

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Searches for New Physics with the MAJORANA DEMONSTRATOR

U. Of North Carolina at Chapel Hill and Triangle Universities Nuclear Laboratory On behalf of the MAJORANA Collaboration March 19, 2023

57th Rencontres de Moriond 2023

Reyco Henning

The MAJORANA DEMONSTRATOR

beyond the standard model, and informing the design of the next-generation LEGEND experiment

Continuing to operate at the Sanford Underground Research Facility with natural detectors to search for decay of ^{180m}Ta

Source & Detector: Array of p-type, point contact detectors 30 kg of 88% enriched ⁷⁶Ge crystals - 14 kg of natural Ge crystals Included 6.7 kg of ⁷⁶Ge inverted coaxial, point contact detectors in final run

Low Background: 2 modules within a compact graded shield and active muon veto using ultra-clean materials

Reached an exposure of ~65 kg-yr before removal of the enriched detectors for the LEGEND-200 experiment at LNGS

Reyco Henning

57th Rencontres de Moriond 2023

- Searched for neutrinoless double-beta decay (*OuBB*) of ⁷⁶Ge in HPGe detectors, probing additional physics

MAJORANA Total Exposure

Reyco Henning

57th Rencontres de Moriond 2023

(a)

Implications of discovery:

- L, B-L is not conserved
- Neutrino is Majorana* (own antiparticle)
- Neutrinos have Majorana Mass Term
- Probes absolute neutrino mass.
- OUBB nuclear decay may occur via several processes (SUSY, RH currents, etc)

* Schechter et al, Phys. Rev. D25, 2951 (1982)

Canonical example: Exchange of virtual Majorana neutrino + helicity flip

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu}\left(E_{0},Z\right)\left|\left\langle m_{\beta\beta}\right\rangle\right|^{2}\left|M^{0\nu}\right|^{2}\right|$$
$$\left|\langle m_{\beta\beta}\right\rangle\right| = \left|\sum_{i}\left|U_{ei}\right|^{2}m_{v_{i}}e^{i\alpha_{i}}\right|$$

MAJORANA DEMONSTRATOR Final Ov66 Result

Operating in a low background regime and benefiting from excellent energy resolution

Final enriched detector active exposure: $64.5 \pm 0.9 \text{ kg-yr}$

Background index at 2039 keV in lowest background configuration

15.7 ± 1.4 cts/(FWHM t yr)

Second lowest background index by any $0\nu\beta\beta$ search to date!

MAJORANA DEMONSTRATOR Final Ov66 Result

Background Index: $(15.7 \pm 1.4) \times 10^{-3}$ cts/(FWHM kg yr)

Expect 1.5 background counts in 3.8 keV ROI; measured 1 count

Frequentist Limit:

65 kg-yr Exposure Limit: $T_{1/2} > 8.3 \times 10^{25}$ yr (90% C.I.)

Median $T_{1/2}$ Sensitivity: 8.1 × 10²⁵ yr (90% C.I.)

Bayesian Limit: (flat prior on rate)

65 kg-yr Exposure Limit: $T_{1/2} > 7.0 \times 10^{25}$ yr (90% C.I.)

 $m_{BB} < 113 - 269 \text{ meV}$

Using $M_{0v} = 2.66 - 6.34$

Current Limits

Experimental Limits

Reyco Henning

57th Rencontres de Moriond 2023

Combined Limits per Isotope

Fundamental Symmetries *B, L, Q* violation Pauli Exclusion Principle violation

Standard Model

In-situ cosmogenic productions 2v66 decays

MAJORANA DEMONSTRATOR Excellent energy resolution High Granularity Low Backgrounds

Exotic Physics Quantum Wavefunction collapse Lightly ionization particles

Reyco Henning

57th Rencontres de Moriond 2023

Dark Matter Signatures Pseudoscalar dark matter Vector dark matter Fermionic dark matter Sterile neutrino Solar Axions

Fundamental Symmetries *B, L, Q* violation Pauli Exclusion Principle violation

Standard Model

In-situ cosmogenic productions 2v66 decays

PRC **105** 014617 (2022)

PRC 105 064610 (2022)

MAJORANA DEMONSTRATOR Excellent energy resolution High Granularity Low Backgrounds

Exotic Physics Quantum Wavefunction collapse Lightly ionization particles

Reyco Henning

57th Rencontres de Moriond 2023

PRC **100** 025501 (2019)

PRC 103 015501 (2021)

PRD **99** 072004 (2019)

arXiv:2203.02033 (2022)

Dark Matter Signatures

- Pseudoscalar dark matter
- Vector dark matter
- Fermionic dark matter
- Sterile neutrino
- Solar Axions

PRL **118** 161801 (2017)

PRL **129** 081803 (2022)

arXiv:2206.10638 (2022)

PRL **129** 080401 (2022)

PRL **120** 211804 (2018)

Reyco Henning

57th Rencontres de Moriond 2023

PHYSICAL REVIEW LETTERS			
Contents			
Articles published 13 August-19 August 2022			
VOLUME 129, NUMBER 8 19 August 2022			
General Physics: Statistical and Quantum Mechanics, Quantum Information, etc.			
Search for Spontaneous Radiation from Wave Function Collapse in the MAJORANA DEMONSTRATOR I. J. Arnquist <i>et al.</i> (MAJORANA Collaboration)	080401		
Floquet Engineering a Bosonic Josephson Junction Si-Cong Ji, Thomas Schweigler, Mohammadamin Tajik, Federica Cataldini, João Sabino, Frederik S. Møller, Sebastian Erne, and Jörg Schmiedmayer	080402		
Measurement-Induced Power-Law Negativity in an Open Monitored Quantum Circuit	080501		
Solitons in Overdamped Brownian Dynamics	080601		
Gravitation and Astrophysics Impact of Dynamical Tides on the Reconstruction of the Neutron Star Equation of State Geraint Pratten, Patricia Schmidt, and Natalie Williams	081102		
Elementary Particles and Fields			
Perfect Fluid Hydrodynamic Picture of Domain Wall Velocities at Strong Coupling	081601		
Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT D. Akimov et al. (COHERENT Collaboration)	081801		
Search for Higgs Boson Pair Production in the Four <i>b</i> Quark Final State in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV	081802		
A. Tumasyan <i>et al.</i> (CMS Collaboration) Search for Solar Axions via Axion-Photon Coupling with the MAJORANA DEMONSTRATOR I. J. Arnquist <i>et al.</i> (MAJORANA Collaboration)	081803		
Learning Uncertainties the Frequentist Way: Calibration and Correlation in High Energy Physics Rikab Gambhir, Benjamin Nachman, and Jesse Thaler	082001		
Renormalization of Transverse-Momentum-Dependent Parton Distribution on the Lattice	082002		
Atomic, Molecular, and Optical Physics			
Measurement of the Electric Dipole Moment of ¹⁷¹ Yb Atoms in an Optical Dipole Trap	083001		
Tuning Long-Range Fermion-Mediated Interactions in Cold-Atom Quantum Simulators	083401		
Javier Argüello-Luengo, Alejandro González-Tudela, and Daniel González-Cuadra Observing the Influence of Reduced Dimensionality on Fermionic Superfluids Lennart Sobirey, Hauke Biss, Niclas Luick, Markus Bohlen, Henning Moritz, and Thomas Lompe	083601		

2023 Searches for New Physics with the MAJORANA DEMONSTRATOR

Fundamental Symmetries B, L, Q violation Pauli Exclusion Principle violation

Standard Model

In-situ cosmogenic productions 2v66 decays

PRC 105 014617 (2022)

PRC 105 064610 (2022)

MAJORANA DEMONSTRATOR Excellent energy resolution High Granularity Low Backgrounds

Exotic Physics Quantum Wavefunction collapse Lightly ionization particles

Reyco Henning

57th Rencontres de Moriond 2023

PRC **100** 025501 (2019)

PRC 103 015501 (2021)

PRD **99** 072004 (2019)

arXiv:2203.02033 (2022)

- Pseudoscalar dark matter
- Vector dark matter
- Fermionic dark matter
- Sterile neutrino
- Solar Axions

PRL **118** 161801 (2017)

PRL **129** 081803 (2022)

arXiv:2206.10638 (2022)

PRL **129** 080401 (2022)

PRL 120 211804 (2018)

Beyond the Standard Model Searches

Low detector capacitance and low-noise electronics

Excellent energy resolution: ~0.4 keV FWHM at 10.4 keV

1 keV Analysis Threshold

Low electron recoil background (for solid state) Low background materials and construction Controlled surface exposure of enriched material minimized cosmogenics

IEEE trans. Nucl. Sci. 36, 926 (1989) JCAP 0709 (2007) JINST 17 (2022) 05, T05003

Quantum Wavefunction Collapse (WFC)

Experiments Spell Doom for Decades-Old Explanation of Quantum Weirdness

Physical-collapse theories have long offered a natural solution to the central mystery of the quantum world. But a series of increasingly precise experiments are making them untenable.

A timely result for MAJORANA with interdisciplinary appeal! Featured in Quanta magazine, Oct 2022. Article by Sean Carroll highlights broader interest from the community for this style of test.

PHYSICS TODAY

lome > July 2022 (Volume 75, Issue 7) > Page 62, doi:10.1063/PT.3.5046

Addressing the quantum measurement problem

Attempts to solve the problem have led to a number of well-defined competing theories. Choosing between them might be crucial for progress in fundamental physics.

Physics Today 75, 7, 62 (2022); https://doi.org/10.1063/PT.3.5046

Reyco Henning

NEXT >

interpretation. **Properties of WFC Models:** Non-linear Stohastic Amplification/Scaling No superluminal Signaling noise field (gravity?)

57th Rencontres de Moriond 2023

- Schrödinger Equation and Time Evolution in QM is Linear
- Wave-function Collapse is non-Linear Process
- Microscopic systems can exist in superposition but macroscopic objects do not.
- No "smooth" transition from quantum to classical in Copehagen
- Non-linear interaction with cosmological
- For review see, Rev Mod Phys **85** 471 (2013)

X-ray Emission Signature of WFC in **Continuous Spontaneous Localization** Models (CSL):

$$\frac{d\Gamma(E)}{dE} \propto \frac{\lambda}{r_C^2} \frac{1}{E}$$

- λ : collapse rate
- r_C : correlated radius
- 1/E : spectral shape

Quantum Wavefunction Collapse (WFC)

15

2023 Searches for New Physics with the MAJORANA DEMONSTRATOR

Test Pauli Exclusion Principle Violation

Pauli Exclusion Principle (PEP)

• Limit
$$\frac{1}{2}\beta^2 = \frac{\text{rate of PEP violating transition}}{\text{rate of PEP transition}} = \frac{1}{1000}$$

Three types of PEP violating searches (Foundations of Physics 42 1015 (2012)) Also set limit for terrestrial PEPV1 search: $\frac{1}{2}\beta^2 < 1.0 \times 10^{-3}$ (99.7% CL) And electron lifetime: $\tau > 3.2 \times 10^{25}$ years (90% CL)

Reyco Henning

57th Rencontres de Moriond 2023 Searches for New Physics with the MAJORANA DEMONSTRATOR

K-transition lifetime $< 1.0 \times 10^{-49}$ (90% CL) violating K-transition lifetime Most stringent upper limit

beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."

and experiments.

MAJORANA

- Radiopurity of nearby parts (FETs, cables, Cu mounts, etc.)
- Low noise electronics improves PSD
- Low energy threshold (helps reject cosmogenic background)

- LAr veto - Low-A shield, no Pb

First phase:

- (up to) 200 kg in upgrade of existing infrastructure at LNGS
- •BG goal: <0.6 c /(FWMH t y)
- Discovery sensitivity at a half-life of 10²⁷ years
- •Currently Taking Data

Reyco Henning

- Mission: "The collaboration aims to develop a phased, Ge-76 based double-beta decay experimental program with discovery potential at a half-life
- Select best technologies, based on what has been learned from GERDA and the MAJORANA DEMONSTRATOR, as well as contributions from other groups

GERDA

Both

- Clean fabrication techniques
- Control of surface exposure
- Development of large point-contact detectors
- Lowest background and best resolution $0\nu\beta\beta$ experiments

Subsequent stages:

- 1000 kg, staged via individual payloads
- •Timeline connected to review process
- Background goal <0.03 cts/(FWHM t yr)
- Location to be selected

LEGEND

Physics	Signature	Energy
		Range
Bosonic dark matter	Peak at DM mass	$< 1 {\rm ~MeV}$
Electron decay	Peak at 11.8 keV	$\sim 10 \ {\rm keV}$
Pauli exclusion principle violation	Peak at 10.6 keV	$\sim 10~{\rm keV}$
Solar axions	Peaked spectra, daily modulation	$2-10~{\rm keV}$
Majoron emission	2 uetaeta spectral distortion	$< Q_{etaeta}$
Exotic fermions	2 uetaeta spectral distortion	$< Q_{etaeta}$
Lorentz violation	$2\nu\beta\beta$ spectral distortion	$< Q_{etaeta}$
Exotic currents in $2\nu\beta\beta$ decay	2 uetaeta spectral distortion	$< Q_{etaeta}$
Time-dependent $2\nu\beta\beta$ decay rate	Modulation of $2\nu\beta\beta$ spectrum	$< Q_{etaeta}$
WIMP and related searches	Exponential excess, annual modulation	$< 10 {\rm ~keV}$
Baryon decay	Timing coincidence	$> 10 {\rm ~MeV}$
Fractionally charged cosmic-rays	Straight tracks	few keV
Fermionic dark matter	Nuclear recoil/deexcitation	$< {\rm few} {\rm MeV}$
Inelastic boosted dark matter	Positron production	< few MeV
BSM physics in Ar	Features in Ar veto spectrum	ECEC in ³⁶ Ar

Reyco Henning

57th Rencontres de Moriond 2023 Searches for New Physics with the MAJORANA DEMONSTRATOR

/	T	1	1
C			ALL AND
			121
		1	
		6	4
		X	~

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spai Clara Cues

> Duke University, Durham, NC, and TUI Matthew Bus

> > Indiana University, Bloomington, Walter Pet

Joint Institute for Nuclear Research, Dubna, Russ Sergey Vasily

Lawrence Berkeley National Laboratory, Berkeley, G Yuen-Dat Chan, Alan Po

Los Alamos National Laboratory, Los Alamos, N Pinghan Chu, Steven Elliott, In Wook Kim, Ralph Massarczyk, Samuel J. Meij Keith Rielage, Danielle Schaper, Brian Z

National Research Center 'Kurchatov Institute' Institute of Theoretical and Experimental Physics, Moscow, Russ Alexander Baraba

> North Carolina State University, Raleigh, NC and TUI Matthew P. Green, Ethan Blalock, Rushabh G

Oak Ridge National Laboratory, Oak Ridge, Vincente Guiseppe, José Mariano Lopez-Castaño, David Radford, Robert Varner, Chang-Hong

1

Osaka University, Osaka, Japa Hiroyasu Ej

THE UNIVERSITY

at CHAPEL HILL

of NORTH CAROLINA

The MAJORANA Collaboration

Sanford Underground Research Facility
fucility 6

in: sta	Pacific Northwest National Laboratory, Richland, WA: Isaac Arnquist, Maria-Laura di Vacri, Eric Hoppe, Richard T. Kouzes
NL: sch	
IN:	South Dakota Mines, Rapid City, SD:
tus	Cabot-Ann Christofferson, Sam Schleich, Ana Carolina Sousa Ribeiro, Jared Thompson
sia: /ev	
	University of North Carolina, Chapel Hill, NC, and TUNL:
CA: oon	Kevin Bhimani, Brady Bos, Thomas Caldwell, Morgan Clark, Julieta Gruszko, Ian Guinn, Chris Haufe, Reyco Hen David Hervas, Aobo Li, Eric Martin, Anna Reine, John F. Wilkerson
M:	University of South Carolina, Columbia, SC:
jer <i>,</i> Lhu	Franklin Adams, Frank Avignone, Thomas Lannen, David Tedeschi
	University of South Dakota, Vermillion, SD:
sia: ash	C.J. Barton, Laxman Paudel, Tupendra Oli, Wenqin Xu
	University of Tennessee, Knoxville, TN:
NL: ala	Yuri Efremenko
	University of Washington, Seattle, WA:
Yu	Micah Buuck, Jason Detwiler, Alexandru Hostiuc, Nick Ruof, Clint Wiseman
an·	Williams College, Williamstown, MA:
jiri	Graham K. Giovanetti
	*students

KNOXVILLE

THEUNIVERSITY

TENNESSEE

Proudly Operated by **Battelle** Since 1965

nning<mark>,</mark>

TUNL

Office of

Science

The MAJORANA Collaboration

MAX-PLANCK-GESELLSCHAFT

NC STATE

UNIVERSITY

OAK RIDGE National Laboratory

大阪大学

KNOXVILL

NATIONAL LABORATORY

Pacific Northwest

Backup

Majorana fermions are their own anti-particles. Dirac fermions are not.

- No fermions are known to be Majorana.
 - Electrically charged fermions have good QM # to distinguish particle/anti-particles, hence are Dirac
- **Experimental evidence consistent with both Majorana** and Dirac neutrinos.
- Verification difficult due to small neutrino masses and handedness of weak interaction.

Majorana vs. Dirac

Ettore Majorana

Paul Dirac

Neutrinoless double-beta decay is the only practical process that can resolve this mystery.

Approximate ⁷⁶Ge Combine¹

- A calculation was performed to understand the behavior of the combined final MAJORANA and **GERDA** limits.
- The calculation was based on the profile likelihood method, in a fashion consistent with both GERDA¹ and MAJORANA² publications. It was implemented in RooFit/RooStats.

Simplifications and approximations in this calculation of combined limit:

- The GERDA final analysis divides each detector in GERDA phase II into partitions. This analysis simplifies by dividing GERDA phase II detectors into two groups of BEGes and non-BEGes.
- The actual energies of GERDA phase I events are approximated from the spectrum histogram in Fig. 1 of PRL 111, 122503 (2013), *i.e.* an energy value within the 1 keV bin of the spectrum histogram is randomly chosen.
- Due to the statistics-dominated nature of the results and a lack of knowledge on detector-by-3. detector uncertainties for GERDA phase II, systematic uncertainties are removed here.

Data sets	Lower limit on the half-life in this calculation	Published final limits and prediction for the combined limit
Majorana final	$T_{1/2} > 0.83 \times 10^{26} \text{yr}$	T _{1/2} > 0.83x10 ²⁶ yr [arXiv:2207.07638]
GERDA final, phase I + phase II	$T_{1/2}$ > 1.6x10 ²⁶ yr (see simplifications and approximations)	<i>T</i> _{1/2} > 1.8x10 ²⁶ yr [PRL 125, 252502 (2020)]
Combined	$T_{1/2}$ > 2.3x10 ²⁶ yr, 4% lower than the sum of the two	$T_{1/2} > (0.96)x(0.8+1.8)x10^{26}yr = 2.5x10^{26}yr$

Ονββ Rate and Neutrino Mass

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} (E$$

 $T_{1/2}^{0v}$: Half-life G^{0v} : Phase Space (Known)

 $M^{0\nu}$: Nuclear Matrix Element (large uncertainty)

$$| < m_{\beta\beta} > | = \left| \sum_{i} \left| U_{ei} \right|^2 m_{v_i} e^{i\alpha_i} \right|$$

R

 $E_0, Z) \langle m_{\beta\beta} \rangle |^2 |M^{0\nu}|^2$

Effective Majorana electron neutrino mass*

Ουββ decay can probe **absolute** neutrino mass scale and mixing. Current neutrino experiments measure mass squared differences: Δm^2 .

*Assumes v_m exchange

History

1935: Double beta decay postulated by Maria Goeppert-Mayer Phys. Rev. 48 (1935) 512

1937: Ettore Majorana formulates theory with no distinction between v and anti-v. Nuovo Cimento 14 (1937) 171

1937: Giulio Racah suggests zero-neutrino double-beta decay as test for Majorana's theory. Nuovo Cimento 14 (1937) 322

$0\nu\beta\beta$ -decay and Majorana Neutrinos

Majorana nature verification *independent* of process that mediates 0vββ decay!

Schechter et al, Phys. Rev. D25, 2951 (1982)

Matrix Elements

arXiv:2202.01787

More about Majorana vs. Dirac

Note: Only valid if neutrinos are massive.

Lorentz Boost

$$v = v = v^M$$

Original argument by Kayser, 1985

Search for wave function collapse PRL 129 080401 (2022)

Experiments Spell Doom for Decades-Old Explanation of Quantum Weirdness

q 1 | **m** Physical-collapse theories have long offered a natural solution to the central mystery of the quantum world. But a series of increasingly precise experiments are making them untenable.

A timely result for MAJORANA with interdisciplinary appeal! Featured in Quanta magazine, Oct 2022. Article by Sean Carroll highlights broader interest from the community for this style of test.

PHYSICS TODAY

Page 62, doi:10.1063/PT.3.504

Addressing the quantum measurement problem

Attempts to solve the problem have led to a number of well-defined competing theories. Choosing between them might be crucial for progress in fundamental physics.

- Where is the border between the microscopic and macroscopic worlds?
 - How does the wave function collapse when a quantum system interacts with its surroundings?
 - Or is it "continuously spontaneously localized" (CSL)?
 - Objective WFC models add **nonlinear terms** to the Schrodinger equation.
- Is there a detectable signature of WFC for a large, low-background, low-threshold experiment? - In the CSL model, particles continuously interact with a noise field and emit low-E X-rays.

the Majorana Demonstrator

I. J. Arnquist et al. (MAJORANA Collaboration) Phys. Rev. Lett. 129, 080401 – Published 16 August 2022

Search for Spontaneous Radiation from Wave Function Collapse in

Common Theme: BSM Peak Searches in Energy Spectrum

$v_s - v_a$ Sterile-to-Active Transition Magnetic Moment

- Transition magnetic moment (TMM) could induce a sterile-to-active transition
- DM sterile neutrinos can ionize atom A: [Phys. Rev. D 93, 093012 (2016)]

$$\nu_s + A \rightarrow \nu_a + A^+ + e^-$$

- Cross section enhanced greatly at energy transfer of $m_s/2$, leading to a peak-like signature.
- MAJORANA searched for sterile neutrino DM peak-like signature
- The limit established by MAJORANA is the best limit so far
- The local galactic halo is considered as the source of incoming v_s
- Implication: If the DM halo consists of the keV-scale sterile neutrinos, then the μ_{sa} is too weak to produce the XENON1T excess

- Fermionic DM χ has a Yukawa-like neutral-current (NC) interaction
- $2 \rightarrow 2$ scattering with a neutrino in the final state, leading to a fixed energy transfer to nucleus T and the absorption of Fermionic DM χ

Fermionic: $2 \rightarrow 2$ neutral-current (NC) interaction

 $\chi + T \to \nu + T$

Also: $3 \rightarrow 2$ scattering with nucleus *T*, with a new dark matter ψ in the final state $\chi + \chi + T \rightarrow \psi + T$

Signature: Monoenergetic peak depending on mass ratio ξ of ψ and χ

Limits are calculated for massless and bound final dark matter states

Massless final dark matter state: ψ is dark photon, $\xi = 0$ Bound final dark matter state $\xi = 1.87$

 (cm^2) $\langle \sigma_{
m NC}^{3
ightarrow 2} v^2 \rangle n_{\chi}$ 10^{-42} 10^{-44}

Pseudoscalar Bosonic Dark Matter Searches

- Pseudoscalar Particles (spin-0, axion-like particles)
 - Absorption of bosonic dark matter via electron coupling in axio-electric effect
 - Similar to the photo-electric effect
 - Peak at rest mass

 e^{-11} 10^{-11} A', ϕ, a 10^{-12} 10^{-12} 10^{-13}

• Axioelectric cross section σ_{ae} relates to the photoelectric cross section σ_{pe} via g_{Ae}^{2}

$$\sigma_{ae}(E) = g_{ae}^2 \frac{E^2 \sigma_{pe}(E)}{\beta} \left(\frac{3}{16\pi\alpha m_e^2}\right)$$

35

Best limit in germanium detectors Ruled out by astrophysics > 5 keV: PRL. **128**, 221302, (2022)

Solar Axion Search

SOLAX, Phys. Rev. Lett., 81:5068, 1998, DAMA, Phys. Lett. B, 515:6, 2001, COSME, Astropart. Phys., 16:325, 2002, CDMS, Phys. Rev. Lett., 103:141802, 2009 EDELWEISS II, JCAP11 (2013) 067

Combine time and energy into a 2-dimensional analysis

Vector Bosonic Dark Matter Searches

Vector Bosonic Dark Matter (spin-1, dark photons)

• Very similar to the detection of the pseudoscalar DM

DM to electron coupling constant α' relates to the fine structure constant α

$$\Phi_{DM} \ \sigma_{ve} = \left(\frac{4 \times 10^{23}}{m_v}\right) \left(\frac{\alpha'}{\alpha}\right) \frac{\sigma_{pe}(m_v)}{A}$$

Best limit in germanium detectors

Signal and Backgrounds

backgrounds requiring analysis cuts

April 10th 2022

APS April Meeting

April 10th 2022

Wengin Xu

Excellent Energy Performance

Calibrated on weekly ²²⁸Th calibration data

Energy estimated via optimized trapezoidal filter of ADC-nonlinearity-corrected* traces with charge-trapping correction and fixed-time pickoff

FWHM (2.5 keV) and linearity (<0.2 keV up to 3 MeV) a record for neutrinoless double-beta decay searches

Less than 0.1 keV energy scale offset at low energy 1 keV~10keV

NIMA 872 (2017) 16

Timing Information Accessed by Pulse Shape

Amplitude of current pulse is suppressed for a multi-site event compared to a single-site event of the same event Energy (AvsE) PRC 99 065501 (2019)

Wenqin Xu

Background Modeling and Investigation

Investigating observed background near Q_{ββ} Assay-based prediction: 2.9 ± 0.14 cts/(FWHM t y) at Q_{ββ} Measured Background: 11.9 ± 2.0 cts/(FWHM t y)

PRC 100 025501 (2019)

Characteristics of background excess:

- Dominated by ²³²Th decay chain
- Higher in Module 1 than Module 2
- Some evidence that Module 1 has higher rates at top of array compared to bottom
- The observed ²³²Th excess is not consistent with either a point or uniformly distributed source in the neardetector components --- This is an important finding for LEGEND-200 which uses similar materials for neardetector components

Backgrounds: Surface Alpha Rejection

Alpha background with degraded energies observed; charge trapped at passivated surface, slowly released into bulk: delayed charge recovery (DCR) EPJC 82 (2022) 226

- Cut with a parameter related to slope of tail after the rising edge
- Retains 99% of the β/γ events, evaluated based on ²²⁸Th data
- Suspect α contamination near passivated surface ²¹⁰Po from ²²²Rn exposure

Alexandru Hostiuc

Larger range of drift time in ICPC detectors.

A/E is used for multiple site event rejection

The energy resolution achieved for ICPC detectors with new algorithms are comparable with PPC detectors

ICPC Detectors

- The size of the **ICPC detectors** is larger than **PPC detectors**
 - Highly beneficial for background reduction in LEGEND
 - Charge trapping correction in PPC turn inaccurate for ICPC detectors
- Proper algorithms have been developed for ICPC analysis
 - Drift-charge-time (DT) correction used to develop new energy parameters
 - Slope of the waveform tail is used to calculate late charge (LQ), as an extra PSD tool

102 (2018) 89–159

