For the IceCube Collaboration

New Measurement of Muon Neutrino Disappearance from the IceCube Experiment

Shiqi Yu

Michigan State University

MORIOND EW, March 19th, 2023

Presentation Outline

- Introduction
- Reconstruction: Convolutional neural networks
- Atmospheric v_{μ} disappearance measurements

• Atmospheric muon neutrinos from cosmic ray interactions:

104

Wide ranges of both energy (E) and baseline
(L), and largest values.

v_{μ} Disappearance with IceCube

- Atmospheric muon neutrinos from cosmic ray interactions:
 - Wide ranges of both energy (E) and baseline(L), and largest values.
- Neutrino distance of travel (L) calculated using arrival direction (zenith).

v_{μ} Disappearance with IceCube

- Atmospheric muon neutrinos from cosmic ray interactions:
 - Wide ranges of both energy (E) and baseline
 (L), and largest values.
- Neutrino distance of travel (L) calculated using arrival direction (zenith).

 v_{μ} survival probability (two flavor approx.):

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23})\sin^2(\frac{1.27\Delta m_{32}^2 L}{E})$$

v_{μ} Disappearance with IceCube

• Low-energy (< 100 GeV) reconstruction is critical to oscillation analysis

- Atmospheric muon neutrinos from cosmic ray interactions:
 - Wide ranges of both energy (E) and baseline
 (L), and largest values.
- Neutrino distance of travel (L) calculated using arrival direction (zenith).

 v_{μ} survival probability (two flavor approx.):

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23})\sin^2(\frac{1.27\Delta m_{32}^2 L}{E})$$

IceCube Neutrino Observatory

- 1 km³ neutrino detector deep under South Pole ice;
- 5160 digital optical modules (DOMs) detect Cherenkov photons emitted during neutrino interactions;
- DOMs record pulse charges & times;
- DeepCore: denser configured sub-detector, can observe GeV-scale neutrinos.

Reconstruction

Machine learning techniques reconstruct:

- Energy
- Direction (L)
- PID: v_{μ} CC vs. others
- Interaction vertex
- Atm. muon classifier .

Convolutional Neural Networks (CNNs)

- Only use DeepCore & nearby IceCube strings;
- Five CNNs trained on balanced MC samples: optimized for different variables.

5 summarized variables per DOM:

- sum of charges
- time of first (last) pulse
- charge weighted mean (std.) of times of pulses

Reconstruction Performance

- Nominal MC with analysis cuts and flux, xsec, and oscillation weights applied;
- Comparable resolution to current (likelihood-based) method;
- ~3,000 times faster in runtime: big advantage for full MC production of atmospheric neutrino datasets.

Preliminary Analysis Sample

- Data taken over 3,390 days between 2012-2021;
- Total of 150,257 events;
- High signal (ν_{μ} CC) and low background (noise and atm. muon) rates (~0.6%):
 - Several levels of selection are applied to eliminate the primary atm. muons and noise backgrounds.

3D Binned Analysis Sample

Measure 3D distortions in reconstructed [energy, cos(zenith), PID]:

- PID discriminates v_{μ} CC vs. neutrino bkgs;
 - 27,352 tracks; 22,963 cascades.
- Robust against systematic uncertainties.

3D Binned Analysis Sample

Measure 3D distortions in reconstructed [energy, cos(zenith), PID]:

- PID discriminates v_{μ} CC vs. neutrino bkgs;
 - 27,352 tracks; 22,963 cascades.
- Robust against systematic uncertainties.

v_{μ} Disappearance Analysis

- Systematic uncertainty pulls within expectations;
- Same treatments with DeepCore 8-year results:
 - \circ $\,$ A publication with details coming soon.

- Reduce correlations among flux uncertainties: PCA;
- Further MC improvements underway.

MORIOND EW 2023 | Shiqi Yu

Oscillation Results

- The new result is compatible and complementary with the existing measurements:
 - Different sample and facing different systematics.
- Big updates on MC models and calibration since last publications (DeepCore 3-year).

Oscillation Results

- The new result is compatible and complementary with the existing measurements.
- Competitive on Δm^2_{32} measurement.
- Room for future improvements!
 - Flux model; particle modeling; calibration, etc

Conclusion

- First-time using the highest-statistic (9.3yr) DeepCore atmospheric neutrino dataset for oscillation measurements:
 - Machine learning tools (including CNNs) are used for multi-purpose reconstruction.
- Compatible, complementary results with the existing measurements:
 - Different sample and facing different systematics;
 - $\circ \quad \text{Competitive constraint on } \Delta m^2_{32} \ .$
- A lot of room for future improvements!
 - MC models, detector calibration, reconstruction, uncertainty modeling...
- More oscillation results using this new sample on the way!
 - Neutrino mass ordering, non-standard interactions...

ley I'm a D-Egg

Backup

Oscillation Results

- Consistent with the previous IceCube results.
- Big updates on MC models and calibration since last publication (DeepCore 3-year).
- Compared to DeepCore 8-year result: New reconstruction, including mixed- and low-pid bins into analysis.

Future

The Upgrade detector:

- More densely instrumented strings in the center
 - Better energy resolution!
- DOM: multiple PMT designs
 - Great for calibration studies!
- Target deploying 2024/25

Training Samples

- Balanced MC samples;
- Energy, direction, interaction vertex are trained on v_{μ} CC events (signal).

MORIOND EW 2023 | Shiqi Yu

Performance: Speed

	Second per file (~3k events)	Time for full sample assuming 1000 cores
CNN on GPU	21	~ 13 minutes
CNN on CPU	45	~ 7.5 hours
Current Likelihood-based method (CPU only)	120,000	~ 46 days

- CNN runtime improvement: ~3,000 times faster;
 - CNNs are able to process in parallelize with clusters \rightarrow can be even faster!
- Big advantage: large production of full Monte Carlo simulations $\sim O(10^8)$.

Testing Samples

- Nominal MC sample with flux, xsec, and oscillation weights applied;
- Testing on signal (v_{μ} CC) and major background (v_{e} CC);
- Baseline: current reconstruction method (likelihood-based)

Performance: Vertex

- Selecting events starting near DeepCore;
- Comparable purities in selected v_{μ} CC samples.

Performance: Muon and PID Classifiers

- Comparable performance to the current methods:
 - Similar AUC values.
- Hard to identify track from cascades at low energy \rightarrow less DOMs see photons.

Training Samples

Energy: nDOM >= 7 Muon : nDOM >= 4; 5–200 GeV Muon, PID, Vertex: nhits >= 8 hit 5-200 GeV Zenith: full containment cut on true vertexes, 5-300GeV

MORIOND EW 2023 | Shiqi Yu

Performance: Direction

- Direction bias flat against true energy;
- Comparable to current method;
- Better resolution for v_{μ} CC (signal);
- High energy (>100 GeV) neutrinos leaving DeepCore
 - Need containment cut: interaction vertex reconstruction.

Performance: Energy

- Flat median against true neutrino energy;
 - CNN has better resolution at low energy (majority of sample)
- Comparable performance to current method at higher energy and in background;

Reconstruction Performance

- Flat median against true neutrino energy and zenith;
- CNN has comparable resolution to current method, and better at low energy (majority of sample)

Performance: Zenith

- Flat median against true direction;
- Comparable to current method in both signal and background.

0.75

1.00

Performance: Zenith (Contained, 5-300 GeV Sample)

Systematic Effect: Neutrino Flux Model

Neutrino flux spectral index variation has different signature to expected oscillation signal

Fit for spectral index among other model systematics

$$N_{\sigma} = \frac{N_{\text{pulled}} - N_{\text{nominal}}}{\sqrt{N_{\text{nominal}}}}$$

Flux model systematic: Neutrino flux spectral index changed by +1 σ

Systematic Uncertainty Consideration

- Flux uncertainty
 - Pion & Kaon production uncertainties

E _i (Ge	V)	Pions				Kaons	
<8	10	0% 30%			40%		
8-15	30%	10%	30%			40%	
15-30	30 10	5%	10%	30	20	10%	
30-500	30	15%		40		30%	
>500	30	15%+Energy dep.		40		30%+Energy dep.	
	0	0.5	X LAB	1 0		0.5 x _{LAB}	
				Barr et	al.	Phys. Rev. D 74, 094009	