Highly Granular Calorimetry in DMLAB Roman Pöschl and Katja Krüger

DMLAB Meeting – November 2023 KIT, Germany

Also supported by

Detector systems – Target projects

Detectors for Higgs Factories

DUNE??

QED, Dark Matter Experiments, see later

Near detector

=> Highly granular calorimeters!!!

Emphasis on tracking capabilities of calorimeters

3

Calorimeters for PFA

DMLAB Meeting – Nov. 2023

Calorimeters for PFA

DMLAB Meeting – Nov. 2023

V. Boudry, FCC Workshop

- Realistic dimensions
 - Structures of up to 3m
- Integrated front end electronic
- Small power consumption (Power pulsed electronics)

DMLAB Meeting – Nov. 2023

SDHCAL

1×1 cm² × 48 layers GRPC + SS

Space

- Successful application of PFA requires calorimeters to be inside the magnetic coil
- => Tight lateral and longitudinal space constraints ٠
- Both for readout components and services (power, cooling) •

SiW ECAL – Elements of a (long) layer

The beam test set ups consist of a stack of short layers built from one ASU and a readout card each

DMLAB Meeting - Nov. 2023

Digital readout SL-Board

SiW ECAL: 2022

- 15 short layers equivalent to 15360 readout cells
 - •Up to 21 X_0
 - •Overall size 640x304x246mm³
 - •Flexible mechanical structure to adapt to beam conditions
 - •Most of the layers produced 2016 2017
- Commissioned 2020-2022
 - •~450000 calibration constants for one ASIC feedback capa setting
- Testbeams (finally) in November 2021 and during 2022
- Mainly technical tests but also first real showers

"The FEV Zoo"

In recent years the SiW ECAL has developed and used several PCB variants •To make sure that you don't get lost, here comes an introduction

FEV10-12

FEV COB

ASICs in BGA Package Incremental modifications From v10 -> v12 Main "Working horses" since 2014

ASICs wirebonded in cavities •COB = Chip-On-Board Current version FEV11_COB Thinner than FEV with BGA External connectivity compatible with BGA based FEV10-12

Also based on BGA packaging Different routing than FEV10-12 Different external connectivity

Current prototype (see later) is equipped with all of these PCBs LCWS 2023 May 2023

FEV13

SiW-ECAL in beam test @ DESY

Detector Setup

Detector in beam position

trig_ay_layer

trig_sy_layer_

- Beam spot in 15 layers
- Analysis ongoing
- For a summary of technical aspects of DESY and CERN see *instruments* 6 (2022) 75 • e-Print: 2211.07457 [physics.ins-det]

SiW-ECAL in beam test @ DESY – First results

After proper filtering energy resolution in right ballpark for current prototype Convergence in agreement data/MC DMLAB Meeting – Nov. 2023

AHCAL Technological Prototype

- highly granular scintillator SiPM-on-tile hadron calorimeter, 3*3 cm² scintillator tiles optimised for uniformity
- fully integrated design
 - front-end electronics, readout
 - voltage supply, LED system for calibration
 - no cooling within active layers -> power pulsing
- **scalable** to full detector (~8 million channels)
- geometry inspired by ILD, similar to SiD and CLICdp
- HCAL Base Unit: 36*36 cm2, 144 tiles, 4 SPIROC2E ASICs
 - slabs of 6 HBUs, up to 3 slabs per layer

- Large enough to contain hadron showers •
 - 38 active layers of 72*72 cm²
 - 4 HBUs per module
 - in total: 608 SPIROC2E ASICs, ~22000 channels
 - SiPMs: Hamamatsu S13360-1325PE
- All modules interchangeable ٠
- Built with scalable production techniques in ~2 years ٠
- Operated in beam tests with muons, electrons and pions at • CERN SPS in 2018 and 2022
 - 3 weeks of beam time
 - Collected O(100) mio events
 - Very stable running
 - Nearly noise free
 - < 1 per mille dead channels

Common beam tests I

SiW-ECAL + AHCAL DAQ test @ DESY in March 2022

Common setup at CERN June 2022

15360 + 22000 (full analogue) readout cells Successful synchronisation of data recorded with SIW-ECAL and AHCAL •First step of *knowledge transfer* on compact readout system to AHCAL Common running makes full use of EUDAQ tools (developed within European projects) Common data analysis ongoing DMLAB Meeting – Nov. 2023

Data sets and event Displays

- Combined beam test deliver unique date sets (e.g. Higher transversal granularity in SiW Ecal than in HGCAL)
 - Extremely valuable for GEANT4 validation
- Still separate analyses and event displays
 - Goal should be to combined analyses and combined event displays
 - Work has started
 - Will benefit from new groups (outside F and D)vandmew Frand D funding (see below)

16

CERN Data – Analysis 10 GeV e-

Hits/layer

- Reasonable agreement betqeen data and MC
- Energy resolution in expected ball park
- ILD: $\sigma E/E \sim 15\%/\sqrt{E}$ here $\sim 12-13\%$

Total #of hits

• reason: ~factor 2-3 worse sampling ratios, "small" number of hits

10

12

14

Layer

(Total Energy)/MIPS

Timing ?

- Timing is a wide field
- A look to 2030 make resolutions between 20ps and 100ps at system level realistic assumptions
- At which level: 1 MIP or Multi-MIP?
- For which purpose ?

•Mitigation of pile-up (basically all high rate experiments) •Support of PFA – unchartered territory

- •Calorimeters with ToF functionality in first layers?
 - •Might be needed if no other PiD detectors are available (rate, technology or space requirements)

•In this case 20ps (at MIP level) would be maybe not enough

•Longitudinally unsegmented fibre calorimeters

• A topic on which calorimetry has to make up it's mind

•Remember also that time resolution comes at a price -> High(er) power consumption and (maybe) higher noise levels

Required Time Resolution [ps]

Future Colliders - Impact of event rates

High energy e+e- colliders:

- to few Hz above Z-Pole
- solutions than rates above pole

"Tendencies" from discussions in last weeks

- Event and data rates have to looked at differentially
 - In terms of running scenarios and differential cross sections
 - Optimisation/development for Higgs Factory different than for Z factory

• Physics rate is governed by strong variation of cross section and instantaneous luminosity • Ranges from 100 kHz at Z-Pole (FCC-ee) • (Extreme) rates at pole may require other

Figure 2: Organisational chart of CALO5D. Note, that the two upper levels will be in charge of Work Package 1.

- Joined French ANR German DFG Project on "CALOrimetry in 5 Dimensions"
- Approved on October 19th for a total sum of around 1M EUR (about 50/50 between F and D)
 - Mainly postdocs, PhD Students and missions
- DMLAB explicitly mentioned as follow-up for UB Meeting Nov. 2023

G

- Work Package 1: Management
 - Deliverable (Month 3): Project Webpage (M3)
- Work Package 2 : Implementation of Timing in Calorimeter Simulation (Lead LLR)
 - Deliverable (Month 12): Documented algorithms that implement timing in the simulation of granular calorimeters.
- Work Package 3: Particle Flow with Timing (Lead DESY)
 - Classical cut based PFA and application of Machine Learning
 - Deliverable (Month 30): Improved particle flow algorithms using space-time and energy information.
- Work Package 4: Impact on Key Physics Processes (Lead IJClab)
 - Higgs Boson prodiuction and weak boson production
 - Deliverable (Month 36): Demonstrate the benefit for the physics analyses from improved PFA and hence from timing. The results will be presented in the form of scientific documents such as pre-prints or conference proceedings.
- Work Package 5: Implications for Detector Design (Lead KIT)
 - Deliverable (Month 36): The deliverable of this task is a scientific document in the form of an arXiv preprint that summarises hardware requirements for the realisation of a detector that meets the timing requirements formulated in Work Packages 3 and 4.

CALO5D – Timeplan

	Ye	ear 1		Year 2		Year 3			ANR-DFG
WP 1	WP 1 Management								
	IVIGIN	agemen							
WP 2 Implementation of Timing into Calorimeter Simulation									
Task 2.1									IJCLab-PD
Task 2.2									
WP 3	WP 3 Particle Flow with Timing								
Task 3.1									LLR-PD, KIT-PD,
Task 3.2									JGU-PhD, IJCLab- PhD
WP 4	WP 4 Impact on Physics Processes								
Task 4.1									IJCLab-PhD, KIT-PD,
Task 4.2									LLR-PD, JGU-PhD
WP 5 Implications for Detector Design									
				-					IJCLab-PD

- Three years project
- starts now

• Start foreseen around February 2023

• Search for talented young researchers

• Mainly analysis but there is also room • For people imterested in hardware • Role of PD and PhD see timetable

"Early Applications" of CALICE Technologies - LUXE

Laser Und Xfel Experiment – QED in extreme fields

Granular calorimeters in positron and electron arms of spectrometer

- Our focus ECAL-E

- further option

Further interest by dark photon experiments EBES (KEK) and Lohengrin (Uni Bonn) LCWS 2023 May 2023

Laboratoire de Physique

• Main application electron measurement of Breit-Wheeler process in γ-laser setup • Could also be used in early LUXE phase in case of delays of ECAL-P

• Dark photon search next to y dump could be

• Note here that already our short layers would have (almost) sufficient acceptance • Ideal application(s) of CALICE SiW Ecal technological prototype

New PCB Version

New FE boards

Improvements:

- Power distributions
 - Local power regulation
 - Local High Voltage filtering & Supply
- Signal distribution (buffering), data paths
- Monitoring (single ID, temp, probe analogue line)
- ASIC shielding/routing

Status:

- pre-version 2.0 tested, minor corrections needed
 - Noise uniformity dramatically improved (ex: outliers in thr. / 20 !)
- version 2.1 produced, ... in metrology
 - before cabling, 2nd metrology, gluing, ... _
 - All material available : ASICs being tested

Ch# + Mem#×100)

Goal: build 15 layer stack for 2024 based on these Boards

Roman PBOUDIV

LCWS 2023 May 2023

Single channel -

the fault on the ASIC/packaging

LLR, IJCLab, LPNHE, OMEGA

SiW-ECAL beam tests - Further observations

mpv_layer7_xy

We have good layers ...

•Homogeneous response to MIPs over layer surface 90% efficiency for MIPs •Here white cells are masked cells due to PCB routing •understood and will be corrected

... and not so good layers

Inhomogeneous response to MIPs

•Partially even no response at all, in particular at the wafer boundaries •Not seen in 2017, degradation observed during 2018/19 •To be understood, about to start with dedicated aging studies

Since Summer 2022 access to the different stages of the ASICs •=> analogue probes, <u>major</u> debugging tool DMLAB Meeting - Nov. 2023

Adrian Irles

Systematic studies to avoid delamination – "Hybridisation" CALCO

Control of PCB Deformation

- We suspect mechanical deformation of PCB to be at the origin of the delamination
- => Control PCB shape at different steps of manipulation (e.g. After heating during cabling)

"Underfill"

- Low viscosity glue flows around glue dots
- Development in close contact with Epotek
- Seems to work but requires second curing step
- First mechanical tests encouraging

"Double sided tape"

• Undrfill "replaced" by double-sided tape Holes with laser • Encouraging first experience Close consultation with 3M

- Alternative scintillator geometry •
- Megatiles would allow larger units for mechanical assembly •
- Status: Ongoing effort, optimization of uniformity and cross talk ٠
- Alternative Readout ASIC (KLauS) •
- Wide range of applications •
- Possible application at circular Higgs factories •
- Optimised for SiPMs with small pixels (10µm) -> possible • application in ECAL
- Status: KLauS6 with full functionality available, ongoing effort to ٠ integrate into AHCAL DAQ
- **Common Readout** •
- Harmonise readout between CALICE SiW ECAL and AHCAL •
- Status: First round of discussion for AIDAinnova MS Report •

Readout Electronics

- Harmonise readout between CALICE SiW ECAL and AHCAL
- New SiW ECAL interface board (SL board) optimized for compactness
- Current AHCAL interface board design is from 2007, with focus on modularity
 - Plan to follow SiW design as much as possible
 - Some differences in powering concept
 - Additional LED calibration system in AHCAL
 - Status: detailed discussions between French and German engineers, ideas how to address differences in powering concept

SiW ECAL SL board

18 cm

AHCAL interface boards

Active cooling?

- Dynamic gain preamp or TOT ?
- 200 ns shaping, 10 MHz ADC, several samples on the waveform
- Timing capability ? Auto-trigger and zero suppression
- Target ~1 mW power/ch and possible power pulsing
- I²C slow control ? New readout protocol ?
- Include 2.5V LDO inside VFE ?
- Compatible with FCC LAr. SiPM/RPC tbd

	experiment	Sensor	capacitance	shaping	power	data	techno	Vdd	slow control
 SKIROC2	CALICE	Si	30 pF	300 ns	5 mW/ch	5 MHz	SiGe 350n	3.3 V	SPI
HGCROC	CMS	Si	50 pF	20 ns	20 mW/ch	1.2 Gb/s	TSMC 130n	1.2 V	l²C
FCC	LAR	Lar	50-200 pF	200 ns	<1 mW	Gb/s	TSMC 130n	1.2 V	l²C
 SKIROC3	CALICE	Si	50 pF	200 ns	<1 mW	Mb/S	TSMC 130n	1.2 V	?

CdLT CALICE meeting 20 apr 2022

See also yesterdays' talk by C. de la Taille

DMLAB Meeting – Nov. 2023

Ch. de la Taille CALICE Meeting, Valencia

Future Organisation of Detector R&D (in Europe)

- Current model: DRD will be hosted by CERN and therefore become legally CERN collaborations
 - Significant participations by non-European groups is explicitly welcome and needed
 - World wide collaborations!
- The progress and the R&D will be overseen by a DRDC that is assisted by ECFA
 - https://committees.web.cern.ch/drdc
 - Thomas Bergauer of ÖAW/Austria appointed as DRDC-Chair
- The funding will come from national resources (plus eventually supranational projects) DMLAB Meeting Nov. 2023

Detector R&D Collaborations

Coordinators: Roberto Ferrari, Gabriella Gaudio (INFN-Pavia), R.P.

Representative from Coordination Team: Felix Sefkow

Track 1: Sandwich calorimeters with fully embedded Electronics – Main and forward calorimeters Track conveners: Adrian Irles (IFIC, adrian.irles@ific.uv.es), Frank Simon (KIT, frank.simon@kit.edu), Jim Brau (University of Oregon, jimbrau@uoregon.edu), Wataru Ootani (University of Tokyo, wataru@icepp.s.u-tokyo.ac.jp), Imad Laktineh (I2PI, imad.laktineh@in2p3.fr)

Track 2: Liquified Noble Gas Calorimeters Track Conveners: Martin Aleksa (CERN, martin.aleksa@cern.ch), Nicolas Morange (IJCLab, nicolas.morange@ijclab.in2p3.fr), Marc-Andre Pleier (mpleier@bnl.gov)

Track 3: Optical calorimeters: Scintillating based sampling and homogenous calorimeters Track Conveners: Etiennette Auffray (CERN, etiennette.auffray@cern.ch), Gabriella Gaudio (INFN-Pavia, gabriella.gaudio@pv.infn.it), Macro Lucchini (University and INFN Milano-Bicocca, marco.toliman.lucchini@cern.ch), Philipp Roloff (CERN, philipp.roloff@cern.ch), Sarah Eno (University of Maryland, eno@umd.edu), Hwidong Yoo (Yonsei University, hdyoo@cern.ch)

Track 4: Transversal activities. Christophe de la Taille (OMEGA, taille@in2p3.fr), Alberto Gola (FBK, gola@fbk.it)

- R&D on highly granular calorimeters is active field in DMLAB
- About to digest conclusions from common beam test in 2022
 - Data analysis
 - New hardware developments
- Short term applications
 - CMS HGCAL
 - QED and Dark Matter Experiments like LUXE, LOHENGRIN, EBES
- Approval of CALO5D is major success and will boost German-French collaboration
 - DMLAB is ideal framework to follow up
 - Synergies between two prototype projects and Machine Learning Workpackage
- Expertise on Calorimetry present in DMLAB help to shape the international R&D landscape

Linear Colliders operate in bunch trains

CLIC: $\Delta t_{h} \sim 0.5$ ns, frep = 50Hz ILC: $\Delta t_{h} \sim 550$ ns, frep = 5 Hz (base line)

- Power Pulsing reduces dramatically the power consumption of detectors
 - e.g. ILD SiECAL: Total average power consumption 20 kW for a calorimeter system with 10⁸ cells
- Power Pulsing has considerable consequences for detector design
 - Little to no active cooling
 - => Supports compact and hermetic detector design
- Have to avoid large peak currents
- Have to ensure stable operation in pulsed mode
- Upshot: Pulsed detectors face other R&D challenges than those that will be operated in "continuous" mode
 - Tendency: Avoid also active cooling in continous mode

Pioneered by LHC Experiments, timing detectors are/will be also under scrutiny by CALICE Groups

Hit time resolution: Results from 2018 beam test of AHCAL with muons

Inverse APD as LGAD?

DMLAB Meeting - Nov. 2023

Inverse APD by Hamamatsu

Gain ~ 50

(One of) Next step(s) – Slab long

SDHCAL – TB2022

From K. Krüger this morning

Technological solutions for a final detector I

SiW ECAL

Analogue Hcal and Scintillator Ecal

Optical readout

- Realistic dimensions
 - Structures of up to 3m
- Integrated front end electronics

No drawback for precision measurements NIM A 654 (2011) 97

Small power consumption (Power pulsed electronics)

DMLAB Meeting – Nov. 2023

Semi-digital Hcal

Gaseous readout

HL-LHC Upgrades

Compact readout of SiW ECAL

Current detector interface card (SL Board) and zoom into interface region

SL Board

- "Dead space free" granular calorimeters put tight demands on compactness
- Current developments in CALICE for SiW ECAL meet these requirements
- Can be applied/adapted wherever compactness is mandatory
- Components will/did already go through scrutiny phase in beam tests

Complete readout system

AHCAL Technological Prototype at SPS Testbeam

DMLAB Meeting – Nov. 2023

Intermezzo – Power pulsing

- Electronics switched on during > ~1ms of ILC bunch train and data acquisition
- Bias currents shut down between bunch trains

Mastering of technology is essential for operation of ILG3 detectors

Examples:

- W Fusion with final state neutrinos requires reconstruction of H decays into jets
- Jet energy resolution of $\sim 3\%$ for aclean W/Z separation

Slide: F. Richard at International Linear Collider – A worldwide event

et

ASICs – The "ROC Family"

SKIROC (for SiW Ecal)

SiGe 0.35µm AMS, Size 7.5 mm x 8.7 mm, 64 channels High integration level (variable gain charge amp, 12-bit Wilkinson ADC, digital logic) Large dynamic range (~2500 MIPS) low noise (~1/10 of a MIP, 400 fC) Auto-trigger at ½ MIP Low Power: (25µW/ch) power pulsing SPIROC For optical readout, Tiles + SiPM

Variant of SKIROC 36 channels, 15 bit readout Auto-trigger down to $\frac{1}{2}$ p.e, 80 fC for G=1x10⁶ Timing to ~ 1ns Low Power: (25µW/ch) power pulsing

HARDROC For gaseous r/o - GRPC

64 Channels with three thresholds

Variant for Micromegas: MICROROC

