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Project: Gravitational waves from primordial black holes



X-rays from DM annihilation/decay

• There are a few ways to generate X-rays from DM annihilation/decay :

• Prompt emissions: 
• Final state radiation (FSR): DM (DM) → "!""#
• Radiative decay (Rad): DM (DM) → "!"" →	"! %"'̅#'$#

• Secondary emissions:
• Inverse-Compton scattering (ICS): up-scattering of ambient photons thanks to DM-produced %±

&&'( &
!′DM (DM) → ⋯ → !
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Introduction

• No data of quality for !-rays between 
∼ 100 keV – 100 MeV

• We focus on secondary emissions to 
circumvent this problem, and study 
light DM signals in the Milky Way 
using X-rays
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Adapted from De Angelis et al., eASTROGAM coll., 1611.02232
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X-rays from DM annihilation/decay

• To compute the IC-scattered photon flux, we need a few ingredients:

Get the X-rays flux from ICS!

… after some integrations 
and convolutions

Klein-Nishina
cross sectionLocal number density 

of DM-produced B±

#&'( #′

%′%

Local number density 
of ambient photons
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Project: X ray constraints on sub-GeV dark matter
Based on [arXiv:2303.08854]  by M. Cirelli, N. 
Fornengo, J. Koechler, E. Pinetti, B. M. Roach 




Analysis and results
Diffuse #-rays: Essig et al., 1309.4091
Voyager1: Boudaud et al., 1612.07698
Leo T gas heating: Wakedar and Wang, 2111.08025
CMB (s-wave): Slatyer, 1506.03811, 

Lopez-Honorez et al., 1303.5094, 
Liu et al., 1604.02457

INTEGRAL FSR: Calore et al. 2209.06299
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Project: X ray constraints on sub-GeV dark matter

Uncertainties are still large: using more up-to-date ingredients may improve the situation,

Background modelling should further improve the constraints


Extension to p-wave annihilation and constraints on specific BSM models envisaged, 

Analysis and results
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Project: Precision constraints on strongly interacting dark particles 
Adam Falkowski <->  Guilherme Guedes

gluon gluon

dark sector
• It is conceivable that dark 

sectors particles with only 
strong interactions and no 
electroweak interactions exist


• They would contribute to the so-
called Z parameter (analogue of 
electroweak S,T parameters) 
corresponding to a specific 
dimension-6 operator in SMEFT


• This operators is equivalent to a 
linear combination of 4-quark 
operators in the Warsaw basis


• Goal: map out precise 
constraints on the Z parameter 
from electroweak precision 
measurements at LEP 

Adimensional form factors operators custodial SU(2)L
g−2Ŝ = Π′

W3B(0) OWB = (H†τaH)W a
µνBµν/gg′ + −

g−2M2
W T̂ = ΠW3W3

(0) − ΠW+W−(0) OH = |H†DµH|2 − −
−g−2Û = Π′

W3W3
(0) − Π′

W+W−(0) − − −
2g−2M−2

W V = Π′′
W3W3

(0) − Π′′
W+W−(0) − − −

2g−1g′−1M−2
W X = Π′′

W3B(0) − + −
2g′−2M−2

W Y = Π′′
BB(0) OBB = (∂ρBµν)2/2g′2 + +

2g−2M−2
W W = Π′′

W3W3
(0) OWW = (DρW a

µν)2/2g2 + +

2g−2
s M−2

W Z = Π′′
GG(0) OGG = (DρGA

µν)2/2g2
s + +

Table 1: The first column defines the adimensional form factors. The second column defines the SU(2)L-
invariant universal dimension-6 operators, which contribute to the form-factors on the same row. We
use non canonically normalized fields and Π, see eq. (3). The Ŝ, T̂ , Û are related to the usual S, T,U
parameters [5] as: S = 4s2

WŜ/α ≈ 119 Ŝ, T = T̂ /α ≈ 129 T̂ , U = −4s2
WÛ/α. The last row defines one

additional form-factor in the QCD sector.

zeroth order coefficients ΠV (0). Altogether this leaves 7 undetermined parameters, Ŝ, T̂ , Û , V,X, Y,W ,
defined in Table 1. The notation for the 3 residual coefficients up to order q2 makes clear reference
to the traditional ones, S, T,U [5]: the actual relation is S = 4s2

WŜ/α ≈ 119 Ŝ, T = T̂ /α ≈ 129 T̂ ,
U = −4s2

WÛ/α. As a natural extension of this formalism, Table 1 also includes an additional form
factor in the QCD sector, which is not related to EWSB and which we will henceforth neglect.

As we shall now explain, the subset Ŝ, T̂ , Y,W represents the most general parametrization of new
physics effects in Electroweak Precision Tests (EWPT). Notice that we can group the various form factors
in 3 different classes according to their symmetry properties. The first class is given by T̂ , Û and V as
they have the same custodial and weak isospin breaking quantum numbers. The second class is given
by Ŝ and X, which are custodially symmetric but weak isospin breaking (and odd under the spurionic
symmetry which reverses the sign of Bµ and of the hypercharges of matter fields). Finally W and Y ,
which preserve both custodial and weak isospin, make up the third class. By going to O(q6) and higher
there would arise no new class but only higher derivative terms in each of the above 3 classes. It is
reasonable to expect that coefficients with the same symmetry properties will be related to each other
up to trivial factors associated to the number of derivatives: in a model where the new physics comes
in at a scale Λ we expect Û ∼ (MW /Λ)2T̂ , V ∼ (MW /Λ)4T̂ . Similarly we expect X ∼ (MW /Λ)2Ŝ.
On the other hand, W and Y are the lowest in their class.1 As soon as the gap between MW and Λ
is big enough, it should be reasonable to retain only the lowest derivative term in each class: Ŝ, T̂ ,
W and Y . Neglecting Û , V,X when they are parametrically suppressed also makes sense because the
experimental sensitivity on them is not higher than for the other four. Of course one can imagine fine-
tuned situations where this reasoning fails. On the contrary, although Ŝ, T̂ and W , Y have a different
number of derivatives there is no deep physical reason, in general, to expect T̂ to be bigger than Ŝ and
in turn Ŝ to be bigger than W,Y . Indeed there are several explicit models where these 4 quantities
give comparable effects. Basically we can associate Ŝ and T̂ to new physics in the electroweak breaking
sector (both effects break weak isospin), which is the case of technicolor. On the other hand W and
Y are associated to new structure in the vector channels, like for instance vector compositeness or new
gauge bosons. To conclude, we stress, as is made evident from our discussion, that no additional relevant

1The leading term in their class is truly represented by the SM gauge kinetic coefficients 1/g2 and 1/g′2.

2

Table 1: Z pole observables. The experimental errors of the observables not separated
by horizontal lines are correlated, which is taken into account in the fit. The first Ae and
A⌧ values come from the combination of leptonic polarization and left-right asymmetry
measurements at SLD, while the second values come from the LEP-1 measurements of the
polarization of the final leptons.

Observable Experimental value SM prediction Definition
�Z [GeV] 2.4955± 0.0023 [4, 28] 2.4941

P
f
�(Z ! ff̄)

�had [nb] 41.4802± 0.0325 [4, 28] 41.4842 12⇡
m

2
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e
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+
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Re
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Ac 0.670± 0.027 [4] 0.668 �(Z!cLc̄L)��(Z!cRc̄R)
�(Z!cc̄)

As 0.895± 0.091 [30] 0.936 �(Z!sLs̄L)��(Z!sRs̄R)
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P

q �(Z!qq̄)

[�gWe

L ]ii =

0
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�1.3± 3.2
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CA⇥ 10�3, (3.3)

[�gZe

L ]ii =

0

B@
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1

CA⇥ 10�3, [�gZe
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0

B@
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Project: Gravitational waves in modified gravity
Panagiotis Marinellis <-> Massimiliano Riva 

Motivation

LIGO & Virgo 
collaborations

Λ
ESA and the 

Planck collaboration

Millenium Simulation Project

• It's the golden age of 
gravitational wave astronomy


• On-shell amplitude techniques 
have pushed forward precision 
calculations of waveforms 
emitted in black hole/neutron 
star collisions, in GR and EFT 
extension thereof


• Less explored are the application 
in scalar-tensor theories where 
gravity is coupled to a 
cosmologically light scalar 


• Using on-shell amplitude 
techniques simplifies calculation 
of both gravitational waves and 
scalar waves for Schwarzshild 
and Kerr black holes

Waves from Amplitudes
Leading order:

Cristofoli, Gonzo, Kosower & DOC

Frequency
space

Recover Kovacs & Thorne (1977/1978) waveform

Computed with spin: Jakobsen, Mogull, Plefka & Steinhoff 

<latexit sha1_base64="6CLKyxAWD156JDm/k1ppaFA8/R4="></latexit>

waveform(!) =

1

distance

Z
d4q1d

4q2 �(p1 · q1)�(p2 · q2)�4(k � q1 � q2) e
ib·(q1�q2)



Project: Anomalies on shell
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Consistency conditions from generalized-unitarity

Yu-tin Huanga, David A. McGadyb
aMichigan Center for Theoretical Physics, Department of Physics,

University of Michigan, Ann Arbor, MI 48109, USA
b Department of Physics, Princeton University, Princeton, NJ 08544

In the modern on-shell approach, the perturbative S-matrix is constructed iteratively using on-
shell building blocks with manifest unitarity. As only gauge invariant quantities enter in the inter-
mediate steps, the notion of gauge anomaly is absent. In this letter, we rephrase the anomaly can-
cellation conditions in a purely on-shell language. We demonstrate that while the unitarity-methods
automatically lead to a unitary S-matrix, the rational terms that are required to enforce locality,
invariably give rise to inconsistent factorization channels in chiral theories. In four-dimensions, the
absence of such inconsistencies implies the vanishing of the cubic Casimir of the gauge group. In
six-dimensions, if the symmetric trace of four generators does not vanish, the rational term develops
a factorization channel revealing a new particle in the spectrum: the two-form of the Green-Schwarz
mechanism. Thus in the purely on-shell construction, the notion of gauge-anomaly is replaced by
the difficulty to consistently impose locality on the unitary S-matrix.

PACS numbers: 04.65.+e, 11.15.Bt, 11.30.Pb, 11.55.Bq

An intriguing difference between the traditional La-
grangian definition of perturbative quantum field theory
(QFT) and the modern analytic S-matrix program, is
the role of gauge symmetry. Where as gauge invari-
ance is crucial in determining the Lagrangian and en-
sures unitarity of the perturbative S-matrix, such notions
are completely absent in the modern on-shell approach.
In the latter approach, given the free-spectrum of the
theory, the lowest-multiplicity non-trivial S-matrix can
be determined completely from the global symmetries
of the theory. Using factorization [1] as well as uni-
tarity constraints [2], the entire perturbative S-matrix
can then be iteratively constructed from that of the low-
est order. Such an approach has led to tremendous
progress in the computation of high loop-order correc-
tions in four-dimensional super Yang-Mills [3], supergrav-
ity [4], higher-dimensional super Yang-Mills [5], as well
as the determination of all-loop planar integrand of max-
imal super Yang-Mills [6]. Since the building blocks that
enter the iterative process are completely on-shell, gauge
invariance becomes a notion that is devoid of substance.

The fact that the physical observables of a QFT can
be constructed without the utterance of gauge symmetry,
leads us to ask how consistency constraints traditionally
imposed by the requirement of gauge anomaly cancella-
tion, arises in such on-shell constructions. Establishment
of such constraint without knowledge of the interaction
Lagrangian, becomes crucial in light of the large class
of supersymmetric Chern-Simons matter theories [7, 8]
whose Lagrangian has been constructed only in the past
five years, although their S-matrix elements can be de-
termined independently [9, 10].

In this letter, we address the following question: start-
ing with a theory of chiral fermions, as we construct
loop-amplitudes through the on-shell program, how do

we see that the theory is sick? Tree-level amplitudes
of chiral fermions are perfectly well defined. Through
general unitarity methods, one necessarily obtains a uni-
tary S-matrix. Superficially, chiral gauge theories should
have perfectly sensible loop amplitudes. However, while
the S-matrix is manifestly unitary, it contains spurious
non-local poles. To ensure that the final result is both
unitary and local, one is forced to introduce non cut-
constructible rational terms to cancel the spurious poles.
We will demonstrate that for chiral fermion loops, can-
cellation of these spurious singularities induces new fac-
torization channels. In four-dimensions, such factoriza-
tion channels are inconsistent and thus must cancel. The
constraint imposed by such cancellation is precisely the
vanishing of the cubic Casimir of the gauge group. In six-
dimensions, if the symmetric trace of the four generators
does not vanish, the new induced factorization channel
reveals the presence of a new particle in the theory: the
two-form in the Green-Schwarz (GS) mechanism [11].

A PRELUDE IN FOUR-DIMENSIONS

Unitarity methods naturally cast one-loop amplitudes
into a basis of scalar integrals whose coefficients depend
on the theory at hand. Here, we consider the fermion-
loop contribution to the single trace one-loop four-gluon
amplitude. For later convenience we give the scalar-
integral coefficients originating from two distinct fermion
helicities separately:
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6u3
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(1)

In the above, we’ve indicated the helicities of the fermions
crossing the unitarity cut, denoted by the (red) dashed
lines, and s = (k1 + k2)2, t = (k2 + k3)2, u = (k1 + k3)2.
Note that the triangle- and box-integral coefficients are
such that the IR-divergence cancels, which is necessary
due to the absence of tree-level processes for a fermion in
background gauge field.
The the parity-even part of the fermion-loop amplitude

simply corresponds to the sum of the two distinct helicity
configurations:

Aeven(1+2−3+4−)

Atree
= −

st(s2 + t2)

2u4

(

log

(

t

s

)2

+ π2

)

+

[(

s− t

3u
−

st(s− t)

u3

)]

log
(s

t

)

−
(−s)−ε + (−t)−ε

3ε

+Reven
(1,2,3,4) , (2)

where we’ve included a term R even representing possible
rational terms that are undetectable from unitarity cuts,
and Atree is the tree-level amplitude. The rational term
can be determined from imposing locality. To see this,
note that poles in the u-channel are ubiquitous through-
out Eq.(2), which cannot have a local interpretation due
to the color-ordering. As u → 0, Eq.(2) behaves as:

(

Eq.(2)− Reven
(1,2,3,4)

)

∣

∣

∣

∣

u→0

= −
s2

u2
−

s

u
+O(u0) . (3)

Locality requires Reven
(1,2,3,4) to cancel these spurious poles .

Dimension-counting and cyclic invariance uniquely fixes
it to be,

Reven
(1,2,3,4) = −

st

u2
. (4)

Substituting Eq.(4) into Eq.(2) reproduces known results
in QCD [12]. Note that since the amplitude has an Atree

pre factor, the presence of a rational term can poten-
tially introduce new residues on the physical poles of the
tree-amplitude. However, due to the st factor in the nu-
merator of Eq.(4), the residue vanishes.
We now turn to the parity-odd part of the fermion-

loop, which is only present for chiral fermions. It is sim-
ply given by the difference of the two helicity configura-
tions:

Aodd(1+2−3+4−)

Atree
= −

st(s− t)

2u3

(

log

(

t

s

)2

+ π2

)

−

(

2st

u2

)

log

(

−s

−t

)

+Rodd
(1,2,3,4) . (5)

First, note that the amplitude is cyclic invariant up to
a sign, which is due to the use of helicity basis. As
with the parity-even combination, there are spurious u-
channel poles in Eq.(5):

(

Eq.(5)−Rodd
(1,2,3,4)

)

|u→0 = −
s

u
+O(u0) . (6)

Locality again requires such spurious poles to be canceled
by Rodd

(1,2,3,4). Taking into account the fact that the ampli-
tude attains a minus sign under cyclic shift, the requisite
parity-odd rational term is:

AtreeRodd
(1,2,3,4) = Atree s− t

2u
= 〈24〉2[13]2

s− t

2stu
. (7)

However, as is plain from Eq.(7), this new parity-odd
rational term has non-trivial contributions to the s-
and t-channel residues. This contrasts sharply with
the R even

(1,2,3,4). Herein lay the seeds of inconsistencies in
parity-violating gauge theories: the rational terms that
are required for locality in the parity-odd amplitude, in-
troduce new corrections to residues on the s- and t-
poles. This is inconsistent. To see why, note that as
the residue of the pole has mass-dimension two, it can
only factorize into three-point functions, each with mass-
dimension one. However, there are exactly two unique
mass-dimension one three-point amplitudes involving two
gauge fields. They are the Yang-Mills three-point am-
plitudes, and are entirely fixed by Poincare invariance.
They do not have one-loop corrections. Thus the ab-
sence of acceptable residues implies that such factoriza-
tion channel is inconsistent.
Requiring these inconsistent factorization channels to

be absent from the amplitude constrains the theory. To
see how, note that there are 6 single-trace color structures
at four-points and one-loop. Four of these contain such
excess residue in the physical s-channel. Their rational
terms sum to,

Atree s− t

2u

(

tr[T 1T 4T 3T 2]− tr[T 1T 2T 3T 4] + (1 ↔ 2)
)

(8)

Thus we see that the problematic residues from the ratio-
nal terms exactly cancel if the group-theory factor van-
ishes:

tr[T 1T 2T 3T 4]− tr[T 1T 4T 3T 2] + (1 ↔ 2)

= d1a4f23
a + d13af24

a + d1a2f34
a + (1 ↔ 2) = 0 .

(9)

Since the symmetry property of each term is distinct, the
constraint is satisfied only if each term is individually
zero. Thus imposing unitarity and locality, one arrives
at the following constraint on the group-theory factor:

dabcfde
a = 0 . (10)

• Anomalies play an important role in 
quantum theory


• Usually formulated as an 
inconsistency between loop 
regulators and current conservation


• In on-shell formulation of QFT there is 
no gauge symmetry to start with. 
What are anomalies on shell?


• Partial answers in Huang Mc Gady 
arXiv:1307.4065 : clash between 
unitarity, cut terms, and rational terms 
in 1-loop amplitudes


• Lots of loose ends: what about U(1) 
anomalies, non-renormalisation 
beyond 1 loop, trace anomalies etc. 


• On-shell formulation often brings new 
physical perspective and powerful 
new calculation tools 




