Results and Prospects of T2K

Tomáš Nosek on behalf of the T2K collaboration

National Centre for Nuclear Research, Warsaw, Poland

57th Rencontres de Moriond, March 19, 2023

Outline

- I ν oscillation
- II T2K experiment
 - General intro
 - Beyond neutrino oscillation physics
- III T2K 2022 ν oscillation analysis
 - General strategy
 - 2022 novelties and updates
 - 2022 ν oscillation results
- ${\sf IV}~{\sf The}~{\sf rosy}$ future of ${\sf T2K}$
 - T2K+NOvA, T2K+SK joint analyses
 - SK-Gd
 - Beam upgrade
 - ND280 upgrade

ν Oscillation in 3ν -paradigm

ν Oscillation

- Source producing neutrinos of certain flavor e.g. ν_{μ}
- Detector (at a certain distance L) observes reduction in the flux of neutrinos of the flavor

 \Rightarrow NEUTRINO DISAPPEARANCE: $\nu_{\mu} \longrightarrow \nu_{\mu}$

• Detector observes increase in the flux of neutrinos of different flavors from the one produced

```
\Rightarrow NEUTRINO APPEARANCE: \nu_{\mu} \longrightarrow \nu_{e}
```

- Described by ν -mixing, each flavor state ν_{α} (weak int.) is a superposition of mass states ν_i (free particle)
- The (dis)appearance of ν has an oscillatory pattern as a function of distance/energy \Rightarrow

NEUTRINO OSCILLATION

u Oscillation Parameters of the 3ν -paradigm

	Normal ord	ering (best fit)	Inverte	d ordering
	Best fit $\pm 1\sigma$	3σ range	Best fit $\pm 1\sigma$	3σ range
$\sin^2 \theta_{12}$	0.304 ± 0.012	0.269 - 0.343	$0.304\substack{+0.013\\-0.012}$	0.269 - 0.343
$\sin^2 \theta_{23}$	$0.573\substack{+0.016\\-0.020}$	0.415 - 0.616	$0.575\substack{+0.016\\-0.019}$	0.419 - 0.617
$\sin^2\theta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	0.02032 - 0.02410	$0.02238\substack{+0.00063\\-0.00062}$	0.02052 - 0.02428
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV^2}}$	$7.42^{+0.21}_{-0.20}$	6.82 - 8.04	$7.42^{+0.21}_{-0.20}$	6.82 - 8.04
$\frac{\Delta m_{3l}^2}{10^{-3} \text{ eV}^2}$	$2.517\substack{+0.026\\-0.028}$	2.435 - 2.598	-2.498 ± 0.028	-2.581 - 2.414
$\frac{\delta_{CP}}{\pi}$	$1.09\substack{+0.15 \\ -0.13}$	0.67-2.05	$1.57\substack{+0.14 \\ -0.17}$	1.07 - 1.96

NuFIT global analysis JHEP 09, 178 (2020)

What is there to measure, anyway?

- Ordering of the mass states (mass ordering or hierarchy), is ν₃ the heaviest or the lightest: NORMAL vs. INVERTED?
- $\theta_{23} =$, > (UO), < (LO) 45°? 23, $\mu \tau$ symmetry?
- CP violation in lepton sector, δ_{CP} ?
- Tests of unitarity, 3ν -paradigm completeness, sterile ν etc.?

Long-baseline accelerator experiments $L/E \sim 10^{2-3}$ km/GeV are sensitive to

```
NO/IO, \theta_{23} and \delta_{CP} (also \theta_{13})
```

T2K (Japan) 295 km / 0.6 GeV NOvA (USA) 810 km / 2 GeV

T2K Experiment

Beamline and Near Detectors

Super-Kamiokande, SK – The Far Detector

Excellent μ/e -like rings separation (ν_{μ}/ν_{e} CC int.)

Physics Program Beyond ν Oscillation

What might interest you from the current results...

...but there's much more coming!

Joint XSec Measurements

- Joint On/Off axis u_{μ} CC0 π measurement
- Simultaneous measurement of the u_{μ} CC0 π cross-section on O and C
 - FGD2 of ND280 has several modules with H_2O

Low rate measurements

+ ν_{μ} and $\bar{\nu}_{\mu}$ CC coherent π production on C

SK measurements

• Neutron multiplicities at SK

T2K 2022 ν Oscillation Analysis A follow-up on 2020 analysis *arXiv:2303.03222*

Frequentist ND280 to SK Consequential Analysis

- Frequentist analysis proceeds in two consecutive fits
- Fit to ND280 samples provides a constraint to flux and interaction model
- Results of ND280 fit are used as input to fit SK data to constrain ν oscillation parameters

- Frequentist analysis uses Poisson likelihood with gaussian penalty terms to account for systematic nuisance parameters and Barlow-Beeston approach to account for ND280 MC stat uncertainty
- Gradient descent algorithm / grid search
- Feldman-Cousins method to construct CL intervals

Bayesian Joint ND280+SK Analysis

• Based on Bayes' theorem:

- Also uses Poisson likelihood
- Markov Chain Monte Carlo (MCMC) with Metropolis-Hastings algorithm
- Systematic nuisance parameters may have different priors
- Fitting all ND280 samples and SK samples at once

The Novelties of 2022 – Flux and Interaction Modeling

Flux Model

- Updated tune to new NA61/SHINE T2K replica target measurement *Eur.Phys.J.C 79 2, 100*
- More π^{\pm} stats, new K^{\pm} and p data
- Significant reduction of hadron production uncertainties

Most dominant interaction at 0.6 GeV CCQE and CC RES

CCQE (Spectral Function)

- More theory-driven uncerts
- Normalization of each nuclear shell for Mean Field
- Short Range Correlations and Pauli Blocking

CC Resonant (Rein-Sehgal)

- New bubble chamber tune
- New resonance decay uncerts
- Eff. inclusion of binding energy
- New uncert in π^{\pm} vs π^{0} production

The Novelties of 2022 - ND280 Samples

- 22 ND280 samples based on reconstructed topology
- New ND280 ν samples with p and γ tagging
- p: better access to nuclear effects, lower π^+ bkg.
- γ : filters out DIS and COH π^{0} production

• No change in $\bar{\nu}$ samples

The Novelties of 2022 – SK u_{μ} Multi-ring Sample MR μ CC1 π^+

- μ^- ring and $(\pi^+$ ring + 1-2 Michel e) or (2 Michel e)
- Targeting $\nu_{\mu} CC1 \pi^+$ interactions in ν -mode
- +30% stats μ -like ν -mode, sensitive to ν oscillation
- Model cross-checks and background constraints

15 / 26

Results 2022 - SK Data

BF Prediction and $\delta_{ m CP} =$						
	Sample	$-\pi/2$	$\pi/2$	-2.18	Data	
	1R <i>e</i>	99.1	68.6	96.5	94	
	$1 { m Re} 1 \pi^+$	10.9	7.7	10.5	14	
ν	$1R\mu$	358.7	358.6	359.1	318	
	$MR\mu\mathfrak{1}\pi^+$	118.5	118.5	118.8	134	
	1R <i>e</i>	17.0	21.4	17.3	16	
ν	$1R\mu$	139.4	139.4	139.6	137	

 ν_e -like samples:

$$1 \text{R}e = 1 \text{ ring } e$$

 $1 \text{R}e 1 \pi^+ = 1 \text{ ring } e + 1 \text{ M. } e$

$$\begin{split} \nu_{\mu} \text{-like samples:} \\ 1 \text{R} \mu &= 1 \text{ ring } \mu + 0/1 \text{ M. } e \\ \text{M} \text{R} \mu 1 \pi^{+} &= 1 \text{ ring } \mu + (1 \text{ ring } \pi + 1\text{-}2 \text{ M. } e) \text{ or } 2 \text{ M. } e \end{split}$$

Good energy estimation from lepton momentum and angle SK cannot separate \pm charged particles event by event, i.e. $\nu/\bar{\nu}$

Results 2022 – Δm_{32}^2 vs. $\sin^2 \theta_{23}$

- Leading measurements of θ_{23} and Δm^2_{32}
- Excellent agreement of both frequentist and bayesian analyses

	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Line total
Normal ordering	0.236	0.540	0.776
Inverted ordering	0.049	0.174	0.224
Column total	0.285	0.715	1.000
	-		

T2K Run 1-10, preliminary

Slight preference for UO of θ_{23} (2.51) and NO (3.46) of ν mass states (from Bayes factors)

Using reactor constraints for θ_{13}

Results 2022 – δ_{CP}

 $\delta_{\rm CP}$ best fit at -2.18 (-0.694 π), CP conserving values 0 and π are outside of 90% CL intervals

Using reactor constraints for θ_{13}

- Frequentist p-value 0.35
- Bayesian posterior predictive p-value 85%
- No biases to undermine the statements found in a test with an alternative interaction model

Bayesiar

The Rosy Future of T2K

- Two complementary long-baseline ν oscillation experiments (baselines, ν energy and underlying interaction modes, detector technology, analysis techniques and more), increased sensitivity to NO/IO, $\delta_{\rm CP}$, and θ_{23} thanks to resolving degeneracies
- One of the most important results on ν oscillation in 3ν -paradigm before the age of the next generation oscillation experiments
- Based on 2020 analyses (arXiv:2303.03222, PRD 106 032004)
- Expecting preliminary results soon

T2K+SK

- •
- •
- Based on T2K 2020 analysis (*arXiv:2303.03222*)

- Coherent detector MC
- Unified interaction model for T2K and similar SK samples

SK-Gd Phase

 $\bullet\,$ Increase in the time-delayed signals indicates the presence of Gd in SK

Beam Upgrade

- Main Ring (MR) reached \approx 515 kW stable operation during the last runs
- Upgrades during the 2-year shutdown:
 - New MR fast extraction magnets and power supply
 - New proton focusing magnet
 - New beam monitors and μ monitor
 - New target and target cooling system
 - New focusing horns and power supplies (250 \rightarrow 320 kA)
- Scheduled for spring 2023
- Targeting over 1 MW with future MR RF systems upgrade (down to 1.16 s rep. rate)

SUMMARY

- 2022 re-analysis of u oscillation data with new features and data samples, consistent with previous results
- CP conservation excluded at 90% CL
- Slight preference for NO of ν mass states and $\theta_{\rm 23}>45^\circ$

Bright future ahead!

- T2K+NOvA and T2K+SK joint analyses to be presumably the most impactful analyses on ν oscillation before the dawn of the next generation experiments
- SK-Gd phase already began, data acquired but not analyzed
- Beam upgrades to reach > 1 MW power in a near future
- ND280 upgrade ongoing, installation already happening

BACKUP

Detectors Exposure, Accumulated POT

Jarlskog Invariant

 $J_{\rm CP} = \sin\theta_{13}\cos^2\theta_{13}\sin\theta_{12}\cos\theta_{12}\sin\theta_{23}\cos\theta_{23}\sin\delta_{\rm CP}$

Systematic Uncertainties SK

	1	R	MR			$1 \mathrm{R}e$	
Error source (units: %)	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux	2.8	2.9	2.8	2.8	3.0	2.8	2.2
Xsec (ND constr)	3.7	3.5	3.0	3.8	3.5	4.1	2.4
Flux+Xsec (ND constr)	2.7	2.6	2.2	2.8	2.7	3.4	2.3
Xsec (ND unconstr)	0.7	2.4	1.4	2.9	3.3	2.8	3.7
SK+SI+PN	2.0	1.7	4.1	3.1	3.8	13.6	1.2
Total All	3.4	3.9	4.9	5.2	5.8	14.3	4.5

- Numbers quoted are the RMS of the predicted numbers of events in the far detector sample obtained when varying systematic parameters according to their prior distribution
- Some systematic parameters do not have a prior constraint, and can end up having larger effect than estimated with this method in a fit

Systematic Uncertainties ND280

Sample	$\delta N/N(\%)$							
	Flux		Xsec		ND280		Total	
	pri.	post.	pri.	post.	pri.	post.	pri.	post.
FGD1 FHC CC0 π -0p-0 γ	5.0	2.7	11.8	2.8	1.8	1.2	12.8	0.6
FGD1 FHC CC0 π -Np-0 γ	5.5	2.8	11.7	3.2	3.5	2.2	12.9	0.9
FGD1 FHC CC1 π -0 γ	5.2	2.7	9.1	2.7	3.0	1.4	10.6	1.0
FGD1 FHC CC-Other- 0γ	5.4	2.8	8.0	2.8	5.2	2.3	11.0	1.6
FGD1 FHC CC-Photon	5.5	2.8	8.5	2.8	2.8	1.8	10.5	0.8
FGD2 FHC CC0 π -0p-0 γ	5.1	2.7	11.2	2.8	2.1	1.1	11.5	0.6
FGD2 FHC CC0 π -Np-0 γ	5.5	2.8	11.3	3.3	3.9	2.4	12.2	1.0
FGD2 FHC CC1 π -0 γ	5.2	2.7	9.0	2.7	3.6	1.6	10.5	1.0
FGD2 FHC CC-Other- 0γ	5.6	2.8	8.0	2.8	6.3	2.7	11.5	1.9
FGD2 FHC CC-Photon	5.4	2.8	8.3	2.8	2.5	1.6	10.4	0.8
FGD1 RHC CC0 π	4.9	3.2	11.3	3.2	1.9	1.2	12.2	0.9
FGD1 RHC CC1 π	4.6	3.1	10.3	3.0	4.2	2.6	11.4	1.9
FGD1 RHC CC-Other	4.5	2.9	9.3	3.0	3.5	2.0	10.5	1.5
FGD2 RHC CC0 π	4.8	3.2	10.4	3.0	2.1	1.2	13.8	0.9
FGD2 RHC CC1 π	4.6	3.0	9.9	3.2	3.9	2.3	10.9	1.9
FGD2 RHC CC-Other	4.6	2.9	9.7	3.1	2.9	1.8	11.3	1.4
FGD1 RHC BKG $CC0\pi$	5.8	2.8	10.1	2.8	2.2	1.1	10.6	1.1
FGD1 RHC BKG $CC1\pi$	5.6	2.8	8.0	2.5	3.3	1.6	11.2	1.3
FGD1 RHC BKG CC-Other	5.9	2.9	8.6	2.7	2.6	1.4	10.1	1.4
FGD2 RHC BKG $CC0\pi$	5.8	2.8	9.5	2.8	2.2	1.1	10.4	1.1
FGD2 RHC BKG CC1 π	5.6	2.8	8.2	2.5	3.2	1.6	10.7	1.3
FGD2 RHC BKG CC-Other	5.9	2.9	8.6	2.7	2.5	1.4	10.6	1.4
Total	4.5	2.7	8.0	2.6	2.1	1.2	9.1	0.3

Results 2022 vs. 2020

• Very good consistency with 2020 results which used the very same beam exposure

Effect of Analysis Change

SK Energy Reconstruction

- Assuming quasi-elastic interaction with a single bound nucleon
- Known beam direction allows one to calculate reconstructed neutrino energy

$$E_{rec}^{\nu \text{CCQE-like}} = \frac{2E_l(M_n - E_b) - M_l^2 + 2M_n E_b - E_b^2 + M_p^2 - M_n^2}{2(M_n - E_b - E_l + P_l \cos \theta_l)}$$

ND280

ν Interactions

Simulated Momentum Thresholds for Counting Visible Particles

Particle	Momentum $[MeV/c]$
e^{\pm}	10
γ	20
μ^{\pm}	120.495
π^+	159.169
π^0	0
Proton	1070.03
Other charged particles	Cherenkov threshold

ν Oscillation Probabilities

Small parameters
$$arepsilon\equivrac{\Delta m^2_{21}}{\Delta m^2_{31}}pprox 0.03$$
 and $\sin^2 heta_{13}pprox 0.02$

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{\mu}; L, E) &\approx 1 - \cos^2 \theta_{13} \sin^2(2\theta_{23}) \sin^2 \frac{\Delta m_{32}^2 L}{4E} \\ &+ \mathcal{O}(\varepsilon, \sin^2 \theta_{13}) \end{split}$$

Appearance channel $u_{\mu} ightarrow u_{e}$

Disappearance channel $\nu_{\mu} \rightarrow \nu_{\mu}$

 $+\nu_e$ coherent forward scattering on pseudo-free e (matter effect), N_e density of e

$$P(\nu_{\mu} \to \nu_{e}; L, E, A) \approx 4s_{13}^{2}s_{23}^{2}\frac{\sin^{2}\Delta}{(1-A)^{2}} + \varepsilon^{2}\sin^{2}2\theta_{12}c_{23}^{2}\frac{\sin^{2}A\Delta}{A^{2}} + 8\varepsilon c_{12}s_{12}c_{23}s_{23}c_{13}^{2}s_{13}\cos(\Delta + \delta_{\rm CP})\frac{\sin A\Delta}{A}\frac{\sin\Delta(1-A)}{1-A}$$
$$\Delta \equiv \frac{\Delta m_{31}^{2}L}{4E} \qquad A \equiv \sqrt{2}G_{\rm F}N_{e}\frac{2E}{\Delta m_{31}^{2}}$$

u Oscillation Probabilities $u_{\mu} \rightarrow u_{e}$

