EFT interpretations in the Higgs and electroweak sectors -- lecture 1 --

Ecole de Gif 2023 -- Annecy Saskia Falke (IPHC Strasbourg)

Introduction

- Higgs & electroweak sectors = study of interaction between (SM) particles, excluding strong interaction (QCD)
 - Precision measurement of free parameters of SM (sin θ_w , Z mass, Higgs mass,...)
 - Precision measurement of interaction rates and properties to probe SM predictions
 - Search for rare processes that could be significantly enhanced in presence of new physics
- > Different kind of experiments targeting different properties and energy ranges
 - Low energy probes, e.g. measurement of Fermi contant from muon lifetime
 - "Medium" energy scale, e.g. in B-meson decays at B-factories
 - High energy colliders, e.g. LEP (e⁺e⁻ collisions at Z-pole) or LHC (pp collisions at ~13TeV)

Introduction

- Higgs & electroweak sectors = study of interaction between (SM) particles, excluding strong interaction (QCD)
 - Precision measurement of free parameters of SM (sin θ_w , Z mass, Higgs mass,...)
 - Precision measurement of interaction rates and properties to probe SM predictions
 - Search for rare processes that could be significantly enhanced in presence of new physics
- > Different kind of experiments targeting different properties and energy ranges
 - Low energy probes, e.g. measurement of Fermi contant from muon lifetime
 - "Medium" energy scale, e.g. in B-meson decays at B-factories
 - High energy colliders, e.g. LEP (e⁺e⁻ collisions at Z-pole) or LHC (pp collisions at ~13TeV)

Focus of this session

Precision measurements at the LHC

Content

1st lecture:

- Higgs physics
 - ✤ Higgs production and decay channels and their measurement
 - ✤ BSM and EFT sensitivity of each channel
- EW physics
 - Anomalous triple gauge couplings and dim-6 EFT interpretation
 - Beyond dim-6: neutral anomalous triple gauge couplings and quartic gauge couplings

2nd lecture:

- \succ Towards a global fit: combining the available information
 - Experimental challenges of combinations
 - Global fit in action: how to ensure generality / model independence of EFT fits
 - Limitations and perspectives for EFT fits towards HL-LHC and beyond

Content

1st lecture:

Overview of Higgs and EW measurements and their EFT sensitivity at the LHC

- Higgs physics
 - ✤ Higgs production and decay channels and their measurement
 - ✤ BSM and EFT sensitivity of each channel
- EW physics
 - Anomalous triple gauge couplings and dim-6 EFT interpretation
 - Beyond dim-6: neutral anomalous triple gauge couplings and quartic gauge couplings

2nd lecture: "Case study" of a general (global) EFT fit

- \succ Towards a global fit: combining the available information
 - Experimental challenges of combinations
 - Global fit in action: how to ensure generality / model independence of EFT fits
 - Limitations and perspectives for EFT fits towards HL-LHC and beyond

Content

1st lecture:

- Higgs physics
 - ✤ Higgs production and decay channels and their measurement
 - ✤ BSM and EFT sensitivity of each channel
- EW physics
 - Anomalous triple gauge couplings and dim-6 EFT interpretation
 - Beyond dim-6: neutral anomalous triple gauge couplings and quartic gauge couplings

2nd lecture:

- \succ Towards a global fit: combining the available information
 - Experimental challenges of combinations
 - Global fit in action: how to ensure generality / model independence of EFT fits
 - Limitations and perspectives for EFT fits towards HL-LHC and beyond

Higgs measurement channels

- > Several orders of magnitude between different Higgs production and decay rates
- Many channels probed at LHC adding new channels with increasing statistics and new reconstruction techniques

8

Couplings through Higgs production

Couplings through Higgs decay

Overview of Higgs couplings to SM particles

Coupling					•		
Channel	H-W	H-Z	H-t	H-b	H-c	Η-τ	H-µ
ggF			g 2000	g 2000	g 00000 h		
VBF	a a View h View h	q q' V V V V V					
WH							
ZH							
ttH, tH			1 00000000 h				
$H \to bb$				н			
$H \to \text{CC}$							
$H \to yy$			\bar{h}				
$H \to WW$	······································						
$H \rightarrow ZZ$		H					
H→ττ						н	
$H \to \mu \mu$							-н

11

Higgs measurements

- Different production modes and decay channels probed at LHC sensitivity is function of frequency (statistics) and experimental performance (resolution, backgrounds,...)
- ≻ Higgs is narrow scalar particle → factorisation of production & decay convenient for combined measurements of Higgs properties and interpretations

Sensitivity driven by statistics (orders of magnitude between channels) but also experimental performance:

- High statistics processes can have poor reconstruction efficiency or large backgrounds
- Low statistics processes might be reconstructed with good efficiency and resolution

13

Sensitivity driven by statistics (orders of magnitude between channels) but also experimental performance:

- High statistics processes can have poor reconstruction efficiency or large backgrounds
- Low statistics processes might be reconstructed with good efficiency and resolution

ection

õ

Sensitivity driven by statistics (orders of magnitude between channels) but also experimental performance:

- High statistics processes can have poor reconstruction efficiency or large backgrounds
- Low statistics processes might be reconstructed with good efficiency and resolution

ection

õ

Sensitivity driven by statistics (orders of magnitude between channels) but also experimental performance:

- High statistics processes can have poor reconstruction efficiency or large backgrounds
- Low statistics processes might be reconstructed with good efficiency and resolution

ection

õ

Sensitivity driven by statistics (orders of magnitude between channels) but also experimental performance:

- High statistics processes can have poor reconstruction efficiency or large backgrounds
- Low statistics processes might be reconstructed with good efficiency and resolution

Measurement

- Most generic Higgs measurement:
 - Production and decay rates as a function of full event kinematics contain all information needed to make any interpretation
 - Only look at final state no assumptions on production or decay mode
- > In practice:
 - Measure differential distributions in most sensitive observables (1 or 2 dimensional) with binning defined by statistical and modeling power
 - Measurement for given decay mode, using Higgs mass constraint (on-shell Higgs)
 - Sometimes useful to measure by Higgs production mode

Overview: Higgs measurements

• Fiducial (differential) measurements:

compute theory prediction in phase space close to experimental acceptance to minimise assumptions on unmeasured phase space

• Production and decay mode (differential) cross sections:

cross sections and branching fractions of channels as defined in SM: extrapolation to full phase space

• Signal strength:

cross sections or branching fractions w.r.t. SM prediction – search deviations from 1

• Couplings:

generic interpretations of results in terms of Higgs couplings to SM particles (coupling modifiers, EFT, etc.)

Limits on specific BSM models:

typically 2HDM, MSSM, etc.

Higgs fiducial cross sections

Measure cross section in specific phase space defined to match experimental cuts → reduce uncertainties from phase space extrapolation

Reminder from Methodology lecture

→ Large bias when extrapolating to unmeasured phase space

Solution:

Aim at $\mathscr{A} = \mathbf{1} \rightarrow$ define theory with same cuts, so that N_{cut} = 0

Higgs fiducial cross sections

- Measure cross section in specific phase space defined to match experimental cuts → reduce uncertainties from phase space extrapolation
- > Differential measurement in kinematic observables give sensitivity to BSM models
- > Unfolded results allow direct comparison to theory outside experiment

m₄₁ (GeV)

JHEP 08 (2023) 040

Example: $H \rightarrow 4I$ decay

Production mode cross sections & signal strengths

Production mode cross sections & signal strengths

Simplified Template Cross Sections (STXS)

Similar for VBF & t(t)H

- Split events by (major) production modes
- Differential measurement in BSM sensitive and experimentally well measured observable for each production mode
 - Choice of observable depending on most sensitive decay channel
 - Re-optimise binning with increasing amount of data
- \rightarrow More details in 2nd lecture

Measuring the Higgs couplings

- > BSM contribution possible in any Higgs vertex: modification of coupling strength and/or kinematics
- Possible contributions from new heavy particle loops -- additional (effective) couplings (= new diagrams), e.g. effective Higgs to gluon coupling
- > Usually, several anomalous couplings or EFT operators contribute to same experimental final state
- Note: BSM might contribute to
 - non-Higgs couplings ("easy" to consider in EFT approach)
 - backgrounds (usually neglected for now)

Example: gluon fusion

Coupling modifiers -- κ -framework

Simple scaling of Higgs-SM couplings: $\kappa_i = \frac{g_i}{g_{i,SM}}$

$$\sigma \cdot B(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H} = \frac{\sigma_i^{SM} \cdot \Gamma_f^{SM}}{\Gamma_H^{SM}} \cdot \frac{\kappa_i^2 \kappa_f^2}{\kappa_H^2}$$

- > For generality of results:
 - Float as many coupling modifiers as possible in fit
 - Can allow for new couplings and invisible Higgs decays
 - Global picture through combination of channels
- Limitations:
 - Single narrow Higgs with J^{CP}=0⁺⁺ (SM-like)
 - No change of process kinematic

- b- versus c-Yukawa coupling from ggF in H → 4I analysis; all other couplings assumed to be SM-like
- significant from impact of $\kappa_{\rm b} \mbox{ \& } \kappa_{\rm c}$ in total decay width

Coupling modifiers -- κ -framework

- So far, excellent agreement with SM prediction
- Strong limits on many BSM couplings, e.g. on Higgs couplings to "invisible" particles (neutrinos or new particles)

Anomalous couplings

Most general Lorentz-invariant scattering amplitude between a spin-0 boson (SM Higgs or light Higgs) and

• 2 vector bosons:

$$\mathcal{A}(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \left(\kappa_{1}^{\text{VV}}q_{1}^{2} + \kappa_{2}^{\text{VV}}q_{2}^{2}\right) \\ \text{M}_{V1}^{2} \in \mathbb{V}_{1} \in \mathbb{V}_{2}^{*} + \left(a_{2}^{\text{VV}}\right)f_{\mu\nu}^{*(1)}f^{*(2)\mu\nu} + \left(a_{3}^{\text{VV}}\right)f_{\mu\nu}^{*(1)}\tilde{f}^{*(2)\mu\nu} \\ \text{M}_{1}^{2} = \left[\alpha_{1}^{\text{VV}} + \alpha_{2}^{\text{VV}}\right]f_{\mu\nu}^{*(1)}f^{*(2)\mu\nu} + \left(\alpha_{3}^{\text{VV}}\right)f_{\mu\nu}^{*(1)}\tilde{f}^{*(2)\mu\nu} \\ \text{Higher order + anomalous couplings (CP-even)} \\ \text{Higher order + anomalous couplings} \\ \text{CP-even anomalous couplings} \\ \text{CP-odd anomalous coupling$$

• 2 fermions:

$$\mathcal{A}(\mathrm{Hff}) = -\frac{m_f}{v} \bar{\psi}_f \left(\kappa_f + \left(\widetilde{\kappa}_f\right)_5\right) \psi_f$$
CP-even
coupling
CP-odd coupling

Anomalous couplings

Most general Lorentz-invariant scattering amplitude between a spin-0 boson (SM Higgs or light Higgs) and

• 2 fermions:

Note:

This is a "simple" effective theory to describe Higgs interactions with certain assumptions

Example: CP in $H \rightarrow \tau\tau$ decay

- > Direct probe of CP structure of H to fermion coupling from $H \rightarrow \tau \tau$ decay
 - Measuring effective mixing angle: $tan(\alpha^{H\tau\tau}) = \frac{\kappa_{\tau}}{\kappa}$
- Requirement: measure spin correlation between Higgs decay products this is possible since τ's decay
 - Observable: angle between τ decay planes directly related to CP mixing angle

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\phi_{CP}}(\mathrm{H}\to\tau^+\tau^-)\sim 1-b(E^+)b(E^-)\frac{\pi^2}{16}\cos(\phi_{CP}-2\alpha^{\mathrm{H}\tau\tau})$$

CMS-HIG-20-006

Overview: Higgs measurements used for EFT

Fiducial (differential) measurements:

compute theory prediction in phase space close to experimental acceptance to minimise assumptions on unmeasured phase space

- **Production and decay mode (differential) cross sections:** cross sections and branching fractions of channels as defined in SM: extrapolation to full phase space
- Signal strength:

In particular STXS

cross sections or branching fractions w.r.t. SM prediction - search deviations from 1

Couplings:

generic interpretations of results in terms of Higgs couplings to SM particles (coupling modifiers, EFT, etc.)

• Limits on specific BSM models:

typically 2HDM, MSSM, etc.

In particular anomalous couplings

EFT interpretation of Higgs measurements

- General EFT assumptions:
 - Linear EFT (e.g. SMEFT, HEL): Higgs included in doublet, linear under SU(2)
 - Non-linear EFT (e.g. HEFT): Higgs transforms as gauge single, chiral perturbation theory
- Basis:
 - Equivalent sets of complete and non-redundant operators designed for different target processes
 - Choice on case-by-case basis; translation between bases possible

SMEFT, HEL:	Eur. Phys. J. C (2015) 75:583		
Basis	Underlying gauge symmetry	Fields used in the Lagrangian	
Warsaw, SILH	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Gauge-eigenstates	
BSM primaries, Higgs	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Mass-eigenstates	
Higgs/BSM characterisation	$SU(3)_C \times U(1)_{EM}$	Mass-eigenstates	

- Warsaw: very general comparison with BSM theories modifying fermion interactions
- SILH (Strongly Interacting Light Higgs) in HEL: good matching to BSM modifying boson interactions
- Higgs: in terms of mass eigenstates operators aligned with Higgs observables (couplings)

Example 1: $H \rightarrow \gamma \gamma$

Well resolved signal peak over falling background → good prerequisite for differential & fiducial cross sections

- Fit of diphoton invariant mass in each pT bin to extract signal and reject background
- > Unfolding to correct detector resolution

Many differential distributions measured

- Complementary sensitivity to BSM / EFT operators
- Plot: impact of CP even operators in SILH basis
- > Additional sensitivity to CP odd operators, mainly from $\Delta \Phi_{jj}$

Example 1: $H \rightarrow \gamma \gamma$

Also constrain SMEFT operators in Warsaw basis

Sensitivity from ggF production vertex

 $H^{\dagger}H\,G^{A}_{\mu
u}G^{A\mu
u}$

- Main sensitivity from $H \rightarrow \gamma \gamma$ decay vertex
- Additional sensitivity from VBF -- through mjj distribution in this analysis

 $\begin{array}{cc} c_{HB} & H^{\dagger}H B_{\mu\nu}B^{\mu\nu} \\ c_{HW} & H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu} \\ c_{HWB} & H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu} \end{array}$

Example 1: $H \rightarrow \gamma \gamma$

NOTE: LO EFT

- \sim c_{HG} affecting ggH vertex no modification of couplings in loop (top Yukawa etc.)
- \succ C_{HW}, C_{HB}, C_{HWB} affecting H \rightarrow yy at tree level additional contributions in loops

LO: $\Gamma_{H \to yy}^{\text{int}} / \Gamma_{H \to yy}^{\text{SM}} = -13.996 \cdot c_{HW} - 48.809 \cdot c_{HB} + 26.144 \cdot c_{HWB}$

 $\Gamma_{H \to yy}^{\text{int}} / \Gamma_{H \to yy}^{\text{SM}} = -40.15c_{HB} - 13.08c_{HW} + 22.4c_{HWB} - 0.9463c_{W} + 0.12c_{H\Box} - 0.2417c_{HDD} + 0.03447c_{uH} - 1.151c_{uW} - 2.150c_{uB} - 0.3637c_{HI}^{(3)} + 0.1819c_{II}^{\prime}$

→ important to consider higher orders in EFT!

Example 2: $VH(\rightarrow bb)$

- Associated production of Higgs with vector boson (W or Z)
- Analysis performed in 3 categories: 0, 1 or 2 leptons (depending on V decay)
- > Higgs decaying to 2 b-jets (low Higgs-p_T region) or 1 merged larged radius b-jet (boosted Higgs)
- MVA techniques for signal vs. background separation, large background modeling uncertainties

Resolved regime

2 well-separated b-jets

Phys. Lett. B 816 (2021) 136204
Example 2: $VH(\rightarrow bb)$

Phys. Lett. B 816 (2021) 136204 Eur. Phys. J. C 81 (2021) 178

Example 3: $H \rightarrow 4I$ MELA analysis

- Analysis in many categories targeting different production modes and maximising signal purity
- Matrix Element Likelihood Approach: high dimensional fit in observable separating signals and backgrounds as well as anomalous couplings

Category	Selection	Observables \vec{x} for fitting
Scheme 1		
VBF-1jet	$\mathcal{D}_{1 ext{jet}}^{ ext{VBF}} > 0.7$	$\mathcal{D}_{ m bkg}$
VBF-2jet	$\mathcal{D}_{ m 2jet}^{ m VBF} > 0.5$	$\mathcal{D}_{ m bkg}, \mathcal{D}_{ m 2jet}^{ m VBF}, \mathcal{D}_{0-}^{ m ggH}, \mathcal{D}_{CP}^{ m ggH}$
VH-hadronic	$\mathcal{D}_{ m 2iet}^{ m VH}>0.5$	$\mathcal{D}_{\mathrm{bkg}}$
VH-leptonic	see Section 3	$\mathcal{D}_{\mathrm{bkg}}$
t T H-hadronic	see Section 3	$\mathcal{D}_{ m bkg'}\mathcal{D}_{0-}^{ m t\bar{t}H}$
t T H-leptonic	see Section 3	$\mathcal{D}_{ m bkg'}\mathcal{D}_{0-}^{ m t\bar{t}H}$
Untagged	none of the above	$\mathcal{D}_{ m bkg}$
Scheme 2		
Boosted	$p_{\mathrm{T}}^{4\ell} > 120\mathrm{GeV}$	$\mathcal{D}_{ m bkg\prime} p_{ m T}^{4\ell}$
VBF-1jet	${\cal D}_{ m 1jet}^{ m VBF} > 0.7$	$\mathcal{D}_{ m bkg'} p_{ m T}^{4\ell}$
VBF-2jet	$\mathcal{D}_{ m 2jet}^{ m VBF} > 0.5$	$\mathcal{D}_{bkg}^{EW}, \mathcal{D}_{0h+}^{VBF+dec}, \mathcal{D}_{0-}^{VBF+dec}, \mathcal{D}_{\Lambda 1}^{VBF+dec}, \mathcal{D}_{\Lambda 1}^{Z\gamma, VBF+dec}, \mathcal{D}_{int}^{VBF}, \mathcal{D}_{CP}^{VBF}$
VH-hadronic	$\mathcal{D}_{ m 2iet}^{ m VH}>0.5$	$\mathcal{D}_{bkg}^{EW}, \mathcal{D}_{0h+}^{VH+dec}, \mathcal{D}_{0-}^{VH+dec}, \mathcal{D}_{\Lambda 1}^{VH+dec}, \mathcal{D}_{\Lambda 1}^{Z\gamma, VH+dec}, \mathcal{D}_{int}^{VH}, \mathcal{D}_{CP}^{VH}$
VH-leptonic	see Section 3	$\mathcal{D}_{ m bkg'} p_{ m T}^{4\ell}$
Untagged	none of the above	$\mathcal{D}_{ m bkg}, \mathcal{D}_{ m 0h+}^{ m dec}, \mathcal{D}_{ m 0-}^{ m dec}, \mathcal{D}_{\Lambda 1}^{ m dec}, \mathcal{D}_{\Lambda 1}^{ m dec}, \mathcal{D}_{ m int}^{ m dec}, \mathcal{D}_{CP}^{ m dec}$

CMS-HIG-19-009

38

Example 3: $H \rightarrow 4I$ MELA analysis

CMS-HIG-19-009

Fit of cross section ratios to reduce systematic uncertainties – reparametrisation in terms of EFT operators

39

Non-resonant di-Higgs production

- > SM predicts Higgs self-coupling coupling provides sensitivity to Higgs potential
- > Many BSM models modifying self-coupling strength can be probed in terms of EFT

EFT operators relevant for Higgs physics

Higgs self-	Wilson of Colored	Omeration	Wilson or Coloret	O se consta a	8 m H
coupling	wilson coefficient	Operator	wilson coefficient	Operator	t y '
couping		$(H^{\dagger}H)\Box(H^{\dagger}H)$	c_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	$g \longrightarrow t$
g D	C _{HDD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	C_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$	q > z t = t
aaF "	·H _{ C _{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	C_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$T \longrightarrow \overline{t} H$
H → VV	C CHB	$H^\dagger H B_{\mu u} B^{\mu u}$	c'_{μ}	$(\bar{l}_n \gamma_{\mu} l_t) (\bar{l}_r \gamma^{\mu} l_s)$	
(+ VBF. VH)	$\langle c_{HW}$	$H^\dagger H W^I_{\mu u} W^{I\mu u}$	$C^{(1)}$	$(\bar{a}_n \gamma_{\mu} a_t)(\bar{a}_n \gamma^{\mu} a_n)$	
(,)	c_{HWB}	$H^{\dagger} au^{I} H W^{I}_{\mu u} B^{\mu u}$	c_{qq}	$(q_p \gamma_\mu q_l)(q_r \gamma_q q_s)$	
$H \rightarrow \tau \tau H \rightarrow - \checkmark$	$\left\{ c_{eH} \right\}$	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	c_{qq}	$(q_p \gamma_\mu \tau q_r)(q_s \gamma' \tau q_t)$	
	$\ell \subset C_{\mu H}$	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	c_{qq}	$(q_p \gamma_\mu q_t)(q_r \gamma^\mu q_s)$	$q \xrightarrow{t} H$
Top-Higgs: gg	F, └ "" <i>Сан</i>	$(H^{\dagger}H)(\bar{a}_{r}d_{r}\widetilde{H})$	$c_{qq}^{(31)}$	$(\bar{q}_p \gamma_\mu \tau^I q_t)(\bar{q}_r \gamma^\mu \tau^I q_s)$	$q = t^{-1}$
IIH, IH	° <i>a</i> H	$(\mathbf{U}^{\dagger}; \overleftarrow{\mathbf{D}}, \mathbf{U})(\overline{\mathbf{I}}, \mathbf{u}\mathbf{U})$	c _{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	
H-I-7 interaction	s. CHI	$(\Pi^{+}lD_{\mu}\Pi)(l_{p}\gamma^{-}l_{r})$	$C_{\mu\mu}^{(1)}$	$(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$	Counlings
mainly H . Al	$c_{Hl}^{(3)}$	$(H^{\dagger}iD^{I}_{\mu}H)(l_{p}\tau^{I}\gamma^{\mu}l_{r})$	$c_{au}^{(1)}$	$(\bar{a}_n \gamma_{\mu} a_t) (\bar{u}_r \gamma^{\mu} u_s)$	involving H-
(+7⊔)	C _{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	C ⁽⁸⁾	$(\bar{\mu}, \gamma, T^A \mu_z)(\bar{d}, \gamma^\mu T^A d_z)$	ton (+aluons).
('2'')	$\int c^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D},H)(\bar{a},\gamma^{\mu}a)$	ud	$(a_{F})^{\mu} (a_{F})^{\mu} (a_{S})^{\mu} (a_{F})^{\mu} (a_{F})^{\mu}$	
	\mathcal{C}_{Hq}	$(\Pi \ \ell D \ \mu \Pi)(q_p \ q_r)$	c_{qu}	$(q_p \gamma_\mu I^{-1} q_r)(u_s \gamma^{-1} I^{-1} u_t)$	ggr, mi, ni
H-q-V interactio	$ns: \int c_{Hq}^{(3)}$	$(H^{\dagger}i D^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$c_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (d_s \gamma^\mu T^A d_t) /$	
mainly VH	c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	<i>c</i> _W	$\epsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	$g \rightarrow t t$
	C _{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	
					8

Content

1st lecture:

- Higgs physics
 - Higgs production and decay channels and their measurement
 - BSM and EFT sensitivity of each channel
- EW physics
 - Anomalous triple gauge couplings and dim-6 EFT interpretation
 - Beyond dim-6: neutral anomalous triple gauge couplings and quartic gauge couplings

2nd lecture:

- > Towards a global fit: combining the available information
 - Experimental challenges of combinations
 - Global fit in action: how to ensure generality / model independence of EFT fits
 - Limitations and perspectives for EFT fits towards HL-LHC and beyond

Electroweak measurements

- Many SM processes measured with great precision at the LHC
- > Search for rare processes that can be significantly enhanced in BSM
- > Study interactions of gauge bosons or leptons with well known decays focus on production side
- > Often measure fiducial & differential cross section

Electroweak measurements

- Many SM processes measured with great precision at the LHC
- > Search for rare processes that can be significantly enhanced in BSM
- > Study interactions of gauge bosons or leptons with well known decays focus on production side
- > Often measure fiducial & differential cross section

Example: pp \rightarrow WW production with WW $\rightarrow e\nu\mu\nu$

EFT sensitivity of EW measurements

- Dim-6:
 - Gauge boson and lepton coupling modifications from cross sections & EW precision observables
 - Anomalous triple gauge couplings (aTGC) from diboson production & VBF
 - Heavy flavour couplings from measurements with top quarks

- > Dim-8:
 - Sensitivity to neutral TGCs and anomalous quartic gauge couplings (aQGC) from vector boson scattering and tri-boson production

Anomalous triple gauge couplings

Anomalous gauge couplings formalism: SM deviations in gauge bosons couplings

• simple extension of Lagrangian with additional interactions of 3 gauge bosons:

$$\mathcal{L} = ig_{WWV} \left(g_{1}^{V} (W_{\mu\nu}^{+} W^{-\mu} - W^{+\mu} W_{\mu\nu}^{-}) V^{\nu} + \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} V_{\rho}^{\mu} \right. \\ \left. + ig_{4}^{V} W_{\mu}^{+} W_{\nu}^{-} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) - ig_{5}^{V} \epsilon^{\mu\nu\rho\sigma} (W_{\mu}^{+} \partial_{\rho} W_{\nu}^{-} - \partial_{\rho} W_{\mu}^{+} W_{\nu}^{-}) V_{\sigma} \right. \\ \left. + \tilde{\kappa}_{V} W_{\mu}^{+} W_{\nu}^{-} \tilde{V}^{\mu\nu} + \frac{\tilde{\lambda}_{V}}{m_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} \tilde{V}_{\rho}^{\mu} \right) \right\}$$
 C- or P-violating

Notes:

- aTGC considered independent of BSM scale no cut-off scale A as in EFT
- No complete field theory

From aTGC to EFT

5 EFT operators relevant in HISZ basis:

 $\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$ $\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi) \quad (C-\& P- \text{ conserving})$ $\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$

$$\begin{aligned} \mathcal{O}_{\tilde{W}WW} &= & \mathrm{Tr}[\tilde{W}_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] \\ \mathcal{O}_{\tilde{W}} &= & (D_{\mu}\Phi)^{\dagger}\tilde{W}^{\mu\nu}(D_{\nu}\Phi) \end{aligned} (C-\&/\mathrm{or}\;\mathsf{P-violating}) \end{aligned}$$

- Only operators affecting interaction between gauge bosons generating aTGC and modifying boson kinematics
- More operators for boson to fermion interactions neglected since well constrained from EW precision observables by LEP experiments

Experimental channels: Vector boson fusion Diboson production W^+ TGG W^{-} Production of 2 gauge 2 forward quark jets bosons (W, Z or photon) with large separation in pseudo-rapidity

aTGC from VBF production

Several observables considered to discriminate between

- VBF Z+2j production and background processes
- EW production (sensitive to aTGC) and strong production definition of signal and control regions

Differential cross sections measured in several kinematic variables

48

 $\Delta \phi_{\rm ii}$

aTGC from VBF production

Example: EW Z+2jet production Eur. Phys. J. C 81 (2021) 163

- EFT sensitivity from high momentum tails CP nature from signe ΔΦ between 2 jets
- Simultanous fit on diff. cross sections in 4 observables

Wilson	Includes	95% confidence	e interval [TeV ⁻²]	<i>p</i> -value (SM)
coefficient	$ \mathcal{M}_{ m d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

* Parametrisation in terms of Warsaw basis operators

aTGC from diboson production

Channel with large SM backgrounds

- Fiducial phase space defined to minimise bkg (e.g. jet-veto against ttbar)
- Data driven techniques with control and validation regions to constrain dominant backgrounds

Differential cross sections measured in many kinematic observables

Good limits on aTGC / EFT parameters – better limits achieved by adding more channels (e.g. WW + 1-jet)

Operator	95% CL (linear and quadratic terms)	95% CL (linear terms only)
c_{WWW}/Λ^2	$[-3.4 \text{ TeV}^{-2}, 3.3 \text{ TeV}^{-2}]$	$[-179 \text{ TeV}^{-2}, -17 \text{ TeV}^{-2}]$
c_W/Λ^2	$[-7.4 \text{ TeV}^{-2}, 4.1 \text{ TeV}^{-2}]$	$[-13.1 \text{ TeV}^{-2}, 7.1 \text{ TeV}^{-2}]$
c_B/Λ^2	$[-21 \text{ TeV}^{-2}, 18 \text{ TeV}^{-2}]$	$[-104 \text{ TeV}^{-2}, 101 \text{ TeV}^{-2}]$

<u>Note:</u> Largest sensitivity from pure BSM contributions (quadratic terms) on p_T of leading leptons

aTGC from diboson production

response matrix should only quantify detector resolution

Lepton interactions

JHEP 07 (2021) 005

Lepton interactions

Example: 4 lepton production

- Diff. cross sections in several kinematic observables
- SMEFT interpretation in Warsaw basis
 - Sensitivity to operators modifying Higgs couplings (gluon fusion production and 4l decay)
 - Sensitivity to large number of operators generating contact interactions between fermions
 - * $Z \rightarrow II$ couplings much better constrained from LEP data
- Complementarity to $H \rightarrow 4I$ analysis
 - Better limit in some Higgs operators from generic measurement
 - Large overlap of events would need to be treated in order to profit from combination

JHEP 07 (2021) 005

Top quark production

- > Top quark is (by far) heaviest particle in SM special role in many BSM models
- Sensitivity from processes involving top quarks to many EFT operators (top-boson or 4-fermion couplings)

Top quark production

- Experimentally challenging: top decays to b-quark and W boson (in ~100% of cases)
 - * b-jet identification: use finite life time \rightarrow measurable secondary vertex
 - W can decay leptonically or hadronically leptons more easy to find and trigger, but then energy from neutrino is missing

Even harder to identify charm or strange jets → measurements with top and b-quarks are the only way to (currently) break U(3)5 flavour symmetry from experimental side

Beyond dimension 6

Neutral triple gauge couplings (nTGC) and anomalous quartic gauge couplings (aQGC) at dim. ≥ 8

nTGC at dim-8

Trilinear coupling between Z's and photons

$$\mathcal{O}_{BW} = i H^{\dagger} B_{\mu\nu} W^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H,$$

$$\mathcal{O}_{WW} = i H^{\dagger} W_{\mu\nu} W^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H,$$

$$\mathcal{O}_{BB} = i H^{\dagger} B_{\mu\nu} B^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H.$$

$$\mathcal{O}_{\widetilde{B}W} = i H^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H,$$

JHEP 1402 (2014) 101

aQGC at dim-8

3 types of operators:

- > O_s: contain derivation of scalar Higgs field
- > O_T: contain EW field strength tensor derivatives
- O_M: mixed -- contain both

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	\checkmark	\checkmark			\checkmark				
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{O}_{T,0} \;, \!\mathcal{O}_{T,1} \;, \!\mathcal{O}_{T,2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	\checkmark
$\mathcal{O}_{T,8}\;, \mathcal{O}_{T,9}$					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

P. Calfayan

aQGC from vector boson scattering

Example: ZZ + 2 jet production ($ZZ \rightarrow 4$ leptons)

- Fiducial phase space defined at particle level and based on detector level cuts
- Measurement of differential cross sections with sensitivity to EW vs. strong ZZ+2j production

Signature: 2 leptonically decaying Z bosons and 2 forward jets with large separation in η

Other channels: WZ, WW, Wy, Zy in association with 2 jets

ATLAS-CONF-2023-024

aQGC from vector boson scattering

Wilson	$ \mathcal{M}_{\mathrm{d}8} ^2$	95% confidence interval [TeV ^{-4}]		
coefficient	Included	Expected	Observed	
$f_{\rm T,0}/\Lambda^4$	yes	[-0.98,0.93]	[-1.0,0.97]	
	no	[-23, 17]	[-19, 19]	
$f_{\mathrm{T},1}/\Lambda^4$	yes	[-1.2, 1.2]	[-1.3, 1.3]	
	no	[-160, 120]	[-140, 140]	
$f_{\rm T,2}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]	
	no	[-74, 56]	[-63, 62]	
$f_{\rm T,5}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]	
	no	[-79, 60]	[-68, 67]	
$f_{\rm T,6}/\Lambda^4$	yes	[-3.9, 3.9]	[-4.1, 4.1]	
	no	[-64, 48]	[-55, 54]	
$f_{\rm T,7}/\Lambda^4$	yes	[-8.5, 8.1]	[-8.8, 8.4]	
	no	[-260, 200]	[-220, 220]	
$f_{\rm T,8}/\Lambda^4$	yes	[-2.1, 2.1]	[-2.2, 2.2]	
	no	[-4.6, 3.1]×10 ⁴	[-3.9, 3.8]×10 ⁴	
$f_{\rm T,9}/\Lambda^4$	yes	[-4.5, 4.5]	[-4.7, 4.7]	
	no	[-7.5, 5.5]×10 ⁴	[-6.4, 6.3]×10 ⁴	

ATLAS-CONF-2023-024

aQGC from vector boson scattering

$ \mathcal{M} ^2 = \mathcal{M}_{\rm SM} ^2 + 1$	$2 \operatorname{Re}(\mathcal{M}_{\mathrm{SM}}^* \mathcal{M}_{\mathrm{d8}}) +$	$ \mathcal{M}_{\mathrm{d}8} ^2$
--	--	---------------------------------

Wilson	$ \mathcal{M}_{d8} ^2$	95% confidence interval [TeV ⁻⁴]		
coefficient	Included	Expected	Observed	
$f_{\rm T,0}/\Lambda^4$	yes	[-0.98,0.93]	[-1.0,0.97]	
	no	[-23, 17]	[-19, 19]	
$f_{\rm T,1}/\Lambda^4$	yes	[-1.2, 1.2]	[-1.3, 1.3]	
	no	[-160, 120]	[-140, 140]	
$f_{\rm T,2}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]	
	no	[-74, 56]	[-63, 62]	
$f_{\rm T,5}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]	
	no	[-79, 60]	[-68, 67]	
$f_{\rm T,6}/\Lambda^4$	yes	[-3.9, 3.9]	[-4.1, 4.1]	
	no	[-64, 48]	[-55, 54]	
$f_{\rm T,7}/\Lambda^4$	yes	[-8.5, 8.1]	[-8.8, 8.4]	
	no	[-260, 200]	[-220, 220]	
$f_{\rm T,8}/\Lambda^4$	yes	[-2.1, 2.1]	[-2.2, 2.2]	
-	no	[-4.6, 3.1]×10 ⁴	[-3.9, 3.8]×10 ⁴	
$f_{\rm T,9}/\Lambda^4$	yes	[-4.5, 4.5]	[-4.7, 4.7]	
	no	[-7.5, 5.5]×10 ⁴	[-6.4, 6.3]×10 ⁴	

Major contribution from pure BSM terms

Unitarity violation at high energy scales:

- Prevented by reducing theory phase space to $m_{41} < E_c$ (cut-off) ٠
- Constraints significantly looser in phase space without unitarity violation

59

Strong production _{a'}

00000

aQGC from photon scattering

JHEP 07 (2023) 229

Example: $yy \rightarrow ZZ \& yy \rightarrow WW$ production

- Both TGC and QGC interactions present in SM
 - Mainly at low VV masses
 - Very low cross section
- Enhancement w.r.t. possible from BSM
 - In particular at high VV masses

 Interacting photons radiated from protons
 Protons remain intact and can be measured in very forward region close to CMS

Limits on non-linear dim-6 aQGC parameters a₀^{w,z} & a_c^{w,z}

aQGC from photon scattering

Example: $yy \rightarrow ZZ \& yy \rightarrow WW$ production

JHEP 07 (2023) 229

Conversion into linear dim-8 EFT operators

$$a_0^{\rm W} = -\frac{m_{\rm W}}{\pi\alpha_{\rm em}} \left[s_w^2 \frac{f_{M,0}}{\Lambda^2} + 2c_w^2 \frac{f_{M,2}}{\Lambda^2} + s_w c_w \frac{f_{M,4}}{\Lambda^2} \right]$$

Assuming no anomalous WWZy contributions:

Coupling	Observed (expected)	Observed (expected)	
1 0	95% CL upper limit	95% CL upper limit	
	No clipping	Clipping at 1.4 TeV	
$ f_{M,0}/\Lambda^4 $	$16.2 (14.7) \mathrm{TeV}^{-4}$	19.5 (19.2) TeV $^{-4}$	
$\left f_{M,4}/\Lambda^4\right $	90.9 (82.6) TeV^{-4}	$110\ (108)\ { m TeV^{-4}}$	

Note:

- impact from unitarisation smaller than in VBS: natural upper mass limit of ~ 2TeV from proton reconstruction in detector
- Unitarised limits comparable to VBS limits

aQGC from photon scattering

Example: $yy \rightarrow ZZ \& yy \rightarrow WW$ production

Conversion into linear dim-8 EFT operators

JHEP 07 (2023) 229

$$a_0^{\mathrm{W}} = -\frac{m_{\mathrm{W}}}{\pi\alpha_{\mathrm{em}}} \left[s_w^2 \frac{f_{M,0}}{\Lambda^2} + 2c_w^2 \frac{f_{M,2}}{\Lambda^2} + s_w c_w \frac{f_{M,4}}{\Lambda^2} \right]$$

Assuming no anomalous WWZy contributions:

Coupling	Observed (expected)	Observed (expected)	
1 0	95% CL upper limit	95% CL upper limit	
	No clipping	Clipping at 1.4 TeV	
$ f_{M,0}/\Lambda^4 $	$16.2 (14.7) \mathrm{TeV}^{-4}$	$19.5 (19.2) \mathrm{TeV}^{-4}$	
$\left f_{M,4}/\Lambda^4\right $	90.9 (82.6) TeV $^{-4}$	$110 (108) \mathrm{TeV}^{-4}$	

Note:

- impact from unitarisation smaller than in VBS: natural upper mass limit of ~ 2TeV from proton reconstruction in detector
- Unitarised limits comparable to VBS limits

Alternative fit: all operators except one are zero \rightarrow strong dependence of limits on assumptions!

Coupling	Observed (expected)	Observed (expected)	
	95% CL upper limit	95% CL upper limit	
	No clipping	Clipping at 1.4 TeV	
$ f_{M,0}/\Lambda^4 $	$66.0~(60.0)~{\rm TeV}^{-4}$	79.8 (78.2) TeV $^{-4}$	
$ f_{M,1}/\Lambda^4 $	245.5 (214.8) TeV^{-4}	$306.8 (306.8) \mathrm{TeV}^{-4}$	
$ f_{M,2}/\Lambda^4 $	9.8 (9.0) TeV $^{-4}$	$11.9 \; (11.8) \mathrm{TeV}^{-4}$	
$ f_{M,3}/\Lambda^4 $	73.0 (64.6) TeV^{-4}	91.3 (92.3) TeV $^{-4}$	
$ f_{M,4}/\Lambda^4 $	$36.0(32.9)\mathrm{TeV}^{-4}$	$43.5 (42.9) \mathrm{TeV}^{-4}$	
$ f_{M,5}/\Lambda^4 $	$67.0~(58.9)~{\rm TeV}^{-4}$	$83.7 (84.1) \text{TeV}^{-4}$	
$\left f_{M,7}/\Lambda^4\right $	490.9 (429.6) TeV^{-4}	613.7 (613.7) TeV^{-4}	

aQGC from triboson production

300

Example: Zyy & W[±]yy production

JHEP 10 (2021) 174

- EFT interpretation of diphoton p_T spectrum ≻
- Assume no contributions from aTGC (dim-6)
- > Strongest aQGC contributions at high $p_T^{\gamma\gamma}$

-		$W\gamma\gamma$ (TeV^{-4})	$Z\gamma\gamma$ (2	TeV^{-4})
	Parameter	Expected	Observed	Expected	Observed
	$f_{ m M2}/\Lambda^4$	[-57.3, 57.1]	[-39.9, 39.5]		
	$f_{ m M3}/\Lambda^4$	[-91.8, 92.6]	[-63.8,65.0]		
	$f_{ m T0}/\Lambda^4$	[-1.86, 1.86]	[-1.30, 1.30]	[-4.86, 4.66]	[-5.70, 5.46]
	$f_{ m T1}/\Lambda^4$	[-2.38, 2.38]	[-1.70, 1.66]	[-4.86, 4.66]	[-5.70, 5.46]
	$f_{ m T2}/\Lambda^4$	[-5.16, 5.16]	[-3.64, 3.64]	[-9.72, 9.32]	[-11.4, 10.9]
	$f_{ m T5}/\Lambda^4$	[-0.76, 0.84]	[-0.52, 0.60]	[-2.44, 2.52]	[-2.92, 2.92]
	$f_{ m T6}/\Lambda^4$	[-0.92,1.00]	[-0.60, 0.68]	[-3.24, 3.24]	[-3.80, 3.88]
	$f_{ m T7}/\Lambda^4$	[-1.64, 1.72]	[-1.16, 1.16]	[-6.68, 6.60]	[-7.88, 7.72]
	$f_{\mathrm{T8}}/\Lambda^4$	—	—	[-0.90, 0.94]	[-1.06, 1.10]
	$f_{\mathrm{T9}}/\Lambda^4$			[-1.54, 1.54]	[-1.82, 1.82]

Interplay between EW and Higgs

- > Similar event kinematics, e.g. for VBS / VBF common experimental techniques
- EW might be dominant Higgs analyses backgrounds, e.g. ttW is main background of ttH in multilepton channel

Global EFT fit $\rightarrow 2^{nd}$ lecture

BACKUP

Excursion: unfolding

- > Inversion of detector effects to allow comparison of measurements with theory prediction
- > Unfolded results allow direct comparison to theory outside experiment

Excursion: unfolding

- > Inversion of detector effects to allow comparison of measurements with theory prediction
- > Unfolded results allow direct comparison to theory outside experiment

Matrix element observables

- Matrix element based observables for optimal sensitivity
- Probability ratios for alternative model versus signal model
 - "sig": SM Higgs signal (possibly specific production mode)
 - "alt": background, production modes or BSM
 - "int": interference terms
 - Ω: full kinematic description of process

$$\begin{split} \mathcal{D}_{\mathrm{alt}}\left(\boldsymbol{\Omega}\right) &= \frac{\mathcal{P}_{\mathrm{sig}}\left(\boldsymbol{\Omega}\right)}{\mathcal{P}_{\mathrm{sig}}\left(\boldsymbol{\Omega}\right) + \mathcal{P}_{\mathrm{alt}}\left(\boldsymbol{\Omega}\right)}\\ \mathcal{D}_{\mathrm{int}}\left(\boldsymbol{\Omega}\right) &= \frac{\mathcal{P}_{\mathrm{int}}\left(\boldsymbol{\Omega}\right)}{2\sqrt{\mathcal{P}_{\mathrm{sig}}\left(\boldsymbol{\Omega}\right) \ \mathcal{P}_{\mathrm{alt}}\left(\boldsymbol{\Omega}\right)}} \end{split}$$

CP-related observables:

- **D**₀: CP-even versus CP-odd probability ratio
- *D_{CP}*: includes interference between CP-even and CP-odd models

Higgs measurements from the experimental point of view

2

Anomalous couplings in $H \rightarrow 4I$

Hgg couplings

- Good agreement with SM
- > No resolution of top loop in this measurement (κ_t absorbed in c_{qq})

HVV couplings

- Different scenarios (assumptions) on anomalous coupling (relations)
- Good agreement with SM

HIG-19-009

CP in Higgs couplings

CP in $H \rightarrow \tau\tau$ decay (1)

Direct probe of CP structure of H to fermion coupling from $H \rightarrow \tau\tau$ decay

- Measuring effective mixing angle: $\tan(\alpha^{H\tau\tau}) = \frac{\kappa_{\tau}}{\kappa}$
- Angle between τ decay planes directly related to CP mixing angle

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\phi_{CP}}(\mathrm{H}\to\tau^+\tau^-)\sim 1-b(E^+)b(E^-)\frac{\pi^2}{16}\cos(\phi_{CP}-2\alpha^{\mathrm{H}\tau\tau})$$

HIG-20-006

Decay mode dependent Φ_{CP} definition \rightarrow maximise experimental sensitivity π^0 × 1+ π^0

Impact parameter method

- 1pr t decays: $\tau \rightarrow \mu^{\pm}\nu\nu$, $\tau \rightarrow e^{\pm}\nu\nu$, $\tau \rightarrow \pi^{\pm}\nu\nu$
- plane from τ impact parameter vector and charged particle

Neutral pion method

- τ to intermediate resonances: $\rho \pm \rightarrow \pi^{\pm}\pi^{0}$, $a_{1} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$, ...
- plane from charged particle and sum of neutral decay products

Polarimetric vector

- all decay modes sensitive to τ spin
- requires good reco of τ momentum (so far, used in decay via a,^{3pr})

 \rightarrow Details in this review article

combination possible

CP in $H \rightarrow \tau\tau$ decay (2)

- > MVA analysis in every channel to discriminate between signal (Higgs) from backgrounds (genuine τ's or fakes)
- > Combined likelihood fit in all channels of Φ_{CP} in several MVA bins

HIG-20-006

Impact of Warsaw basis SMEFT operators in Higgs physics

Coefficient	Operator	Example process
c_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	$g \underset{g}{\overset{g}{\underset{t}{\underset{t}{\underset{t}{\underset{t}{\underset{t}{\underset{t}{\underset{t}{\underset$
c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$q \xrightarrow{Z} t \xrightarrow{t} H$
c_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$q \overline{t} $
$c_{qq}^{\scriptscriptstyle (1)}$	$(\bar{q}_p \gamma_\mu q_t) (\bar{q}_r \gamma^\mu q_s)$	
$c^{\scriptscriptstyle (3)}_{qq}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	
c_{qq}	$(\bar{q}_p \gamma_\mu q_t) (\bar{q}_r \gamma^\mu q_s)$	
$c_{qq}^{\scriptscriptstyle{(31)}}$	$(\bar{q}_p \gamma_\mu \tau^I q_t) (\bar{q}_r \gamma^\mu \tau^I q_s)$	
c_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$q \xrightarrow{t} H_{t}$
$c^{\scriptscriptstyle(1)}_{oldsymbol{u}oldsymbol{u}}$	$(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$	$q \longrightarrow t$
$c_{qu}^{\scriptscriptstyle (1)}$	$(\bar{q}_p\gamma_\mu q_t)(\bar{u}_r\gamma^\mu u_s)$	
$c_{ud}^{\scriptscriptstyle (8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$c_{qu}^{\scriptscriptstyle (8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
$c_{qd}^{\scriptscriptstyle (8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	

Coeffici	ent	Operator	Example process
c_{HDL}	$(H^{\dagger}D)$	$(H^{\dagger}D_{\mu}H)^{*} (H^{\dagger}D_{\mu}H)^{*}$	$ \begin{array}{c} q Z \\ q \\ q \\ Z \\ q \\ q \\ q \\ q \\ q \\ q \\ $
c_{HG}	Н	$^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	^g д н
$c_{H\!B}$	H	$^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	$\begin{array}{c} q \xrightarrow{\qquad \ \ } q \\ q \xrightarrow{\qquad \ \ } q \\ q \xrightarrow{\qquad \ \ } q \end{array}$
c_{HW}	H	$H W^I_{\mu\nu} W^{I\mu\nu}$	$\begin{array}{c} q & & q \\ \hline W & & q \\ q & & W \\ \end{array} \begin{array}{c} q & & \\ \end{array} \begin{array}{c} q & \\ q & \\ \end{array} \begin{array}{c} q & \\ q & \\ \end{array} \begin{array}{c} q & \\ q & \\ \end{array} $
c_{HWI}	$_{B}$ H^{\dagger}	$\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	$\begin{array}{c} q \xrightarrow{\gamma \varsigma} q \\ \gamma \varsigma & H \\ q \xrightarrow{Z \varsigma} q \end{array}$
c_{eH}	(H	$(I^{\dagger}H)(\bar{l}_{p}e_{r}H)$	$H \cdots \swarrow_{\ell}^{\ell}$
$c_{Hl}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i$	$(\overrightarrow{D}_{\mu}H)(\overline{l}_{p}\gamma^{\mu}l_{r})$	$) \qquad \qquad$
$c_{Hl}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i)$	$\overrightarrow{D}^{I}_{\mu}H)(\overline{l}_{p}\tau^{I}\gamma^{\mu})$	l_r) $q \longrightarrow W \leftarrow \ell_H^{\nu}$
c_{He}	$(H^{\dagger}i$	$\overleftrightarrow{D}_{\mu}H)(\bar{e}_p\gamma^{\mu}e_p)$	$(r) \qquad \begin{array}{c} q \\ q \\ \end{array} \qquad \begin{array}{c} Z \\ \end{array} \qquad \begin{array}{c} e \\ e \\ H \end{array} \qquad \begin{array}{c} e \\ \end{array} \qquad \begin{array}{c} e \\ e \\ \end{array} \qquad \begin{array}{c} e \\ \end{array} \qquad \end{array} \qquad \begin{array}{c} e \\ \end{array} \qquad \begin{array}{c} e \\ \end{array} \qquad \end{array} \qquad \begin{array}{c} e \\ \end{array} \qquad \begin{array}{c} e \\ \end{array} \qquad \end{array} \qquad \end{array} \qquad \begin{array}{c} e \\ \end{array} \qquad \end{array} \qquad \end{array} \qquad \begin{array}{c} e \\ \end{array} \qquad \end{array} \qquad \end{array} \qquad \begin{array}{c} e \\ \end{array} \qquad \end{array} \qquad \end{array} \qquad \end{array} \qquad \end{array} \qquad \end{array} \qquad \begin{array}{c} e \\ \end{array} \end{array} \qquad \end{array} \qquad$
$c_{Hq}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i$	$\overleftrightarrow{D}_{\mu}H)(\bar{q}_p\gamma^{\mu}q_p)$	$(r) \qquad \begin{array}{c} q \\ q \\ \end{array} \qquad \begin{array}{c} Z \\ \ell \\ H \end{array} \qquad \begin{array}{c} \ell \\ \ell \\ H \end{array}$
$c_{Hq}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overset{\flat}{H})$	$\overrightarrow{O}^{I}_{\mu}H)(\overline{q}_{p}\tau^{I}\gamma^{\mu})$	$q_r) \qquad \begin{array}{c} q & \overset{W}{\underset{\mu}{\overset{\ell}{\overbrace{\nu}}}} \overset{\ell}{\underset{H}{\overset{\nu}{\overbrace{\nu}}}} \\ \end{array}$
c_{Hu}	$(H^{\dagger}i)$	$\overleftrightarrow{D}_{\mu}H)(\bar{u}_p\gamma^{\mu}u$	(r) (u)
c_{Hd}	$(H^{\dagger}i)$	$\overleftrightarrow{D}_{\mu}H)(\bar{d}_p\gamma^{\mu}d)$	d d ℓ ℓ ℓ ℓ

Lepton interactions

Example: 4 lepton production

JHEP 07 (2021) 005

aQGC from vector boson scattering

coefficient	menudeu	Expected	Observed
$f_{\rm T,0}/\Lambda^4$	yes	[-0.98,0.93]	[-1.0,0.97]
	no	[-23, 17]	[-19, 19]
$f_{\mathrm{T},1}/\Lambda^4$	yes	[-1.2, 1.2]	[-1.3, 1.3]
	no	[-160, 120]	[-140, 140]
$f_{\rm T,2}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]
	no	[-74, 56]	[-63, 62]
$f_{\rm T,5}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]
	no	[-79, 60]	[-68, 67]
$f_{\rm T,6}/\Lambda^4$	yes	[-3.9, 3.9]	[-4.1, 4.1]
	no	[-64, 48]	[-55, 54]
$f_{\mathrm{T},7}/\Lambda^4$	yes	[-8.5, 8.1]	[-8.8, 8.4]
	no	[-260, 200]	[-220, 220]
$f_{\rm T,8}/\Lambda^4$	yes	[-2.1, 2.1]	[-2.2, 2.2]
-	no	[-4.6, 3.1]×10 ⁴	[-3.9, 3.8]×10 ⁴
$f_{\rm T,9}/\Lambda^4$	yes	[-4.5, 4.5]	[-4.7, 4.7]
	no	[-7.5, 5.5]×10 ⁴	[-6.4, 6.3]×10 ⁴

NOTE:

Dim-6 EFT interpretation

- All operators compatible with 0
- Good constraints from other analyses
- Neglected in dim-8 interpretation

Wilson	$ \mathcal{M}_{d6} ^2$	95% confidence interval [TeV ⁻²]	
coefficient	Included	Expected	Observed
c_W/Λ^2	yes	[-1.3, 1.3]	[-1.2, 1.2]
	no	[-32, 32]	[-37, 28]
$c_{\widetilde{W}}/\Lambda^2$	yes	[-1.3, 1.3]	[-1.2, 1.2]
	no	[-17, 17]*	[0, 30]*
c_{HWB}/Λ^2	yes	[-16, 7]	[-16, 6]
	no	[-12, 12]	[-15, 10]
$c_{H\widetilde{W}B}/\Lambda^2$	yes	[-1.3, 1.3]	[-1.2, 1.2]
	no	[-67, 67]*	[-25, 130]*
c_{HB}/Λ^2	yes	[-13, 13]	[-12, 12]
	no	[-38, 38]	[-38, 38]
$c_{H\widetilde{B}}/\Lambda^2$	yes	[-13, 13]	[-12, 12]
	no	[-420, 420]*	[-200, 790]*

ATLAS-CONF-2023-024

Major contribution from pure BSM terms