EFT interpretations in the Higgs and electroweak sectors -- lecture 2 --

Ecole de Gif 2023 -- Annecy Saskia Falke (IPHC Strasbourg)

e-mail: saskia.falke@iphc.cnrs.fr

Content

1st lecture:

- Higgs physics
 - Higgs production and decay channels and their measurement
 - BSM and EFT sensitivity of each channel
- EW physics
 - Anomalous triple gauge couplings and dim-6 EFT interpretation
 - Beyond dim-6: neutral anomalous triple gauge couplings and quartic gauge couplings

2nd lecture:

- \succ Towards a global fit: combining the available information
 - Experimental challenges of combinations
 - Global fit in action: how to ensure generality / model independence of EFT fits
 - Limitations and perspectives for EFT fits towards HL-LHC and beyond

Why doing a global fit?

- > Complementary probes of SM interactions sensitive to different BSM models
- > Most channels sensitive to several EFT operators with overlap btw. channels \rightarrow combination
 - Similar event kinematics, e.g. for VBS / VBF common experimental techniques
 - EW might be dominant Higgs analyses backgrounds, e.g. ttW is main background of ttH in multilepton channel

Why doing a global fit?

- > Why combining at analysis level? -- Could do a simple statistical combination of EFT results
 - Often, no statistical power to constrain all operators simultanously in single analyses -- one EFT operator fit at the time, while others are fixed to 0
 - Why should BSM be so nice to introduce one single EFT operator at the time in each vertex?
 - → inducing significant model dependence!

Example: 2 Higgs Doublet Model – excellent indirect limits from Higgs couplings

- Conversion to EFT: several operators impacted
 - \rightarrow no conclusion on 2HDM possible with constraint on one of these EFT operators!

SMEFT parameters	Type I	Type II	Lepton-specific	Flipped
$\frac{v^2 c_{tH}}{\Lambda^2}$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_{bH}}{\Lambda^2}$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$
$\frac{v^2 c_{eH,22}}{\Lambda^2}$	$-Y_{\mu}c_{\beta-lpha}/\taneta$	$Y_{\mu}c_{\beta-lpha}\taneta$	$Y_{\mu}c_{\beta-lpha}\taneta$	$-Y_{\mu}c_{\beta-lpha}/\tan\beta$
$\frac{v^2 c_{eH,33}}{\Lambda^2}$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$	$-Y_{\tau}c_{\beta-lpha}\taneta$	$Y_{\tau}c_{\beta-lpha}\taneta$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_H}{\Lambda^2}$	$c_{eta-lpha}^2 M_A^2/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$	$c^2_{eta-lpha}M^2_A/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$

Why doing a global fit?

- > Ideal EFT interpretation: use all available information without making any assumption
 - Combine information from Higgs, EW, top quark physics, including LHC, LEP, etc.
 - Fit all operators with non-zero impact
- > In practice, will always make some assumptions, but try to minimise them
- > Limitations and needs discovered while practically working on it
- > Field in active development, both from theory and experiments let's start small!

Overview of Higgs couplings to SM particles

Coupling	1				-		
Channel	H-W	H-Z	H-t	H-b	H-c	Η-τ	H-µ
ggF			g 2000	g 2000	g 00000 h		
VBF	y y y h	q $q'V_{3} hV_{3} q'$					
WH							
ZH							
ttH, tH			9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
$H \to bb$							
$H \to CC$					н		
$H \to yy$							
$H \to WW$	·						
$H \rightarrow ZZ$		H					
H→ττ						-н	
H →µµ							н

6

Decorrelating EFT operators through global picture

> Some operators have similar impact on certain distributions

Decorrelating EFT operators through global picture

- > Some operators have similar impact on certain distributions
- > Adding more channels with different relative impact allows to differentiate

Decorrelating EFT operators through global picture

- > Some operators have similar impact on certain distributions
- > Adding more channels with different relative impact allows to differentiate

- > In a similar way, measuring production x decay \rightarrow correlation between relevant operators
- > Decorrelation when measuring same production mode in different decay channels

Experimental challenges of a combination

- Choice of a common setup (need to work together between collaborations and with theorists:
 - Using SMEFT in Warsaw basis with defined input parameter set
 - BSM scale staying in the validity regime, while still keeping sensitivity
- Analysis design:
 - As many as possible final states general analyses, but with good BSM sensitivity
 - Ensure orthogonality between analyses (no common events)
 - Backgrounds of one analysis might be signal of another orthogolality at the price of sensitivity?
 - Correlate common systematics to ensure consistent approach

Step-by-step towards a global combination

Detailed example: Higgs combination...

Differential cross sections maximising sensitivity to BSM in combined measurement from all Higgs decays:

Differential cross sections maximising sensitivity to BSM in combined measurement from all Higgs decays:

> Categorisation in production modes: small model dependence, but allows to use all decay channels were they are best

Example: gluon fusion and VH

 $gg \rightarrow H$ $[+ gg \rightarrow Z(q\bar{q})H + pp \rightarrow b\bar{b}H]$

Large statistics, but large background \rightarrow best in channels with full Higgs reconstruction and good mass resolution (e.g. H \rightarrow yy or H \rightarrow 4l)

	Rare, but good efficiency of leptonic V
	tagging
	\rightarrow best in channels with large branching
$(2, \nu\nu)H$]	fraction (e.g. $H \rightarrow bb$)

VH

 $[pp \rightarrow V(\ell\nu, \ell$

Differential cross sections maximising sensitivity to BSM in combined measurement from all Higgs decays:

- > Categorisation in production modes: small model dependence, but allows to use all decay channels were they are best
- > Kinematic binning defined in each production mode using well measured variables in dominant analysis channel

Binning in:

- N-jets
- Dijet-mass (for ggF+≥2jets)
- Higgs p_{τ} : well resolved in $H \rightarrow \gamma\gamma$ or $H \rightarrow 4I$

Differential cross sections maximising sensitivity to BSM in combined measurement from all Higgs decays:

- > Categorisation in production modes: small model dependence, but allows to use all decay channels were they are best
- > Kinematic binning defined in each production mode using well measured variables in dominant analysis channel

Binning in:

- N-jets
- Dijet-mass (for ggF+≥2jets)
- Higgs p_{τ} : well resolved in $H \rightarrow \gamma \gamma$ or $H \rightarrow 4I$

Binning in:

- Number of charged leptons ($W \rightarrow Iv vs. Z \rightarrow II or Z \rightarrow vv$)
- Vector boson p_T : well measured (p_T^H hard in $H \rightarrow bb$), good BSM sensitivity (correlated to p_T^H)

- Common binning across experiments defined for all (major) production modes
- Ensure flat acceptance within each bin (within stat. Uncertainties):
 - dedicated treatment of theory uncertainties to reduce impact
 - re-optimise binning with increasing amount of data
- Possibility to merge bins for single analyses depending on their sensitivity in specific regions
- Each analysis can be optimised for sensitivity to these bins using e.g. ML techniques

Input measurement

In combination, often measure cross section x reference decay ($H \rightarrow ZZ^*$) + ratios of other decays to reference \rightarrow ensure good model independence

17

Input measurement

- > In combination, often measure cross section x reference decay ($H \rightarrow ZZ^*$) + ratios of other decays to reference \rightarrow ensure good model independence
- > Due to BR ratios, this is not anymore the fully Gaussian case and harder to re-interpret
- \rightarrow Working with experimental likelihood \rightarrow access to full information for cross section in every channel

Input measurement

Corresponding covariance matrix:

- can assume Gaussianity
- overall small correlations from common systematic uncertainties

Reminder:

$$\sigma_{\text{STXS}} = \sigma_{\text{SM}} + \underbrace{\sigma_{\text{int}}}_{\sim 1/\Lambda^2} + \underbrace{\sigma_{\text{BSM}}}_{\sim 1/\Lambda^4} = \sigma_{\text{SM}}^{((N)N)NLO} \times \left(1 + \frac{\sigma_{\text{int}}^{(N)LO}}{\sigma_{\text{SM}}^{(N)LO}} + \frac{\sigma_{\text{BSM}}^{(N)LO}}{\sigma_{\text{SM}}^{(N)LO}}\right)$$

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{i=1}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$

Parametrisation of production & decay product:

$$(\sigma \times B)^{i,H \to X} = (\sigma \times B)^{i,H \to X}_{\text{SM},(N(N))\text{NLO}} \left(1 + \frac{\sigma^{i}_{\text{int},(N)\text{LO}}}{\sigma^{i}_{\text{SM},(N)\text{LO}}} + \frac{\sigma^{i}_{\text{BSM},(N)\text{LO}}}{\sigma^{i}_{\text{SM},(N)\text{LO}}}\right) \left(\frac{1 + \frac{\Gamma^{H \to X}_{\text{INT}}}{\Gamma^{H \to X}_{\text{SM}}} + \frac{\Gamma^{H \to X}_{\text{BSM}}}{\Gamma^{H \to X}_{\text{SM}}}}{1 + \frac{\Gamma^{H}_{\text{int}}}{\Gamma^{H}_{\text{SM}}}}\right)$$
Production (σ) (σ) Decay (BR = $\Gamma_{\text{H} \to X} / \Gamma_{\text{H}}$)

Reminder:

$$\sigma_{\text{STXS}} = \sigma_{\text{SM}} + \underbrace{\sigma_{\text{int}}}_{\sim 1/\Lambda^2} + \underbrace{\sigma_{\text{BSM}}}_{\sim 1/\Lambda^4} = \sigma_{\text{SM}}^{((N)N)NLO} \times \left(1 + \frac{\sigma_{\text{int}}^{(N)LO}}{\sigma_{\text{SM}}^{(N)LO}} + \frac{\sigma_{\text{BSM}}^{(N)LO}}{\sigma_{\text{SM}}^{(N)LO}}\right)$$

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{i}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$

Parametrisation of production & decay product:

$$(\sigma \times B)^{i,H \to X} = (\sigma \times B)^{i,H \to X}_{\text{SM},(N(N))\text{NLO}} \left(1 + \left[\frac{\sigma_{\text{int},(N)\text{LO}}^{i}}{\sigma_{\text{SM},(N)\text{LO}}^{i}}\right] + \left[\frac{\sigma_{\text{BSM},(N)\text{LO}}^{i}}{\sigma_{\text{SM},(N)\text{LO}}^{i}}\right] \left(1 + \left[\frac{\Gamma_{\text{int}}^{H \to X}}{\Gamma_{\text{SM}}^{H \to X}}\right] + \left[\frac{\Gamma_{\text{BSM}}^{H \to X}}{\Gamma_{\text{SM}}^{H \to X}}\right] + \left[\frac{\Gamma_{\text{int}}^{H \to X}}{\Gamma_{\text{int}}^{H \to X}}\right] + \left[\frac{\Gamma_{\text{int}}^{H \to X}}{\Gamma_{$$

Reminder:

$$\sigma_{\text{STXS}} = \sigma_{\text{SM}} + \sigma_{\text{int}} + \sigma_{\text{BSM}} = \sigma_{\text{SM}}^{((N)N)\text{NLO}} \times \left(1 + \frac{\sigma_{\text{int}}^{(N)\text{LO}}}{\sigma_{\text{SM}}^{(N)\text{LO}}} + \frac{\sigma_{\text{BSM}}^{(N)\text{LO}}}{\sigma_{\text{SM}}^{(N)\text{LO}}}\right)$$

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{i}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$

Parametrisation of production & decay product:

$$(\sigma \times B)^{i,H \to X} = (\sigma \times B)^{i,H \to X}_{\text{SM},(N(N))\text{NLO}} \left(1 + \frac{\sigma^{i}_{\text{int},(N)\text{LO}}}{\sigma^{i}_{\text{SM},(N)\text{LO}}} + \frac{\sigma^{i}_{\text{BSM},(N)\text{LO}}}{\sigma^{i}_{\text{SM},(N)\text{LO}}}\right) \left(\frac{1 + \frac{\Gamma^{H \to X}_{\text{Int}}}{\Gamma^{H \to X}_{\text{SM}}} + \frac{\Gamma^{H \to X}_{\text{BSM}}}{\Gamma^{H \to X}_{\text{SM}}}}{1 + \frac{\Gamma^{H}_{\text{IH}}}{\Gamma^{H}_{\text{SM}}} + \frac{\Gamma^{H}_{\text{SM}}}{\Gamma^{H}_{\text{SM}}}}\right)$$

$$= (\sigma \times B)^{i,H \to X}_{\text{SM},((N)\text{N})\text{LO}} \times \left(1 + \sum_{j} A^{\sigma_{i}}_{j} c_{j}\right) \times \left(1 + \sum_{j} A^{\sigma_{i}}_{j} c_{j}\right)}$$

$$\text{Cross terms of } \sim 1/\Lambda^{4}$$

$$(\sigma \times B)^{i,H \to X} = (\sigma \times B)^{i,H \to X}_{\text{SM},((N)N)\text{LO}} \times \left(1 \underbrace{\sum_{j} A_j^{\sigma_i} c_j}_{j}\right) \times \left(1 \underbrace{\sum_{j} A_j^{\Gamma^H \to X}}_{j} + \underbrace{\sum_{j} A_j^{\Gamma^H} c_j}_{j}\right)$$

Cross terms of $\sim 1/\Lambda^4$

Fully linearised expression in $1/\Lambda^2$:

$$(\sigma \times B)_{\mathrm{SM}+\Lambda^{-2}}^{i,H \to X} = (\sigma \times B)_{\mathrm{SM},((\mathrm{N})\mathrm{N})\mathrm{LO}}^{i,H \to X} \times \left(1 + \sum_{j} A_{j}^{\sigma_{i}} c_{j} + \sum_{j} A_{j}^{\Gamma^{H} \to X} c_{j} - \sum_{j} A_{j}^{\Gamma^{H}} c_{j} \right) + O\left(\Lambda^{-4}\right)$$
$$= (\sigma \times B)_{\mathrm{SM},((\mathrm{N})\mathrm{N})\mathrm{LO}}^{i,H \to X} \times \left(1 + \sum_{j} \left(A_{j}^{\sigma_{i}} + A_{j}^{\Gamma^{H} \to X} - A_{j}^{\Gamma^{H}} \right) c_{j} \right) + O\left(\Lambda^{-4}\right),$$

++ Acceptance parametrisation in $H \rightarrow 4I$ decay

Taylor expansion as a function of $1/\Lambda^2$

Linear parametrisation of combined STXS

Example: WH production – STXS bins

Category in $qq \to H\ell\nu$	Parametrisation
$p_{\rm T}^V \! < \! 75$	$0.12c_{H\square} - 0.0304c_{HDD} + 0.813c_{HW} - 0.241c_{Hl}^{\scriptscriptstyle (3)} + 1.142c_{Hq}^{\scriptscriptstyle (3)} +$
	$0.183c'_{ll}$
$75 < p_{\rm T}^V < 150$	$0.12 c_{H\square} - 0.0304 c_{HDD} + 0.946 c_{HW} - 0.244 c_{Hl}^{\scriptscriptstyle (3)} + 1.90 c_{Hq}^{\scriptscriptstyle (3)} + 0.183 c_{ll}^{\prime}$
$150 < p_{\rm T}^V < 250, N_{\rm jets} = 0$	$0.12 c_{H\square} - 0.0312 c_{HDD} + 1.06 c_{HW} - 0.247 c_{Hl}^{\scriptscriptstyle (3)} + 4.07 c_{Hq}^{\scriptscriptstyle (3)} + 0.187 c_{ll}^{\prime}$
$150 < p_{\rm T}^V < 250, N_{\rm jets} \ge 1$	$0.12c_{H\square} - 0.0307c_{HDD} + 1.08c_{HW} - 0.239c_{Hl}^{\scriptscriptstyle (3)} + 3.58c_{Hq}^{\scriptscriptstyle (3)} + 0.180c_{ll}^{\prime}$
$p_{\mathrm{T}}^V > 250$	$0.12c_{H\square} - 0.0282c_{HDD} + 1.07c_{HW} - 0.228c_{Hl}^{\scriptscriptstyle (3)} + 10.6c_{Hq}^{\scriptscriptstyle (3)} + 0.170c_{ll}^{\prime}$

Let's look at a bit more intuitive representation!

Note:

Working under flavour symmetry assumption – possible because we are measuring explicitely only 3rd generation in Higgs physics (for now)

– only ~ 80 operators (yay!)

Linear parametrisation of combined STXS

Most relevant operators shown here

- For model generality, perform simultaneous fit of all these operators
- Can already spot set of operators that will be strongly correlated

Flat directions

- > Simultaneous fit of all operators in practice not possible \rightarrow fit does not converge
- Reason: flat directions in likelihood due to operators with ± 100% correlation

Flat directions

- > Simultaneous fit of all operators in practice not possible \rightarrow fit does not converge
- Reason: flat directions in likelihood due to operators with ± 100% correlation
- > Solution: fit linear combinations that are sensitive

Principle component analysis

- Sensitive linear combinations = eigenvectors of covariance matrix with small eigenvalue
- > Equivalent to eigenvectors of Fisher information matrix (inverse cov. matrix) with large eigenvalue
- Problem: how to get covariance matrix of a non-converging fit?

Principle component analysis

- Sensitive linear combinations = eigenvectors of covariance matrix with small eigenvalue
- > Equivalent to eigenvectors of Fisher information matrix (inverse cov. matrix) with large eigenvalue
- Problem: how to get covariance matrix of a non-converging fit?

Solution: propagation of EFT parametrisation to combined STXS Fisher information matrix

Caveats:

- Assuming Gaussian behaviour
- Only possible for linear parametrisation

Principle component analysis

- Sensitive linear combinations = eigenvectors of covariance matrix with small eigenvalue
- > Equivalent to eigenvectors of Fisher information matrix (inverse cov. matrix) with large eigenvalue
- Problem: how to get covariance matrix of a non-converging fit?

Solution: propagation of EFT parametrisation to combined STXS Fisher information matrix

Caveats:

- Assuming Gaussian behaviour
- Only possible for linear parametrisation

Note:

This is possible, because we have a fully linearised EFT parametrisation

-- not possible when adding terms quadratic in Wilson coefficients

$$V_{\text{SMEFT}}^{-1} = P_{(i,X)\to(j)}^{T} V_{\text{STXS}}^{-1} P_{(i,X)\to(j)}$$

 $EV_1 = -0.70 C_{Hq}^{(3)} + -0.23 C_{HB} + 0.39 C_{HW} + ...$

	#	λ	A 7	LA	S	Pre	limi	nar	y √	<i>∫s</i> =1	3 Te	V, 13	39 fb	-1																				
	1	299310		-0.70	-0.23	0.39	-0.04	-0.02									0.55	0.02															-0.02	
4	2	121830		-0.47	-0.15	0.26	-0.03										-0.83	-0.03																
	3	1960	0.99		0.10	0.03				-0.03	0.09	-0.05			-0.02	0.02																		
	4	38	-0.11	0.09		0.15			0.02	-0.26	0.84	-0.41	-0.02	-0.02	-0.06	0.04		0.08									0.02				0.03			
<u>v</u> t/	5	19		0.10	-0.19	0.06					0.03	-0.02	-0.07	0.09	-0.13	0.10	0.02	-0.69	0.17	0.03	0.03	0.22	0.05	0.52		0.15	-0.08	0.03	0.02	0.23	0.07	0.06		
ISITI	6	10	0.08		-0.57	-0.34			-0.02	-0.02	0.08	-0.10	0.13	-0.13	0.54	-0.40		-0.04				0.02		0.04			-0.02			0.02	-0.20	-0.08		
Ser	7	5.9	-0.07	-0.23	0.73		-0.03	-0.02	-0.03	-0.02	0.08		0.10	-0.15	0.44	-0.25		-0.13	0.08			0.09	0.02	0.22		0.06				0.10	-0.07	-0.11		
	8	1.1	-0.01	-0.02	0.08				-0.02	-0.02	0.04	-0.02	-0.01	0.02	0.08	-0.03	0.03	-0.68	-0.29	-0.03	-0.04	-0.24	-0.04	-0.52	-0.01	-0.15	-0.10	-0.03	-0.02	-0.25	0.04			
	9	0.3	-0.02	-0.41	0.09	-0.70	-0.02	-0.01	-0.12	0.01	-0.03	-0.36	0.16		-0.37	0.10		-0.05	0.03								0.06				0.06	-0.11	-0.01	
	10	0.16		0.09	-0.09	0.09	-0.04	-0.01	-0.04		0.10	0.31	0.29	-0.58	-0.26	-0.12		-0.07	0.02				-0.04				0.08				0.27	-0.52	-0.02	0.01
	11	0.036		0.03	0.03	0.07	-0.01	0.04	0.19	-0.04		0.03	0.09	-0.06	-0.18	-0.07	0.01	-0.16	0.22	-0.01	0.01	-0.01	-0.10	-0.09		-0.02	0.70	-0.01		-0.02	-0.56	0.09		-0.02
	12	0.023		-0.01				0.37	-0.01		-0.01	-0.03	-0.02	0.03	0.05	0.03		0.01	-0.05			0.03	-0.91	0.08		0.02	-0.02			0.03	0.09			
	÷		CHa	CHB	CHAN	CHWB	CUB	CUN	CHOD	CHd	CHU	CHa	CHe	EHI	ÊH	ς/γ	CHG	cu ^G	ას	(ad	Eda	Caa	Eaa	Cala	Eau	Cau	Cutt	Eng	CUU	Cuu	CHD	cdH	CN	ceth

> Could fit most sensitive of these eigenvectors – cutoff at some min. eigenvalue

Problem: difficult to validate – no straight forward physics meaning

Define operator subspaces with similar physics impact - fit eigenvectors of sub-matrices

Sensitive eigenvectors of sub-matrices - can mostly be associated to specific channel

Sensitive eigenvectors of sub-matrices - can mostly be associated to specific channel

<u>Note</u>: $c^{[1]}_{HW,HB,HWB,HDD,uW,uB}$ can be related to c_{yy} in Higgs basis

$$\tilde{c}_{\gamma\gamma} = \frac{v^2}{\Lambda^2} 4 \left(\frac{1}{g^2} w_{\phi\tilde{W}} + \frac{1}{g'^2} w_{\phi\tilde{B}} - \frac{1}{gg'} w_{\phi\tilde{W}B} \right)$$

34

Eigenvector impact

 σ_{ggH} σ_{VBF} σ_{VH} σ_{ttH} BR stat.unc. ATLAS Preliminary 0.8 0.6 0.4 s=13 TeV 139 fb 0.2 ∆(σ×B)(c)/SM $c_{HW,HB,HWB,HDD,uW,uB}^{[1]} = 0.02$ HW.HB.HWB.HDD.uW.uB 0.5 CHW.HB.HWB.HDD.uW.uB HW.HB.HWB.HDD.uW.uB CHW.HB.HWB.HDD.uW.uB -0.5 $\Delta(\sigma \! \times \! B)(c_i)/SM$ $c^{[1]}_{\substack{Hu,Hd,Hq^{(1)}}} = 0.5 \\ c^{[2]}_{\substack{Hu,Hd,Hq^{(1)}}} \\ c^{[3]}_{\substack{\Pi}}$ 0.5 $\begin{array}{l} \mathbf{C}_{\text{Hu,Hd,Hq}^{(1)}}^{[3]} \\ \mathbf{C}_{\text{HI}^{(1)},\text{He}}^{[1]} = \mathbf{5} \\ \mathbf{C}_{\text{HI}^{(1)},\text{He}}^{[2]} = \mathbf{5} \end{array}$ -0.5 $\begin{array}{c} c_{HI^{(3)},II'}^{[1]} \\ c_{HI^{(3)},II'}^{[2]} \end{array}$ Δ(σ×B)(c_,)/SM 1 E -0.5 ∆(σ×B)(c)/SM $c_{HG,uG,uH,top}^{[1]} = 0.01$ $c_{HG,uG,uH,top}^{t=1} = 0.5$ C^[4] C^[4] HG,uG,uH,top HG,uG,uH,top CHG.uG.uH.top -0.5 12 join 12:jet EOF 12 jet m 12:jet 3502 2.jet m. MIL PLISO NT joj 4 4 4 \$\$ \$\$ 68 Higgs 180 Higgs 335 ろ ~ 0 0 1 1 0 0 0 1 1 0 0 1 2 0 0 0 1 120 1200 production decay 1200

35

- Good association of directions with physics processes
- Remaining correlations from experimental sources

Eigenvector correlations

Sensitive eigenvectors of sub-matrices - can mostly be associated to specific channel

Note:

- Not eigenvectors to full covariance matrix expect correlations between them due to experimental correlations among processes
- This is a choice and the price to pay for physics intuition need to be careful neglecting directions (more later)

Fit results

Generality check

- > Linear operator combinations with significant eigenvalues included in the fit all others fixed to 0
- > Without correlations, e.g. in full eigenvector decomposition, this is fine
- In case of sub-matrix rotations and significant correlations, need to check that neglecting directions has no impact on generality of the fit

Generality check

- > Linear operator combinations with significant eigenvalues included in the fit all others fixed to 0
- > Without correlations, e.g. in full eigenvector decomposition, this is fine
- In case of sub-matrix rotations and significant correlations, need to check that neglecting directions has no impact on generality of the fit

$\mathbf{1}^{st}$ check: correlations among fitted directions are linear

Generality check

- > Linear operator combinations with significant eigenvalues included in the fit all others fixed to 0
- > Without correlations, e.g. in full eigenvector decomposition, this is fine
- In case of sub-matrix rotations and significant correlations, need to check that neglecting directions has no impact on generality of the fit

2nd check: correlation between neglected directions and fitted directions is negligible

- Likelihood scan of neglected direction one-by-one; profiling all fitted directions
- Likelihood should be mostly flat in scanning range >> EFT validity range
- Evolution of profiled directions should be negligible within this range

Example: 0.2σ variation max. within [-4,4] for scanned direction \rightarrow can be neglected

Impact of quadratic (full BSM) terms

- General assumption: linear terms dominant, higher order terms can be neglected
 - · Explicit check including quadratic terms shows non-negligible impact for some operator
- Should systematically include higher order terms?
 - · Principle component analysis and rejection of non-sensitive direction relying on linearity of correlations
 - Need to compute dim-8 contributions (same order as quadratic dim-6) theory calculations ongoing
 - Is EFT validity questioned by non-negligible impact of higher order terms?

Adding more decay channels

- > Previous example is STXS combination of $H \rightarrow yy$, $H \rightarrow 4I \& VH(H \rightarrow bb)$
- Newer results with more channels additional sensitivity to operators & decorrelation of operators
 - adding $H \rightarrow WW^* \rightarrow 2I2v$ (ggF & VBF), $H \rightarrow \tau\tau$, $H \rightarrow bb$ (VBF & ttH)

Note: still assuming U⁵(3) flavour symmetry, i.e. no sensitivity to quark or lepton generation – further sensitivity expected from $H \rightarrow cc$ or $H \rightarrow \mu\mu$

ATLAS Preliminary $\sqrt{s} = 13$ TeV, 139 fb⁻¹

Combining Higgs and EW measurements

EW measurements

Higgs measurements

Decay channel	Target Production Modes
$H \to \gamma \gamma$	$ggF, VBF, WH, ZH, t\bar{t}H, tH$
$H \to ZZ^*$	$ggF, VBF, WH, ZH, t\bar{t}H(4\ell)$
$H \to WW^*$	m ggF, VBF
$H \to \tau \tau$	ggF, VBF, $WH, ZH, t\bar{t}H(\tau_{had}\tau_{had})$
	WH, ZH
$H \rightarrow b\bar{b}$	VBF
	$t\bar{t}H$

ATL-PHYS-PUB-2022-037

Process	Important phase space requirements	Observable
$pp \to e^{\pm} \nu \mu^{\mp} \nu$	$m_{\ell\ell} > 55 GeV, p_{\rm T}^{\rm jet} < 35 GeV$	$p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$
$pp \to \ell^{\pm} \nu \ell^{+} \ell^{-}$	$m_{\ell\ell} \in (81, 101) GeV$	$m_{ m T}^{WZ}$
$pp \to \ell^+ \ell^- \ell^+ \ell^-$	$m_{4\ell} > 180 GeV$	m_{Z2}
$pp \to \ell^+ \ell^- jj$	$m_{jj} > 1000 GeV, m_{\ell\ell} \in (81, 101) GeV$	$\Delta \phi_{jj}$

EW precision observables (measured at LEP)

Observable	Measurement	Prediction	Ratio
$\Gamma_Z [{ m MeV}]$	2495.2 ± 2.3	2495.7 ± 1	0.9998 ± 0.0010
R_ℓ^0	20.767 ± 0.025	20.758 ± 0.008	1.0004 ± 0.0013
R_c^0	0.1721 ± 0.0030	0.17223 ± 0.00003	0.999 ± 0.017
R_b^0	0.21629 ± 0.00066	0.21586 ± 0.00003	1.0020 ± 0.0031
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.01718 ± 0.00037	0.995 ± 0.062
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	0.0758 ± 0.0012	0.932 ± 0.048
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	0.1062 ± 0.0016	0.935 ± 0.021
$\sigma_{ m had}^0~[{ m pb}]$	41488 ± 6	41489 ± 5	0.99998 ± 0.00019

Combining Higgs and EW measurements

- Good complementarity between analyses
- Sensitivity to large number of operator (combinations)
- Ongoing effort to add more channels from several experiments
- > Adding measurements with top quarks in final state will add sensitivity to flavour

ATL-PHYS-PUB-2022-037

44

Some limitations to keep in mind

- EFT validity
 - Choice of energy scale: need to know q2 of processes / selected events particular sensitive in high-p_T tails
 - Measurement of c/Λ only depends on "observed impact", energy scale interpretation can be made later on
 - Would it make sense to reject data events to probe lower energy scale?
 - How to interpret results on Wilson coefficients with uncertainties >~1
 - How to handle unitarity violation at hight energies apply clipping procedure in global fits?
- > Higher order terms in $1/\Lambda$
 - Impact of quadratic terms often not negligible what are the conclusion?
 - Neglecting quadratic terms can lead to negative cross sections how to handle this?
 - What about dim-8 operators? Might become dominant in some processes and models not yet fully calculated
- Higher order calculations
 - EFT is fully perturbative theory, but many interpretations currently only consider LO (or NLO) calculation need to estimate uncertainty

Conclusion

- A lot of things to do toward a global EFT fit for HL-LHC including all main Higgs, SM and top analyses + potential constraints from flavour physics
- Keep in mind: we are doing physics!
 - EFTs can be matched to concrete BSM models can set limits on their parameters from global EFT fit results
 - In case we find a deviation, the game really starts what is it?
- > Both, developments on experimental and theory side needed

A lot of things to do – have fun? ;-)

More information on current activities @ LHC: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCEFT

BACKUP

Higgs measurements from the experimental point of view

2

Impact of Warsaw basis SMEFT operators in Higgs physics

Coefficient	Operator	Example process
c_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	$g \underset{t}{\overset{g}{\underset{t}{\underset{t}{\underset{t}{\underset{t}{\underset{t}{\underset{t}{\underset{t}{\underset$
c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$q \xrightarrow{Z} t t H$
c_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$q \neq t \neq t$
$c_{qq}^{\scriptscriptstyle (1)}$	$(\bar{q}_p \gamma_\mu q_t)(\bar{q}_r \gamma^\mu q_s)$	
$C_{oldsymbol{q}oldsymbol{q}}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	
c_{qq}	$(\bar{q}_p \gamma_\mu q_t) (\bar{q}_r \gamma^\mu q_s)$	
$c_{qq}^{\scriptscriptstyle{(31)}}$	$(\bar{q}_p \gamma_\mu \tau^I q_t) (\bar{q}_r \gamma^\mu \tau^I q_s)$	
c_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$q \xrightarrow{t} H_{t}$
$c_{uu}^{\scriptscriptstyle (1)}$	$(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$	$q \neq t$
$c_{qu}^{\scriptscriptstyle (1)}$	$(\bar{q}_p \gamma_\mu q_t) (\bar{u}_r \gamma^\mu u_s)$	
$c_{ud}^{\scriptscriptstyle (8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$c_{qu}^{\scriptscriptstyle (8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$	
$c_{qd}^{\scriptscriptstyle (8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	

Coefficient	Operator	Example process
c_{HDD}	$\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	$\begin{array}{c} q Z \\ q \\ $
c_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	^д д Н
$c_{H\!B}$	$H^{\dagger}HB_{\mu u}B^{\mu u}$	$\begin{array}{c} q Z \\ q \\ $
c_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	$\begin{array}{c} q & & & q \\ W & & & H \\ q & & & & H \\ q & & & & q \end{array}$
c_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	$\begin{array}{c} q \xrightarrow{\gamma \leq} q \\ q \xrightarrow{\gamma \leq} q \\ q \xrightarrow{Z \leq} q \end{array}$
c_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	$H - \ell^{\ell}$
$c_{Hl}^{\scriptscriptstyle (1)}$	$(H^\dagger i \overleftarrow{D}_\mu H) (\bar{l}_p \gamma^\mu l_r)$	$q \xrightarrow{Z} \ell_{H}$
$c_{Hl}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$q \longrightarrow W \leftarrow \ell_H^{\nu}$
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$q \longrightarrow Z \leftarrow e_{H}^{e}$
$c_{Hq}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$q \xrightarrow{Z} \ell_{\ell}$
$c_{Hq}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$q \xrightarrow{W}_{q} \overset{\ell}{\underset{H}{\overset{\nu}{\overset{\nu}}}}$
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	u
c_{Hd}	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{d}_p \gamma^\mu d_r)$	d

Impact of quadratic terms

