeV}^{-2}$$
$$\frac{\mathrm{d}\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathrm{d}q^2} = (33.3^{+2.7}_{-2.6} \pm 2.2) \times 10^{-9} \text{ GeV}^{-2}$$

 Dedicated B measurements of ee modes and angular analyses ongoing see also [talk by A. Snoch]

- $\blacksquare \ b \to s \ell \ell$ decays powerful probes of the SM
- Lepton Flavour Universality tests exhibit the most precise SM prediction in this area
- Data in excellent agreement with lepton flavour universality
- Tensions in muon branching fractions and angular analyses remain
- Measurement statistically limited → More precision needed
- Run 3 just started with brand new LHCb detector
- Will increase ∫ Ldt by more than factor 5 during Runs 3–4, allowing for unprecedented reach with precision flavour observables

Backgrounds from misidentification

- Misidentified backgrounds can be isolated by inverting particle ID cuts: Examples are (left) $B^+ \rightarrow K^+ \pi^+ \pi^-$ and (right) $B^+ \rightarrow K^+ K^+ K^-$
- Similar backgrounds for $K^{*0}e^+e^-$, however Dalitz structure not well known
- Backgrounds from single misidentification less well known, complex shape
- Developed new inclusive data-driven treatment of misidentified residual backgrounds

Residual backgrounds from misidentification

- Invert electron PID selection to obtain control region
- Use control samples from data to weight control region events according to their misidentification probability $w_e = \epsilon_{\text{pass PID}}/\epsilon_{\text{fail PID}}$
- Resulting distribution and expected background yield used in nominal rare electron mode fit

Systematic uncertainties

Dominant systematic: Modeling of residual misidentified bgks.

Measurement statistically limited

Backup

R_{K,K^*} specific background vetos

R_{K,K^*} efficiency corrected ratios

26 / 19

Backup

R_{K,K^*} PID dependence

DLL(e) > 7	0.960 ±	0.971 ±	0.988 ±	0.997 ±	0.982 ±	0.973 ±	0.967 ±	0.967 ±	0.977 ±
	0.097	0.099	0.102	0.102	0.100	0.099	0.099	0.099	0.102
DIL() - F	0.961	0.964	0.969	0.983	0.973	0.981	0.979	0.961	0.985
DLL(e) > 5	0.086	0.086	0.088	0.090	0.089	0.091	0.092	0.090	0.095
DII(-) > 0	0.873	0.904	0.908	0.958	0.950	0.954	0.938	0.940	0.969
DLL(e) > 2	0.073	0.078	0.079	0.087	0.086	0.087	0.086	0.087	0.093
	> 0.20	> 0.25	> 0.30	> 0.35	> 0.40	> 0.45	> 0.50	> 0.55	> 0.60
	ProbNN(e)								

 R_K central- q^2

0.948	0.944	0.944	0.939	0.939	0.941	0.934	0.935	0.937
±	±	±	±	±	±	±	±	±
0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.052
0.941 ±	0.938 ±	0.942 ±	0.933 ±	0.939 ±	0.951 ±	0.946 ±	0.953 ±	0.949 ±
0.044	0.044	0.044	0.044	0.045	0.046	0.046	0.047	0.048
$^{0.906}_{\pm}$	0.902 ±	0.907 ±	0.895 ±	0.904 ±	0.916 ±	0.920 ±	0.925 ±	0.919 ±
0.040	0.040	0.040	0.040	0.041	0.042	0.043	0.044	0.044
> 0.20	> 0.25	> 0.30	> 0.35	> 0.40	> 0.45	> 0.50	> 0.55	> 0.60
ProbNN(e)								

ProbNN(e)

 R_{K^*} central- q^2

	1.127	1.119	1.116	1.103	1.097	1.083	1.097	1.113	1.119
	0.100	0.099	0.099	0.098	0.097	0.095	0.099	0.101	0.103
	1.021	1.016	1.016	0.997	1.016	1.001	1.012	1.035	1.049
	0.074	0.074	0.075	0.073	0.076	0.075	0.077	0.081	0.084
ſ	0.965	0.990	0.986	0.993	1.024	1.006	1.014	1.038	1.039
I	± 0.066	± 0.069	± 0.069	± 0.071	± 0.075	± 0.073	± 0.075	± 0.079	± 0.081
ľ	> 0.20	> 0.25	> 0.30	> 0.35	> 0.40	> 0.45	> 0.50	> 0.55	> 0.60
	ProbNN(e)								

[arXiv:2212.09152] [arXiv:2212.09153]

- ◆ Different PID cut used → Allowed σ_{stat} : ±0.033
- \bullet Mis-ID rate from $D^{*-} \to D^0(K\pi)\pi$
- ✤ With new(previous) analysis requirements

	G 1		17
	Sample	$\pi \rightarrow e$	$K \rightarrow e$
(11+12)	2) Run 1	1.78 (1.70) %	0.69 (1.24) %
(15+16)	5) Run 2p1	0.83(1.51)%	0.18 (1.25) %
(17+18)	B) RUN 2P2	0.80 (1.50) %	0.16(1.23)%
si	ngle-misID	$\times 1$ (Run1)	imes 2 (Run1)
	ingle inibiD	imes 2 (Run2)	imes 7 (Run2)
de	uble-misID	\times 1 ² (Run1)) $\times 2^2$ (Run1)
u	Jubie-misid	$ imes 2^2$ (Run2)) $\times 7^2$ (Run2)

- Shift due to contamination at looser working point : +0.064
- Shift due to not inclusion of background in mass fit: +0.038

Backup

ICHEP 2022

BOLOGNA

On the R_K and $R_{K^{*0}}$ Update

- ► Working on unified analysis of R_K and R_{K*0}
- ▶ Will provide final Run 1 and Run 2 results
- Efforts lead to a deeper understanding of the LFU measurements
- ▶ This will be reflected in the results
- Work is high priority for the collaboration
- We appreciate your patience until the results become available

FSP | HCh

Sebastian Schmitt

- Data consistently below SM predictions (particularly at low q^2)
- Tensions at $1-3\sigma$ level, SM predictions exhibit sizeable had. uncertainties

 Exciting recent developments on non-local corrections [JHEP 09 (2022) 133] and new results from Lattice QCD [HPQCD, arXiv:2207.13371]

 $^{\parallel}$ Work on updates with full data sample, clean observables like A_{I}

- Data consistently below SM predictions (particularly at low q^2)
- Tensions at $1-3\sigma$ level, SM predictions exhibit sizeable had. uncertainties
- Exciting recent developements on non-local corrections [JHEP 09 (2022) 133] and new results from Lattice QCD [HPQCD, arXiv:2207.13371]
- Work on updates with full data sample, clean observables like A_I

Angular analysis of $B^0 o K^{*0} [o K^+ \pi^-] \mu^+ \mu^-$

- Decay fully described by three helicity angles $\vec{\Omega} = (\theta_{\ell}, \theta_K, \phi)$ and $q^2 = m_{\mu\mu}^2$ $\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\bar{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell \Big| \stackrel{\text{rs}}{\Theta} \Big]^{-1}$ $-F_{\rm L}\cos^2\theta_K\cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi$ $+ S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$ $+\frac{4}{2}A_{\rm FB}\sin^2\theta_K\cos\theta_\ell + S_7\sin2\theta_K\sin\theta_\ell\sin\phi$ $+ S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$
- Angular observables $F_{\rm L}, A_{\rm FB}, S_i$ sensitive to NP contributions
- Perform ratios of observables where form factors cancel at leading order Example: $P'_5 = \frac{S_5}{\sqrt{F_{\rm T.}(1-F_{\rm T})}} \begin{bmatrix} \text{S. Descotes-Genon et al.}, \\ \text{JHEP, 05 (2013) 137} \end{bmatrix}$

31 / 19

In q^2 bins [4.0, 6.0] and $[6.0, 8.0] \, {\rm GeV}^2/c^4$ local tensions of $2.5 \, \sigma$ and $2.9 \, \sigma$

- Global $B^0 \to K^{*0} \mu^+ \mu^-$ analysis finds deviation corresponding to 3.3σ
- [LHCb, PRL 125 (2020) 011802] consistent with [Belle, PRL 118 (2017) 111801]
 [CMS, PLB 781 (2018) 517] [ATLAS, JHEP 10 (2018) 047]

590

In q^2 bins [4.0, 6.0] and $[6.0, 8.0] \, {\rm GeV}^2/c^4$ local tensions of $2.5\,\sigma$ and $2.9\,\sigma$

- Global $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ analysis finds deviation corresponding to 3.3σ
- [LHCb, PRL 125 (2020) 011802] consistent with [Belle, PRL 118 (2017) 111801]
 [CMS, PLB 781 (2018) 517] [ATLAS, JHEP 10 (2018) 047]

590

Recent LHCb measurement using Run 1+2 data [PRL 126 (2021) 161802]

Global tension corresponding to 3.1σ , consistent with $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

DQC

Angular analysis $(F_{
m L} + A_{
m FB})$ also by CMS [JHEP 04 (2021) 124]

Consistency of $b\! ightarrow s\mu^+\mu^-$ angular analyses

Use flavio [arXiv:1810.08132] to determine tension with SM hypothesis

- Variation of vector coupling $\mathcal{R}e(\mathcal{C}_9)$ results in improved description of data
- Consistent trend for $B^0 \to K^{*0} \mu^+ \mu^-$ [PRL 125 (2020) 011802], $B^+ \to K^{*+} \mu^+ \mu^-$ [PRL 126 (2021) 161802] and $B^0_s \to \phi \mu^+ \mu^-$ [JHEP 11 (2021) 043] angular observables
- However, significant hadronic theory uncertainties, charm-loop effect?

Backup

Interpretation in global fits

• $b \rightarrow s\ell^+\ell^-$ data can be interpreted using *global fits* of Wilson coefficients

Assuming NP only in muon-sector ($\mathcal{R}e(C_9^{bs\mu\mu})$) and $\mathcal{R}e(C_{10}^{bs\mu\mu})$) reveals tension between $b \to s\mu^+\mu^-$ angular and \mathcal{B} measurements and R_{K,K^*}

Can be resolved in presence of LFU NP which does not affect R_{K,K^*}

Data prefers negative $C_9^{\text{univ.}}$, tension depends on hadronic uncertainties

Backup

Interpretation in global fits

■ $b \rightarrow s\ell^+\ell^-$ data can be interpreted using *global fits* of Wilson coefficients

- Assuming NP only in muon-sector ($\mathcal{R}e(C_9^{bs\mu\mu})$ and $\mathcal{R}e(C_{10}^{bs\mu\mu})$) reveals tension between $b \rightarrow s\mu^+\mu^-$ angular and \mathcal{B} measurements and R_{K,K^*}
- Can be resolved in presence of LFU NP which does not affect R_{K,K^*}
- Data prefers negative $C_9^{\text{univ.}}$, tension depends on hadronic uncertainties