

First Physics Results from the FASER Experiment

Brian Petersen on behalf of the FASER Collaboration 19 March 2023 57th Recontres de Moriond

The FASER Experiment

- FASER is new, small experiment at the LHC
 - Constructed and installed in 2019-2021
- FASER targets light and weakly coupled particles
 - Exploits large LHC collision rate and highly collimated forward production of light particles, for instance in pion decays
 - 1% of pions with E>10 GeV produced at η>9.2
 - Designed to detect both new long-lived BSM particles, such as dark photons and ALPs as well as neutrinos
- Located 480m from ATLAS interaction point
 - LHC magnets as well 100m of rock shields most backgrounds

arxiv: 2207.11427

FASER Detector

Experiment built from existing spare parts as well as some dedicated new components

Front Scintillator

FASER Installation

- Experiment mostly installed in March 2021
- Fully completed in November 2021, ahead of Run 3

FASER Operations

- Successfully operated during all of 2022
 - Continuous and largely automatic data-taking at up to 1.3 kHz
- Recorded 96.1% of delivered luminosity
 - DAQ dead time of 1.3%, rest lost to a couple of DAQ crashes
- Emulsion detector exchanged twice f to manage bkgd occupancy
 - First box was only partially filled with emulsion
- Calorimeter gain was optimized for low energy (<300 GeV) until second exchange

Example Collision Event

Muon traversing full detector
 More than 350 million such events recorded

Run 8336 Event 1477982 2022-08-23 01:46:15

All parts of detector working very well

Search for Dark Photons

 Dark Photon common feature of hidden sector models where hidden gauge boson can mix with SM photons

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \frac{1}{2}m_{A'}^2A'^2 + \sum_f \bar{f}(i\partial \!\!\!/ - eq_f A\!\!\!/ - eq_f A\!\!\!/ - eq_f A\!\!\!/ - m_f)f$$

- MeV-scale dark photons, A', are produced copiously in meson decays depending on kinematic mixing, ε $B(\pi^0 \to A'\gamma) = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{-0}^2}\right)^3 B(\pi^0 \to \gamma\gamma)$
- At small coupling, high energy in forward region, results in long decay lengths – ideal for FASER

$$\bar{d} = c \frac{1}{\Gamma_{A'}} \gamma_{A'} \beta_{A'} \approx (80 \text{ m}) B_e \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right] \quad E_{A'} \gg m_{A'} \gg m_e$$

• For $1 < m_{A'} < 211$ MeV, will decay 100% to e+e- pair

Dark Photon Event Selection

Simple, robust selection criteria optimized for discovery

- Events in collision crossing, during good physics data period
- No signal in any of five veto scintillators (<40 pC ~ 0.5 MIP)
- Timing and preshower scintillators consistent with ≥2 MIPs
- Exactly two good quality tracks with p>20 GeV
- Both tracks in fiducial tracking volume, r_{max}<95mm
- Both tracks extrapolate to r<95mm in veto scintillators</p>
- Calorimeter energy above 500 GeV
- Signal efficiency of 40-45% in most interesting region

Analysis was blinded for E>100 GeV events without any veto signals

Background Estimates

Veto inefficiency

- Veto layer scintillators efficiency >99.998%
- Measured layer-by-layer using muon tracks in spectrometer pointing back
 - Layer inefficiencies uncorrelated
- With five layers, even 10⁸ muons going through veto produces negligible background even before any other selections applied

- Background from neutral hadrons from upstream muon interactions decaying in decay volume
 - Heavily suppressed:
 - Muons nearly always continues after interaction
 - Hadron has to pass through eight interactions lengths of tungsten
 - Hadron decay products has to leave >500 GeV in calorimeter
 - Background estimated using lower energy events with two and three tracks reconstructed and different veto conditions
 - Estimated background: (2.2±3.1)x10-4

Background Estimates

Neutrino background estimated from simulation

- Using GENIE generator (300 ab⁻¹)
- With uncertainties for mismodelling and neutrino flux: 0.0018±0.0024 events
 - Mainly in trigger/timing scintillator
 - Largest background in analysis
- Background from neutrino induced hadrons upstream found to be negligible

- Non-collision background from cosmics and near-by beam debris is negligible
 - Studied in non-colliding bunches and runs without beam
 - No such events seen with E>500 GeV or a reconstructed track

Dark Photon - data

- Total background: 0.0020±0.0024 evts
- No events seen in unblinded signal region

Dark Photon Exclusion

- With null-result, FASER sets limits on previously unexplored parameter space
 - Extends exclusion into region motivated by dark matter

Neutrinos in FASER

- Large production of neutrinos decays of forward hadrons
 - Very energetic (TeV scale) and thus have high interaction xsection

For 35/fb	ν _e	ν_{μ}	ν_{τ}
Main source	Kaon decay	Pion decay	Charm decay
#Traversing FASERv	O(10 ¹⁰)	O(10 ¹¹)	O(10 ⁸)
#Interacting in FASERv	~200	~1200	~4

- Extends FASER physics program with SM measurements
- Neutrino energy spectrum in FASER complementary to existing neutrino experiments
 - Measurement at highest man-made neutrino energies

Originally proposed by De Rujula and Ruckl in 1984!

Phys. Rev. D 104, 113008

Observing Neutrinos in FASER

- Possible to make a first observation of neutrinos using just spectrometer and veto systems
 - Search for charged-current v_{μ} events with no signal in two front veto and one high momentum track in the rest of detector

Neutrino Event Selection

- Selection criteria applied:
 - Events in collision crossing, during good physics data periods (35.4/fb)
 - No signal in two front veto scintillators (<40 pC ~ 0.5 MIP)
 - Signal in last two veto layers (>40pC ~0.5 MIP)
 - Signal and preshower scintillators consistent with ≥1 MIPs
 - Exactly one good quality spectrometer track with p>100 GeV
 - Track in fiducial tracking volume, r_{max}<95mm</p>
 - Track extrapolate to r<120mm in front veto scintillator</p>
 - Track polar angle less than 25mrad
- Based on simulation expect 151±41 neutrino events
 - Uncertainty given by difference between two event generators
 - Experimental uncertainties not included at this time
 - Currently not trying to make cross section measurement

Background Estimate

Consider three backgrounds:

Neutral hadrons estimated from two-step simulation

- Expect O(300) neutral hadrons with E>100 GeV from concrete to reach FASERnu
 - Most will be accompanied by muon, but conservatively assume it is missed
- Most neutral hadrons absorbed in tungsten without producing high-momentum track
- In total expect just 0.11±0.06 events
- Scattered muons estimated from control region of events with single track segment in front tracker station at large radius (90<r<95mm)
 Expect 0.08±1.83 events
- Veto inefficiency estimated from events with just one veto scintillator firing
 Veto efficiencies fitted in final fit of events with 0, 1 or 2 veto layers firing
 Negligible background due to the very high veto efficiency

Neutrino Observation

First direct observation of collider neutrinos

Neutrino Distributions

Neutrino events match expectations from simulation

- High occupancy in front tracker station
- More v_{μ} than anti- v_{μ}
- Most events at high momentum

Note plots are "reco-level" and not acceptance-corrected, etc.

Track q/p distribution

18

Example Neutrino Event Display

Neutrinos in FASER ν

Analysis of emulsion detector still underway Have multiple candidates, including highly v_e like event:

Summary

- FASER successfully took data in first year of Run 3
 - Running at very good efficiency with fully functional detector
- First physics results presented
 - Excluded dark photon in region of low mass, low kinetic mixing
 - Probing new territory in thermal relic region
 - ~150 neutrino interaction reconstructed in spectrometer
 - First direct observation of collider neutrinos
 - opening new window for studying high energy neutrinos
- More searches and neutrino measurements to come
- Will continue data-taking throughout LHC Run 3
 - Up to 10 times more data coming in the next years

Acknowledgments

FASER is supported by:

erc

 Swiss National Science Foundation

Additionally would like to thank:

- LHC for the excellent performance in 2022
- ATLAS Collaboration for providing luminosity information
- ATLAS SCT Collaboration for spare tracker modules
- ATLAS for the use of their ATHENA software framework
- LHCb Collaboration for spare ECAL modules
- CERN FLUKA team for background simulation
- CERN PBC and technical infrastructure groups for excellent support during design, construction and installation

Backup Slides

Neutrino Analysis – Geometric Bkgd²²

- Geometric background of muons by-passing veto measured in outer annulus at 50<p<100 GeV without radius requirement at VetoNu
 - Also require tracker station hits consistent with 1 track
 - Negligible neutrino bkgd
- Fit momentum to extrapolate to p>100 GeV
- Scale with rate of events inside r_{VetoNu}<120mm</p>
 - 0 events, so use 5.9 evts as upper limit
- Scale from annulus to full acceptance using large angle muon simulatior.
 - Estimate 0.08±1.83 bkgd events

Neutrino Analysis – More distributions

Dark Photon – Signal

Example of a simulated Dark Photon decay

Dark Photon – Signal

Example of a simulated Dark Photon decay

Calorimeter Energy: 645.2 GeV Momentum: 420.4 GeV, 21.5 GeV

Simulation Preliminary

Dark Photon – Signal Acceptance

Note: FASER solid angle coverage only ~10⁻⁸

Dark Photon – Cut Flow

- Data and example signal efficiency as a function of analysis selections
 - Note the data column was pre-selected to have at least one reconstructed track (no quality cuts) in the event

	Data		Signal ($\varepsilon = 3 \times 10^{-5}, m_{A'} = 25.1 \text{MeV}$)	
Cut	Events	Efficiency	Events	Efficiency
Good collision event	151750788		95.3	99.7%
No Veto Signal	1235830	0.814%	94.0	98.4%
Timing/Preshower Signal	313988	0.207%	93.0	97.3%
$\geq 1 \text{ good track}$	21329	0.014%	85.2	89.2%
= 2 good tracks	0	0.000%	44.5	46.6%
Track radius $< 95 \text{ mm}$	0	0.000%	40.4	42.3%
Calo energy $> 500 \text{ GeV}$	0	0.000%	39.7	41.6%

Dark Photon – Veto Scintillators

 Veto scintillator efficiencies measured extrapolating tracks triggered in timing scintillator to layer

Normalised # of events

Dark Photon Signal Expectations

Kinetic Mixing ε

- Signal simulated w. FORESEE
 - π^{0} and η^{0} production with **EPOS-LHC** generator
 - Dark bremsstrahlung of protons included, but sub-dominant
 - Only decays to e⁺e⁻ in FASER decay volume considered
- Main signal uncertainties
 - Generator uncertainty parameterized vs A' energy as:

 $\frac{\Delta N}{N} = \frac{0.15 + (E_{A'}/4 \text{ TeV})^3}{1 + (E_{A'}/4 \text{ TeV})^3}$

- Based on difference to QGSJET/SIBYLL
- Tracking efficiency
 - 15% uncertainty for two close-by tracks
- Calorimeter energy scale
 - 6% uncertainty on energy scale at 500 GeV

m_{A'} [MeV]

31

Signal generator uncertainty

Dark Photons – Systematic Uncertainties

 Complete list of systematic uncertainties and their impact on the signal yield

Source	Value	Effect on signal yield			
Theory, Statistics and Luminosity					
Dark photon cross-section	$\frac{0.15{+}(E_{A'}/4{\rm TeV})^3}{1{+}(E_{A'}/4{\rm TeV})^3}$	15-65% (15-45%)			
Luminosity	2.2%	2.2%			
MC Statistics	$\sqrt{\sum W^2}$	1-3%~(1-2%)			
Tracking					
Momentum Scale	5%	< 0.5%			
Momentum Resolution	5%	< 0.5%			
Single Track Efficiency	3%	3%			
Two-track Efficiency	15%	15%			
Calorimetry					
Calo E scale	6%	0-8%~(<1%)			

Dark Photon – Energy Scale Systematics

- Calorimeter energy scale and uncertainty estimated based on test beam data and in situ MIP calibration
- Validated using conversion events (μ with e⁺e⁻ pair)
 - E/p in data/MC agrees within 6%

Calorimeter test beam response

Dark Photon – Tracking Systematics³⁴

- Single track efficiency uncertainty studied in muon events with track segments found in each station
 - Data efficiency of 98.4%
 - Data-MC agrees at 1.5% level
- Tracking efficiency lower for two (close-by) tracks
 - Studied in conversions and delta-ray events requiring one less track than needed, but preshower and calorimeter consistent with electromagnetic signals
 - Further studied overlaying two events with one reconstructed track at hit level
 - Taking largest data/MC deviations conservatively assign 15% uncertainty

Dark Photon – Timing Scint. Selection

 Selecting events with more than 70pC in timing layer is ~100% efficient for signal, while also suppressing a large fraction of single track events

Dark Photon – Other Exclusion Limits

FASER Collaboration

85 members from 22 institutions and 9 countries

FASER Publications

The FASER Detector arxiv: 2207.11427

The FASER W-Si High Precision Preshower Technical Proposal CERN document server

The tracking detector of the FASER experiment NIMA 166825 (2022) and arXiv: 2112.01116

The trigger and data acquisition system of the FASER experiment Journal of Instrumentation and arXiv: 2110.15186

First neutrino interaction candidates at the LHC Physical Review D and arXiv: 2105.06197

Technical Proposal of FASERv neutrino detector CERN document server and arXiv: 2001.03073

Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC European Physical Journal C and arXiv: 1908.02310

Input to the European Strategy for Particle Physics Update arXiv: 1901.04468

FASER's Physics Reach for Long-Lived Particles Physical Review D and arXiv: 1811.12522

Technical Proposal

CERN document server and arXiv: 1812.09139

Letter of Intent CERN document server and arXiv: 1811.10243

Detector Performance Tracker

Tracker fully timed in with respect to LHC clock
 Hit efficiency of 99.64% at 150V bias and 1fC threshold

<0.5% dead/noisy strips – inefficiency at edges expected</p>

Detector Performance - Alignment

- Tracker modules aligned using local iterative χ^2 proc.
- Validated using simulation with misalignments
- Currently only applying alignment in two most sensitive parameters (vertical shift, in-plane rotation)
 - Aligned resolution close to simulation expectation

Detector Performance - Calo/Scint

- Calorimeter resolution measured in test-beam
 - Better than 1% at high energy
- Precision timing of both calorimeter and scintillators
 - Not used in presented analyses

Calorimeter timing for different events

Detector Performance – Emulsion

- Track multiplicity measured in initial emulsion
 - Consistent with FLUKA simulation
- Excellent hit resolution (0.2µm) after layer alignment

42

Detector Performance - Trigger/DAQ⁴³

- Smoothly running DAQ at up to 1.3 kHz
- Physics deadtime below 2%
- Only two stops of data-taking due to DAQ failures

