

Introduction and motivation for Effective Field Theories in high energy physics Experimental view

Lucia Di Ciaccio

Outline

- Quest for Beyond Standard Model: where do we stand (gauge bosons, top, Higgs sector and new particles)
- Why we have not (yet) found New Physics ("anomalies" exist)
- How can we use LHC data in the best way
- What is an Effective Field Theory (EFT)
- Example of EFT: Fermi theory of weak interactions Multipole expansion (SM) EFT fit @ LHC (important to know well the SM)
- Summary

Quest for Beyond Standard Model: where do we stand ?

Standard Model Production Cross Section Measurements Status: February 2022

Gauge bosons and top quark

Comparison data/theory over many orders of magnitudes (~10¹¹pb→ ~10⁻³ pb)

No significant deviations so far

Higgs sector

- No significant deviations
- Spin and Parity: Results consistent with SM predictions (SM Higgs J^{PC} = 0⁺⁺)

New particles

Many direct searches (too many to display in one page)

No new particles \rightarrow Set lower mass limit @ 95%CL up to $\approx 6.6 \text{ TeV} (\text{Z'} \rightarrow \text{tt})$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G#B2G Summary Plots 3

fermions

heavy

Lower mass limit at 95% CL [TeV]

Why we have not (yet) found new physics (wrt SM) (*)?

- **1.** New physics is buried in the backgrounds
- **2.** New physics is weakly coupled

(*) Few anomalies exist

- Improve: trigger (TLA) analysis methods (ML),
 theory prediction of bkg and/or more luminosity
- Direct searches of new states: $\sqrt{s'} > Mx$

Need a machine with enough energy

- * Search for a peak (often) in the invariant mass of the decay products or in the production cross section (ex. LEP)
- * In most cases, direct searches motivated by a 'descriptive' theory (ex. SUSY)

3. A gap exists between the reached energy and new physics

A gap between the reached energy and new physics \rightarrow Increase the energy in the center of mass ($\sqrt{s'} > M_X$)?

Lucia Di Ciaccio - Ecole de Gif - Annecy, 18 September 2023

(HL-)LHC: a powerful tool already NOW How can we use it in the best way ?

- Energy ~ constant (since 2015)
- Significant luminosity increase (@HL-LHC ~ 15 times the present data sample)

Complementary search scenarios wrt direct searches

- Search for new physics by measuring very precisely key SM observables (EWPO)
 Expansion in coupling strength
 Any significant inconsistency wrt SM
 → existence of New Physics
- Search for deviations from SM in high energy regions (often tails)
 Use an Effective Field Theory to interpret the data
 Expansion in scale ratios
- → In both cases probe energy scales beyond the direct kinematic reach

What is an EFT ?

- It's a quantum field theory describing the behaviour of an underlying unknown physical theory ("UV complete") in some limited regime ("IR limit").
- In an EFT, the details of (new) Physics are irrelevant @ $E \ll \Lambda$ \rightarrow EFT use degrees of freedom relevant to the IR regime (simplification)

Λ is a scale (energy or inverse of a distance):

- **@** $E \ll \Lambda$ (new) Physics effects are described by local, analytic operators with $1/\Lambda^n$ suppressions
- possible divergences @ $\mathbf{E} \sim \mathbf{\Lambda}$ and above, can be neglected

In practice: Taylor expansion of the Lagrangian in powers of E/Λ

$$\mathscr{L}_{\mathrm{EFT}} = \sum_{\mathscr{D} > 0, i} \frac{c_i^{(\mathscr{D})} O_i^{(\mathscr{D})}}{\Lambda^{\mathscr{D} - d}}$$

d = space-time dimensions c_i = Wilson coefficients

- O_i = allowed operators
- \mathcal{D} = operator dimension
- New physics expressed in terms of coefficients of higher dimension operators including constraints of locality, gauge and Lorentz invariance

Nature has naturally many scales ("divide et impera")

https://phy.princeton.edu/research/high-energy-theory/gubser-group/outreach/energy-scales-in-physics

Lucia Di Ciaccio - Ecole de Gif - Annecy, 18 September 2023

Nature has naturally many scales ("divide et impera")

Successful example of EFT: Fermi theory of weak interactions

 $\sigma_{\nu_{\mu}e^{-}} = \frac{G_{\rm F}^2 s}{\pi}$

Current-current 'universal'* interaction

'Contact interaction'

* Same coupling constant for all weak interactions

• Neglecting the lepton masses $(m_e \sim m_{\mu} \ll E_{\nu})$:

$$s = \text{energy}^2$$
 in the center of mass $= 2 m_e E_{\nu}$
 $G_F = \text{Fermi constant measured in the } \mu \text{ decay}$
(@ a scale $\Lambda \sim m_{\mu}$) $= 1.16 * 10^{-5} \text{ GeV}^{-2}$

- The cross section cannot be higher than the value corresponding to the max of the scattering probability ('unitarity violation') $\sigma_{max}^{elastic}$
 - $\sigma_{max}^{elastic} = (2l+1)16 \pi/s$ From partial wave analysis neglecting spins l =angular momentum
- **The Fermi cross section violates unitarity** $\sqrt{s} \approx \sqrt{G_F} \approx 300 \text{ GeV}$

Successful example of EFT: Fermi theory of weak interactions

$$e - \nu_{\mu} \rightarrow \mu - \nu_{e}$$
The divergent behaviour is 'cured'
by introducing an 'intermediate'
massive boson of Spin 1 as propagator
$$e^{-\frac{-i\left[g_{\mu\nu} - q_{\mu}q_{\nu}/m_{W}^{2}\right]}{q^{2} - m_{W}^{2}}}$$

$$e^{-\frac{-i\left[g_{\mu\nu} - q_{\mu}q_{\nu}/m_{W}^{2}\right]}{\nu_{e}}}$$

$$q^{2} = (p_{e}^{in} - p_{\nu e}^{fin})^{2}$$

For $q^2 \ll m_W^2$ one obtains back the contact interaction ($\Lambda \sim m_W$)

Expansion in
$$\delta = q / M_W$$
 $\frac{1}{q^2 - M_W^2} = -\frac{1}{M_W^2} \left(1 + \frac{q^2}{M_W^2} + \frac{q^4}{M_W^4} + \dots \right)$

$$M_{fi} = \frac{i}{M_W^2} \left(\frac{-ig_W}{2\sqrt{2}} \right)^2 (\bar{\nu}_\mu \,\gamma^\mu \,P_L \,\mu) \left(\bar{e} \,\gamma^\mu \,P_L \,\nu_e \right), \nu_\ell \right) + \mathcal{O}\left(\frac{1}{M_W^4} \right) \qquad \qquad \frac{G_F}{\sqrt{2}} \equiv \frac{g_W^2}{8M_W^2}$$

Great success

Another example of EFT : multipole expansion

Potential from point-like charges (sources)

$$V(\mathbf{r}) = rac{1}{r} \sum_{l,m} b_{lm} rac{1}{r^l} Y_{lm}(\Omega) \qquad b_{lm} \equiv c_{lm} a^l$$

clm dimensionless coefficient

a short distance (high energy scale) $\Lambda \sim 1/a$,

$$V(\mathbf{r}) = \frac{1}{r} \sum_{l,m} c_{lm} \left(\frac{a}{r}\right)^l Y_{lm}(\Omega) \qquad \text{Expansion in } l$$
$$\delta = a/r.$$

- Simplification if a << r (far)
- The field far away from the sources looks like a point-like charge (truncation to small *l*)

Other examples of EFT

HQET Heavy quark effective theories Low-energy dynamics of hadrons containing a heavy quark. Expansion parameter: Λ_{QCD}/m_Q

Chiral Perturbation Theory

Interactions of pions and nucleons at low momentum transfer. Expansion parameter: p/Λ_{χ} $\Lambda_{\chi} \sim 1 \text{ Gev}$

Soft-collinear effective theory SCET

Energetic QCD processes, the final states (jets) with small invariant mass M_J wrt to the center-of-mass energy of the collision (Q). Expansion parameter: M_J/Q

- **SMEFT** describes deviations from the SM. Expansion parameter: $1/\Lambda$
- **SM** is itself an effective theory valid at our accessible energies

EFT methods allow us to separate scales in a multi-scale problem, and organize the calculation in a systematic way

Example of (SM)EFT fit @ LHC

a theoretically and statistically well sounded way in many distributions, comparison and combinations among experiments

cw

Important to know well the SM

Summary

Motivations for EFT mainly from an experimental point of view

- It takes time to build higher energy machines
- Nature has naturally many scales ("divide et impera")
- **Few examples from the past show that the EFT approach was successful**
- EFT allow to quantify small deviations or the degree of compatibility wrt SM in a theoretically and statistically sounded way in many distributions, comparisons and combinations among experiments
- Reduced model dependence wrt direct searches

Introduction and experimental motivation: End

Additional references

Aneesh V. Manohar, Introduction to Effective Field Theories : arXiv:1804.05863v1

https://www.hep.phy.cam.ac.uk/~thomson/lectures/partIIIparticles/Handout10_2009.pdf Mark Thomson lectures