

Scattering and Neutrino Detector at the LHC

Results of SND@LHC

Ettore Zaffaroni, for the SND@LHC collaboration 57th Rencontres de Moriond 19/03/2023

Outline

Scattering and Neutrino Detector at the LHC

- The physics programme
- . The SND@LHC detector
- . First results

Motivation

- LHC provides high-energy neutrinos
 - LHC neutrino studies proposed ~30 years ago
- Measure of $pp \rightarrow vX$ in unexplored domain
 - Energy range from 100s GeV to few TeV
- 2 experiments
 - FASER ν , on axis ($\eta > 9$)
 - **SND@LHC**, off axis (7.2 < η < 8.4), ν mainly produced in charmed hadrons decay

Physics programme

- Measurement of charm production at high pseudorapidity $(gg \rightarrow c\bar{c})$
- Probe gluon PDF at low momentum fraction $x \sim 10^{-6}$. Relevant for

10¹¹

10¹⁰

10

10

10

 10^{2}

- FCC detectors
- Extra-galactic neutrino observation (atmospheric neutrino background)
- Test lepton flavour universality with neutrinos
 - Thanks to the ability to distinguish all neutrino flavours
- Direct search of feebly-interacting particles

--- anti-v...

SND@LHC

- About 480 m from ATLAS interaction point
- TI18 tunnel

EPFL

- Used in the past as transfer line from SPS to LEP
- Shielded by 100 m of rock and LHC magnet deflection
- Angular acceptance: $7.2 < \eta < 8.4$
- First phase: collect 250 fb⁻¹ in Run 3

Experiment timeline

Detector

- Veto
 - Scintillators: tag incoming muons
- Vertex detector and EM calorimeter
 - Emulsion cloud chambers (ECC) w/ tungsten, 5 walls, 830 kg: neutrino interaction detection
 - Replaced every 20 fb⁻¹
 - Scintillating fibres (SciFi) tracker,
 5 modules: timestamp, position and energy measurement
- HCAL-Muon system
 - Iron walls (green) and scintillators: energy measurement and muon detection

Detector paper: arxiv 2210.02784 to appear on JINST

Run 3 data taking

Delivered: 41.25 fb⁻¹ Recorded: 39.74 fb⁻¹ (96%)

Quoted values don't account for the new ATLAS integrated luminosity estimation (5.4% less)

2022

EMULSION

RUN0 EMULSION

RUN1 EMULSION

RUN2

EMULSION

RUN3

PS

Jan

Bunch structure

Scattering and Neutrino Detector

- Event rate at SND@LHC follow the LHC filling scheme
- Events associated to non-colliding bunches used to measure non-collision backgrounds
 - Significant event rate induced by Beam 2 non-colliding bunches Ο
 - These events enter the detector from the downstream end
 - Clearly observed in track direction measurements

tracks from beam 1 < 1.5%tracks from beam 2 < 1.0%

Track Velocity

Muon flux measurement

SPSI

Track reconstruction performed in electronic detectors and emulsion target

Cm

Emulsions / SciFi comparison

Data/MC comparison

Vertex reconstruction in emulsion data

← Neutral-like particle interaction

Charged-like particle interaction \rightarrow

Neutrino observation with electronic detectors

- Analysis strategy:
 - Full Run 3 2022 dataset, 39 fb⁻¹
 - Observe v_{μ} Charged Current interactions with electronic detectors only
 - Maximise S/B, counting-based approach
 - ~10⁹ muon events: apply cuts with a strong rejection power to reach a negligible background level
- Signal selection:
 - Fiducial Volume (1, 2) cuts
 - Require an event from a neutral vertex, located in the 3rd or 4th target wall
 - Select fiducial cross-sectional area to reject entering backgrounds
 - Neutrino ID cuts
 - Require large EM activity in SciFi and hadronic activity in the HCAL
 - Event produced upstream (timing)
 - Muon reconstructed and isolated in the Muon system

Neutrino observation with electronic detectors

- Analysis strategy:
 - Full Run 3 2022 dataset, 39 fb⁻¹ 0
 - Observe v_{μ} Charged Current interactions with electronic detectors only 0
 - Maximise S/B, counting-based approach 0
 - $\sim 10^9$ muon events: apply cuts with a strong rejection power to reach a negligible 0 background level
- Signal selection:
 - Fiducial Volume (1, 2) cuts Ο
 - Require an event from a neutral vertex, located in the 3rd or 4th target wall
 - Select fiducial cross-sectional area to reject entering backgrounds
 - Neutrino ID cuts 0
 - Require large EM activity in SciFi and hadronic activity in the HCAL
 - Event produced upstream (timing)
 - Muon reconstructed and isolated in the Muon system

Background estimates (I)

SND@LHC PRELIMINARY

Scattering and Neutrino Detector at the LHC

:= within SND@LHC acceptance

• Muon induced background

Number of undetected muons entering the target (2022 Run3 data)

$$N_{\mu}^{bkg} = N_{\mu} \times (1 - \epsilon_{Veto}) \times (1 - \epsilon_{SciFi1}) \times (1 - \epsilon_{SciFi2}) \sim 10^{-2} \quad \text{totally negligible}$$

Total number of muons in Veto inefficiency SciFi plane inefficiency
target acceptance
$$N_{\mu} = \frac{28 \times 10^{6}}{fb^{-1}} \times 39 \, fb^{-1} = 1.1 \times 10^{9}$$

$$(1 - \epsilon_{Veto}) \times (1 - \epsilon_{SciFi1}) \times (1 - \epsilon_{SciFi2}) \sim 10^{-11}$$

Background estimates (II)

SND@LHC PRELIMINARY

Scattering and Neutrino Detector at the LHC

• Muon-induced neutral interactions

EPFL

$$N_{\rm neutrals}^{\rm bkg} = N_{\rm neutrals} \times P_{\rm inel} \times \epsilon_{\rm sel}$$

~ 0.12 (K⁰₁) + 0.06 (neutrons) ~ 0.2

Systematic uncertainty estimation is ongoing

Observed candidates

- Observed v_{μ} candidates: 8 (expected 5)
- Preliminary estimate of background yield: 0.2

SND@LHC PRELIMINARY

Selected candidates

Scattering and Neutrino Detector at the LHC

Summary

- Analysis of 2022 Run3 data: 39 fb⁻¹
- Measurement of muon flux with emulsions and electronic detectors
 good agreement with MC estimates
- First selection of v_{μ} CC based on electronic detectors only
 - While emulsion data analysis for full reconstruction of neutrino interactions ongoing
- Observed 8 v_{μ} CC candidates from collider
 - expected background of 0.2
- Systematic uncertainties on the background under evaluation
 - Expected significance of the observation ~5 sigma

