57th Rencontres de Moriond 2023 EW session Mar. 19

KamLAND-Zen

Hideyoshi Ozaki, for KamLAND-Zen collaboration RCNS Tohoku university

Neutrinoless double-beta decay

2νββ

Observed.

Half-life: $T_{1/2} > 10^{18-24}$ year

"Neutrinoless" Double beta decay

Ονββ Not observed yet.

 \mathbf{O} Total kinetic energy of two electrons/Q-values

Are neutrinos Majorana particles?

Ovßß experiment

Assuming 3-gen of neutrinos and light Majorana v exchange,

Observable

Effective Majorana mass

Large model uncertainty.

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} (g_{A,\text{eff}}/g_A)^4 |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

$$\langle m_{\beta\beta} \rangle = |\Sigma_i U_{ei}^2 m_{\nu_i}|$$

Requirement for the experiment

- 1. Large isotope mass
- 2. No (low) background
- 3. High energy resolution

KLZ deployed the largest amount of ββ nuclei.

KamLAND-Zen

Located 1,000 m (2,700 m w.e.) underground in Mt. Ikenoyama, Japan.

- Low BG by distillation and filtration of both LS and Xenon.
- Pure LS as an active shielding for external BGs.
- Source on/off option and so on...

Duration: 2011 ~ 2015

Phase I + Phase II: $T_{1/2} > 1.07 \times 10^{26}$ yr (90% C.L.) Phys. Rev. Lett. 117, 082503

RI in XeLS: 238 U ~ 1.5×10⁻¹⁷ g/g, ²³²Th~3×10⁻¹⁶ g/g

Xe-LS

Decane

82%

18%

wt%

Resolutions: ΔE ~ 6.7%/ √E(MeV) **ΔX** ~13.7 cm/ √E(MeV)

80%

20%

1.4 g/L

LS

D12

PPO

PC

KamLAND-Zen 400:

Xenon mass = 320 ~ 380 kg

- The largest amount of $\beta\beta$ nuclei.

Demonstrated scalability!!

Mini-balloon Radius = 1.54 m

Duration: 2019~

KamLAND2-Zen:

- Xenon mass ~ 1ton
- Aiming at 100% Photocoverage

KamLAND-Zen 800: Mini-balloon Radius = 1.90 m Xenon mass = 745 ± 3 kg

Nylon corrugated tube

Guide ring

strings? (ectran)

nection piece (PEEK)

traight part

12 suspending film belts

Cone part

24 gores

orizontal

belt

Zen 800 construction

Inner-ballon fabrication in the cleanest level cleanroom, Sendai.

Contamination comes from workers.

Fresh clean suit, goggles, double gloves, cover films, anti-static, etc

^{110m}Ag, ¹³⁷Cs, and ¹³⁴Cs were not detected from the Zen800 IB.

	U-238 (g/g)	Th-232 (g/g)	V (m3)
Zen400 Phase-II	~5×10-11	~3×10 ⁻¹⁰	16.7
Zen800	~3×10 ⁻¹²	~4×10-11	30.5

The KamLAND-Zen collaboration et al 2021 JINST 16 P08023

Achieved >3x highly sensitive volume!

Backgrounds in KLZ

$0\nu\beta\beta$ candidate data set

1. Radioactive Impurities (RI)

- 3. Neutrinos
 - Reactor anti-neutrinos Tagged by delayed coincidence!
 - Solar neutrino's electron scattering

 FLUKA for primary products, then G4 & ENSDF for their daughters. • Expected event rate: 0.082 event/(day*Xe-ton*ROI(2.35-2.70 MeV)). Long-lives and high neutron multiplicities. We developed a likelihood tag (N-multiplicity, dR, dT) with ~40% efficiency.

Data analysis

- The simultaneous fitting of 86 energy bins, 40 equal-volume bins, • 3 time-period bins, SD and LD bins.

- The ratio of single events to DC events is high at the bottom. Something big enough to absorb alpha-ray?

Divided dataset into "singles data" (SD) and "Long-lived data" (LD).

Performed 2D scan of $0v\beta\beta$ rate and LL rate.

The best fit of the 0vββ rate was 0 $0\nu\beta\beta$ upper limit # of events was 7.9 (90% C. L.).

9

→ Phys. Rev. Lett. 130, 051801

Obtained limit by KLZ800 : $T^{0v_{1/2}} > 2.0 \times 10^{26}$ year (90% C.L.) sensitivity: $T^{0v}_{1/2} > 1.3 \times 10^{26}$ year. **Alternative methods**

Bayesian limit: $T_{1/2}^{0v} > 2.1 \times 10^{26}$ year. FC : $T_{1/2}^{0v} > 2.3 \times 10^{26}$ year.

KamLAND-Zen combined result

- Reanalyzed Zen400 dataset.
- Combined in 2D ΔLLH map.
- Measured the LL background rate.
- 2x better half-life limit!

Obtained limit : $T^{0v}_{1/2} > 2.3 \times 10^{26}$ year (90% C.L.)

sensitivity: $T^{0v_{1/2}} > 1.5 \times 10^{26}$ year. prob.~23%

→ Phys. Rev. Lett. 130, 051801

0.1

C.L.)

$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} (g_{A,\text{eff}}/g_A)^4 |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$ $g_A = 1.27$, following NMEs

⇒ Phys. Rev. Lett. 130, 051801

Nuclear Matrix **Elements (NMEs)**

Quasi-particle Random Phase Approximations

- Phys.Rev.C 102, 44303(2020)
- Phys.Rev.C 91, 024613(2015)
- Phys.Rev.C 87, 045501(2013)
- Phys.Rev.C 87, 064302(2013)
- Phys.Rev.C 97, 045503(2018)

Shell models

- * Phys. Rev. C 101, 044315(2020)
- * Phys. Rev. C 91, 024309(2015)
- * Phys. Rev. A 818, 139 (2009)

Interacting boson models

- Phys. Rev. D 102, 095016(2013)
- Phys. Rev. C 91, 034304(2015)

Energy density functional theory

- PRL 111, 142501(2013)
- Phys. Rev. C 91, 024316(2015)
- PRL 105, 252503 (2010)

 $< m_{\beta\beta} >$ translated with upper NMEs

$\langle m_{\beta\beta} \rangle < 36 - 156 \text{ meV} (90\% \text{ C.L.}).$

We are the first in the world to test the IO band below 50 meV !

Background summary

 $(\text{Radius}/1.90 \text{ m})^3$

Particle identification

discrimination

Too hard for KLZ800, Future task

~ a few 10 cm

Time spectra of single and o-Ps events Single event o-Ps candidate

Cherenkov light detection

To discriminate solar-nu's ES.

We developed two β/γ rejection NNs.

RNN for Zen400 ... Simple but strong for 1D timespectrum data.

KamNet for Zen800 ... Maximal information extraction for spherical LS detector.

KamLAND2-Zen

Goal: covering the IO region! Half-life: 2x10²⁷ yr. $< m_{\beta\beta} > \sim 20$ meV in 10 years.

High light yield scintillator (x1.4) High QE 20" PMTs (x1.9)

Light collection with Winston Cones (x1.8)

~5x light yield

4% \Rightarrow 2% energy resolution @ Q-value

- Reduce background events of $2\nu\beta\beta$ to ~1/100.
- Greatly improve PID power!

R&Ds are ongoing.

+ PID by o-Ps in XeLS, High pressurized XeLS, RI in Bis-MSB...

15

The performance demonstration in a 50 m³ tank is ongoing.

Pure-water and acrylic box w/ LAB LS.

New electronics and DAQ system.

LED light and source calibration.

KamLAND 2 - Zen: prototype

Acrylic box w/ LS.

Source calibration.

Summary

- The latest results of the $0\nu\beta\beta$ search with KamLAND-Zen were reported. • $T_{1/2} > 2.3 \times 10^{26}$ year (90% C.L.) (m_{ββ}) < 36–156 meV (90% C.L.) •
- New analysis techniques were developed. Muon spallation of Xe nucleus and its day-scale tag. • ML for PID in spherical LS detector (KamNet). R&D toward KamLAND2-Zen is ongoing.

KamLAND(-Zen) Collaboration

Thank you!!

>50 researchers are collaborating on the KamLAND-Zen experiment.

niversity of Fawar

