Axion & ALP Searches at DESY

B

Independent of the Dark Matter Paradigm

Daniel Heuchel (DESY) daniel.heuchel@desy.de 3rd DMLab Meeting KIT, Karlsruhe, 16th November 2023

HELMHOLTZ

- Motivation & detection strategies for axions/ALPs
- ALPS II and BabyIAXO:
 - ➡ Status
 - ➡ Axion/ALP physics prospects
 - ➡ Beyond axions/ALPs
- Summary and outlook

Axions/ALPs

and how to detect them.

Physics Motivation

Experiments: EDM_{neutron} < 3 x 10⁻²⁶ e cm $\rightarrow \theta < 10^{-10}$

Most compelling solution to the strong CP problem

Credit: K. Altenmüller

Physics Motivation

Most compelling solution to the strong CP problem

Credit: K. Altenmüller

Physics Motivation

Most compelling solution to the strong CP problem

Physics Motivation

Most compelling solution to the strong CP problem

Cosmology: Excellent cold DM candidate

Physics Motivation

Theory:

ALPs predicted by many extensions of SM (e.g. string theory)

Cosmology: Excellent cold DM candidate

Credit: K. Altenmüller

Most compelling solution to the strong CP problem

Physics Motivation

Theory:

ALPs predicted by many extensions of SM (e.g. string theory)

Constant of	
St. A	
DECR	

Cosmology: Excellent cold DM candidate

Most compelling solution to the strong CP problem

Detection of Axion/ALPs

Coupling to Photons

- Properties of axions/ALPs:
 - ➡ WISP (Weakly interacting sub-eV particles), typical: m_a < 1eV
 - ➡ Pseudo-scalar
 - ⇒ Z = 0
 - ➡ Minimal interaction with SM constituents
 - ➡ Axion/ALP photon mixing in magnetic fields

Axion decay to photons

Detection of Axion/ALPs

Coupling to Photons

- Properties of axions/ALPs:
 - ➡ WISP (Weakly interacting sub-eV particles), typical: m_a < 1eV
 - ➡ Pseudo-scalar
 - ⇒ Z = 0
 - ➡ Minimal interaction with SM constituents
 - ➡ Axion/ALP photon mixing in magnetic fields

Complementarity & Model Dependencies

Complementarity & Model Dependencies

Complementarity & Model Dependencies

DESY. | Axion & ALP Searches at DESY - Independent of the DM Paradigm | Daniel Heuchel | 3rd DMLab Meeting, KIT | 16.11.2023 |

Complementarity & Model Dependencies

Light-shining-through-wall and helioscope experiments search for WISPs independent of the Dark Matter paradigm!

- Yellow band: traditional QCD axion benchmarks
 - ➡ DFSZ: axions couple to fermions
 - ➡ KSVZ: axions couple to BSM quarks only

- Yellow band: traditional QCD axion benchmarks
 - ➡ DFSZ: axions couple to fermions
 - ➡ KSVZ: axions couple to BSM quarks only
- Astrophysical hints: $10^{-12} \text{ GeV}^{-1} < g_{a\gamma\gamma} < 10^{-10} \text{ GeV}^{-1}$

- Yellow band: traditional QCD axion benchmarks
 - ➡ DFSZ: axions couple to fermions
 - ➡ KSVZ: axions couple to BSM quarks only
- Astrophysical hints: 10⁻¹² GeV⁻¹ < $g_{a\gamma\gamma}$ < 10⁻¹⁰ GeV⁻¹
- Outside yellow band: typically ALPs models
 - ➡ But: QCD axion models outside the band e.g. recent benchmark by Sokolov-Ringwald: JHEP06(2021)123

Axion-Photon Coupling, Experiments & Theories

- Yellow band: traditional QCD axion benchmarks
 - ➡ DFSZ: axions couple to fermions
 - ➡ KSVZ: axions couple to BSM quarks only
- Astrophysical hints: $10^{-12} \text{ GeV}^{-1} < g_{a\gamma\gamma} < 10^{-10} \text{ GeV}^{-1}$
- Outside yellow band: typically ALPs models
 - ➡ But: QCD axion models outside the band e.g. recent benchmark by Sokolov-Ringwald: JHEP06(2021)123

Reachable parameter space! Very interesting times for different types of axion experiments!

Shining light through a wall with ALPS II

The ALPS II Collaboration

Overview

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGE

Science and

Technology Facilities Council

Collaboration members

Supported by

HEISING-SIMONS

DFG

PRISMA+

Pushing Sensitivity with High Precision Interferometry

• DESY HERA infrastructure: 2x12 HERA dipole magnets, cryogenic lines, tunnel & 3 clean-rooms

Pushing Sensitivity with High Precision Interferometry

• DESY HERA infrastructure: 2x12 HERA dipole magnets, cryogenic lines, tunnel & 3 clean-rooms

Pushing Sensitivity with High Precision Interferometry

• DESY HERA infrastructure: 2x12 HERA dipole magnets, cryogenic lines, tunnel & 3 clean-rooms

Pushing Sensitivity with High Precision Interferometry

- DESY HERA infrastructure: 2x12 HERA dipole magnets, cryogenic lines, tunnel & 3 clean-rooms
- High power laser system (40 W)
- Optical cavities both before and after wall (key: dual resonance and phase stability)
- Central optical bench

Pushing Sensitivity with High Precision Interferometry

- DESY HERA infrastructure: 2x12 HERA dipole magnets, cryogenic lines, tunnel & 3 clean-rooms
- High power laser system (40 W)
- Optical cavities both before and after wall (key: dual resonance and phase stability)
- Central optical bench

- With benchmark parameters expected: ~2 photons / day (5x10-24 W)
- → Heterodyne detection system, later single photon counting with transition edge sensor (TES)

ALPS II - End of May 2023: Start of Initial Science Run

We are Taking Data!

- Regeneration cavity + mod. optics system
 - ➡ Stray light hunting
- Scalar search: 150,000 s

Forschung - Hamburg

Mit Licht durch die Wand: Desy forscht zu Dunkler Materie

23. Mai 2023, 12:10 Uhr 🕴 Lesezeit: 1 min

Ein Mitarbeiter des Deutschen Elektronen-Synchrotrons (DESY) fährt am Instrument ALPS II entlang. Foto: Ulrich Perrey/dpa/Archivbild (Foto: dpa)

DESY. | Axion & ALP Searches at DESY - Independent of the DM Paradigm | Daniel Heuchel | 3rd DMLab Meeting, KIT | 16.11.2023 |

ALPS II - Next Steps

New Milestones Ahead!

Started: 03.11.2023

Physics Prospects

 Improve sensitivity compared to ALPS I by factor ~3000

- Improve sensitivity compared to ALPS I by factor ~3000
 - Exploring uncharted parameter space beyond astrophysical constraints

- Improve sensitivity compared to ALPS I by factor ~3000
 - Exploring uncharted parameter space beyond astrophysical constraints
 - Uncharted parameter space well motivated by astrophysical anomalies

- Improve sensitivity compared to ALPS I by factor ~3000
 - Exploring uncharted parameter space beyond astrophysical constraints
 - Uncharted parameter space well motivated by astrophysical anomalies
 - Covers parameter space of monopole-philic QCD axions outside of benchmark vanilla QCD axion band

- Improve sensitivity compared to ALPS I by factor ~3000
 - Exploring uncharted parameter space beyond astrophysical constraints
 - Uncharted parameter space well motivated by astrophysical anomalies
 - Covers parameter space of monopole-philic QCD axions outside of benchmark vanilla QCD axion band
- Goal: axion/ALP discovery and modelindependent measurement of $g_{a\gamma\gamma}$
- And then?
 - Probe nature of the underlying BSM model with dedicated experiments!

The sunny side of life with (Baby)IAXO.

https://www.stern.de/kultur/tv/-teletubbies---so-siehtdas-babv-auf-der-sonne-heute-aus-32610940.html

Helioscopes - Basics

Components, Detection Principle and Figure of Merit

- Structure & drive system: precise and long sun tracking capability
- **Magnet**: large volume and high field strength
- X-ray optics: small focal spot and high • throughput
- **X-ray detectors**: high efficiency and low ٠ background

Sensitivity figure of merit:

optics

The IAXO Collaboration

World's Largest Axion Collaboration

IAXO Collaboration Meeting @ Teruel, Spain, 11-14.09.23

Full members: Kirchhoff Institute for Physics, Heidelberg U. (Germany) | Siegen University (Germany) | University of Bonn (Germany) | DESY (Germany) | University of Mainz (Germany) | Technical University Munich (TUM) (Germany) | University of Hamburg (Germany) | MPE/PANTER (Germany) | MPP Munich (Germany) | IRFU-CEA (France) | CAPA-UNIZAR (Spain) | INAF-Brera (Italy) | CERN (Switzerland) | ICCUB-Barcelona (Spain) | Barry University (USA) | MIT (USA) | LLNL (USA) | University of Cape Town (S. Africa) | CEFCA-Teruel (Spain) | U. Polytechnical of Cartagena (Spain) Associate members: DTU (Denmark) | U. Columbia (USA) | SOLEIL (France) | IJCLab (France) | LIST-CEA (France)

⇒ >125 scientists from 23 full member institutions + 5 associate institutions

The IAXO Collaboration

World's Largest Axion Collaboration

IAXO Collaboration Meeting @ Teruel, Spain, 11-14.09.23

Full members: Kirchhoff Institute for Physics, Heidelberg U. (Germany) | Siegen University (Germany) | University of Bonn (Germany) | DESY (Germany) | University of Mainz (Germany) | Technical University Munich (TUM) (Germany) | University of Hamburg (Germany) | MPE/PANTER (Germany) | MPP Munich (Germany) | IRFU-CEA (France) | CAPA-UNIZAR (Spain) | INAF-Brera (Italy) | CERN (Switzerland) | ICCUB-Barcelona (Spain) | Barry University (USA) | MIT (USA) | LLNL (USA) | University of Cape Town (S. Africa) | CEFCA-Teruel (Spain) | U. Polytechnical of Cartagena (Spain) Associate members: DTU (Denmark) | U. Columbia (USA) | SOLEIL (France) | IJCLab (France) | LIST-CEA (France)

⇒ >125 scientists from 23 full member institutions + 5 associate institutions

International AXion Observatory (IAXO)

The Next Generation Axion Helioscope

- 12 hours solar tracking + 12 hours off-sun for background measurements per day
- 20 m superconducting large scale magnet, 2-3 T, 8 bores (d = 60 cm each)
- X-ray optics with ~0.2 cm² focal spots
- 8 detection lines
 - Complementary detector technologies optimised for different measurements
- Sensitivity FOM: ~10.000x CAST (CERN Axion Solar Telescope - predecessor exp.)

JINST 9 T05002

BabyIAXO - The Intermediate Step

But indeed not a Baby...

New life arises in HERA hall south!

BabyIAXO - The Intermediate Step

But indeed not a Baby...

New life arises in HERA hall south!

BabyIAXO - The Intermediate Step

But indeed not a Baby...

- Prototype for all IAXO sub-systems with comparable specs except:
 - 10 m superconducting large scale magnet, 2-3 T,
 2 bores (d = 70 cm each)
 - ➡ 2 detection lines
- Sensitivity FOM: ~100x CAST
- Fully-fledged helioscope that will study uncharted parameter space = potential for discovery

- Structure & drive system: Reusing parts of CTA/MST prototype from DESY Zeuthen
 - ➡ Duty cycle at least 50%
 - ➡ Pointing precision < 0.01°</p>

- Structure & drive system: Reusing parts of CTA/MST prototype from DESY Zeuthen
 - ➡ Duty cycle at least 50%
 - ➡ Pointing precision < 0.01°</p>
- Magnet: common coil racetrack design, cryocooler concept

- Structure & drive system: Reusing parts of CTA/MST prototype from DESY Zeuthen
 - ➡ Duty cycle at least 50%
 - ➡ Pointing precision < 0.01°</p>
- Magnet: common coil racetrack design, cryocooler concept
- Two different X-ray optics planned: XMM spare module (ESA) + custommade hybrid

- Structure & drive system: Reusing parts of CTA/MST prototype from DESY Zeuthen
 - ➡ Duty cycle at least 50%
 - ➡ Pointing precision < 0.01°</p>
- Magnet: common coil racetrack design, cryocooler concept
- Two different X-ray optics planned: XMM spare module (ESA) + custommade hybrid
- Discovery detector: Micromegas (Micro-Mesh) TPC + shielding + veto systems

- Structure & drive system: Reusing parts of CTA/MST prototype from DESY Zeuthen
 - ➡ Duty cycle at least 50%
 - ➡ Pointing precision < 0.01°</p>
- Magnet: common coil racetrack design, cryocooler concept
- Two different X-ray optics planned: XMM spare module (ESA) + custommade hybrid
- Discovery detector: Micromegas (Micro-Mesh) TPC + shielding + veto systems
- Complementary precision detectors: optimised energy resolution and energy threshold: Gridpix TPC, SDD, TES, MMC

BabyIAXO - Status

Individual Components

 Very good technical progress for all components Component / StatusTechnicalFundingStructure & Drive systemVacuum & Gas SystemMagnet(X-ray TelescopesDetectors

- In principle ready to start construction
 - "Dry run" installation currently under discussion: install everything expect for magnet
 - Early commissioning, alignment surveys, background measurements, initial physics runs,...

BabyIAXO - Status

Individual Components

 Very good technical progress for all components

- In principle ready to start construction
 - "Dry run" installation currently under discussion: install everything expect for magnet
 - Early commissioning, alignment surveys, background measurements, initial physics runs,...

Additional funding for magnet secured by achievement of **ERC synergy grant** *DarkQuantum* by I. Irastorza, T. Kontos, S. Paraoanu, W. Wernsdorfer, et al.

Full article: here

Physics Prospects of BabyIAXO - Initial Remarks

Complementarity & Model Dependencies

Classical (Primakoff-)Axion-Photon Coupling

• Improve $g_{a\gamma\gamma}$ sensitivity (~3x better than CAST):

- Improve $g_{a\gamma\gamma}$ sensitivity (~3x better than CAST):
 - Test region motivated by astrophysical hints
 - Exceed ALPS II sensitivity
 - In case of ALPS II discovery: confirm
 - → Compare $g_{a\gamma\gamma}$: vacuum and solar plasma

- Improve $g_{a\gamma\gamma}$ sensitivity (~3x better than CAST):
 - Test region motivated by astrophysical hints
 - Exceed ALPS II sensitivity
 - In case of ALPS II discovery: confirm
 - → Compare $g_{a\gamma\gamma}$: vacuum and solar plasma
 - ➡ Test vanilla QCD axion models (KSVZ, DSFZ)

- Improve $g_{a\gamma\gamma}$ sensitivity (~3x better than CAST):
 - Test region motivated by astrophysical hints
 - Exceed ALPS II sensitivity
 - In case of ALPS II discovery: confirm
 - → Compare $g_{a\gamma\gamma}$: vacuum and solar plasma
 - ➡ Test vanilla QCD axion models (KSVZ, DSFZ)
 - Test region of QCD axions outside vanilla band e.g. recent benchmark by Sokolov-Ringwald: <u>JHEP06(2021)123</u>

- Improve $g_{a\gamma\gamma}$ sensitivity (~3x better than CAST):
 - Test region motivated by astrophysical hints
 - Exceed ALPS II sensitivity
 - In case of ALPS II discovery: confirm
 - → Compare $g_{a\gamma\gamma}$: vacuum and solar plasma
 - ➡ Test vanilla QCD axion models (KSVZ, DSFZ)
 - Test region of QCD axions outside vanilla band e.g. recent benchmark by Sokolov-Ringwald: <u>JHEP06(2021)123</u>

Distinguishing Axion Models with $g_{a\gamma\gamma}$, g_{ae} , g_{aN} and m_a Basic Idea and Strategies

- Main idea: measured axion spectrum contains axions from different couplings
- Example: depending on spectrum shape individual determination of $g_{a\gamma\gamma}$ and g_{ae}
 - → Higher g_{ae} softens the spectrum
 - → Higher g_{ae} pronounces atomic trans. peaks

Eur. Phys. J. C 82, 120 (2022)

Differential axion flux at earth

Distinguishing Axion Models with $g_{a\gamma\gamma}$, g_{ae} , g_{aN} and m_a Basic Idea and Strategies

- Main idea: measured axion spectrum contains axions from different couplings
- Example: depending on spectrum shape individual determination of $g_{a\gamma\gamma}$ and g_{ae}
 - → Higher g_{ae} softens the spectrum
 - → Higher g_{ae} pronounces atomic trans. peaks
- Helioscope-specific techniques (e.g. buffer gas) allow m_a measurement in large range
- Detailed studies conducted to investigate potential sensitivities with different optics, detectors, etc.

JCAP03(2019)039

Eur. Phys. J. C 82, 120 (2022)

Differential axion flux at earth

Testing Axion Models with (Baby)IAXO Studied Sensitivity Examples

- Studies help to guide optimisation of subsystems for specific channels
 - ➡ IAXO & IAXO+ will deliver higher statistics
- DESY. | Axion & ALP Searches at DESY Independent of the DM Paradigm | Daniel Heuchel | 3rd DMLab Meeting, KIT | 16.11.2023 |

Already BabyIAXO will be able to confront different axion models!

23

Further Searches with ALPS II & BabyIAXO

https://www.wired.com/story/is-dark-matter-just-black-holes-made-during-the-big-bang/

And What About Dark Matter?

Haloscope Approaches with BabyIAXO Magnet

Everything shown so far: independent of the Dark Matter paradigm!

Let's assume...

Or

...ALPS II discovers an axion/ALP + (Baby)IAXO confirms and constrains the underlying model

...(Baby)IAXO discovers an axion/ALP + constrains the underlying model

Next question: does the discovered particle contribute to or constitute Dark Matter?

BabyIAXO as Haloscope

Searching for DM Axions

- Main idea: Use BabyIAXO magnet for haloscope searches
 - BabyIAXO magnet bore: e.g. 4x 5m cavities to target 1-2 µeV range down to vanilla QCD axion band!
 - Multiple concepts under development and discussion

RADES-BabyIAXO Prototype

Strongly backed up by achievement of **ERC synergy grant** *DarkQuantum* by I. Irastorza, T. Kontos, S. Paraoanu, W. Wernsdorfer, et al.

BabyIAXO & ALPS II Further Searches

A Broad Spectrum of Ideas and Studies

Solar Physics and Supernovae Axions with (Baby)IAXO

- Axions from supernova explosions
 - Would require HE-γ detector at the opposite of X-ray detector arXiv:2008.03924
- If g_{ae} sufficiently high, characterisation of solar metallicity by measuring elemental peaks in ABC axion spectrum <u>Phys. Rev. D 100, 123020</u>
- Helioscope measurements to map magnetic fields, temperature and chemistry within Sun <u>Phys. Rev. D 102, 043019</u>

Standard Model Precision Tests with ALPS II:

- Measurement of Vacuum Magnetic Birefringence (VBM)
 - Using ALPS II magnet string and profit from laser interferometry infrastructure

High Frequency Gravitational Waves

Detection Possible with ALPS II and BabyIAXO?

- High frequency gravitational waves are expected in non-standard scenarios, e.g. from primordial black hole formation
- Gravitational waves converted into photons by inverse Gertsenshtein effect in a strong magnetic field
 - ALPS II and BabyIAXO sensitive to specific frequencies?

Emerging field of study, synergies?

DESY. | Axion & ALP Searches at DESY - Independent of the DM Paradigm | Daniel Heuchel | 3rd DMLab Meeting, KIT | 16.11.2023 |

Summary & Outlook

... and a Dream

- DESY hosts a rich and complementary axion/ALP program over the next two decades
- ALPS II started data taking in May 2023 and is currently running
 - ➡ Discover axion/ALP and determine the ALP-photon coupling model-independently
- Significant progress towards the construction of BabyIAXO:
 - \rightarrow Confirm ALPS II discovery (and compare $g_{a\gamma\gamma}$ measurement) or discover the axion/ALP
 - → Constrain the nature of the underlying BSM model by probing $g_{a\gamma\gamma}$, g_{ae} , g_{aN} and m_a
- Expanding physics case: haloscope searches (complementary to MADMAX @ DESY), VBM, solar physics, supernovae axions, HFGW,...

Stay tuned for the broad axion/ALP (and related) physics program at DESY!

Test our recent BabyIAXO augmented reality model! (Tested only for iOS)

Thank you for your attention!

Landscape

Current Parameter Space - Axion-Photon Coupling

Experimental Limits + Projections Helioscopes

https://cajohare.github.io/ AxionLimits/docs/ap.html
The (Future) Landscape I

Other Direct Dark Matter Searches & Beyond

https://cajohare.github.io/ AxionLimits/docs/ap.html

 Current experimental exclusion limits for DM and modelindependent experiments

*Haloscope bounds shown assume axion to be 100% of DM. In general, scale as $\sqrt{\rho_{\rm DM}/\rho_a}$

The (Future) Landscape I

Other Direct Dark Matter Searches & Beyond

- Current experimental exclusion limits for DM and modelindependent experiments + projections
 - Huge efforts ongoing to reach the benchmark QCD axion band with different types of experiments
 - Exciting times ahead!

*Haloscope bounds shown assume axion to be 100% of DM. In general, scale as $\sqrt{\rho_{\rm DM}/\rho_a}$

The (Future) Landscape II

Direct Dark Matter Searches

Report of the Topical Group on Wave Dark Matter for Snowmass 2021, <u>arXiv:2209.08125</u>

- Until ~2030: DMNI #1 aims to reach the QCD axion benchmark band for m_a : 10⁻⁷ 10⁻⁴ eV
- Afterwards: DMNI #2, the definitive axion search, aims for basically full bandwidth

The (Future) Landscape II

Direct Dark Matter Searches

Report of the Topical Group on Wave Dark Matter for Snowmass 2021, <u>arXiv:2209.08125</u>

- Until ~2030: DMNI #1 aims to reach the QCD axion benchmark band for m_a : 10-7 10-4 eV
- Afterwards: DMNI #2, the definitive axion search, aims for basically full bandwidth
 - Various experiments up to a next-gen ultimate axion facility

ALPS II

ALPS II

Exploiting Mode Matched Optical Cavities

Optic system

Initial science run

Thanks to I. Oceano!

Phase stability as a key detection point

- Demodulation signal must be coherent with the measured signal
- LO must be coherent with regenerated field
 - · HPL must be coherent with LO over the full run

Resonant Enhancement

- Amplification of regeneration cavity (RC) only works if the regenerated field is resonant
- Cannot directly interfere HPL and LO fields → too much stray light!
- Use of a reference laser with cascaded phase-locked loops as a "go-between" → HPL and LO never see each other directly

Heterodyne detection system

Measuring single photon power levels over days

Measuring the power at a single frequency

- Interfere regenerated field (ν) with laser (ν +f)
- Demodulate signal at defined frequency
- Integrate over time to shrink frequency bin

Thanks to A. Spector!

Regeneration Cavity

Reconverting axion-like particles back to photons

Longest storage time Fabry Perot cavity ever!

- Power build up factor: $\beta = 7700$
- PDH frequency stabilization, alignment control
- Multiple week locks demonstrated

Thanks to A. Spector!

Preliminary sensitivity estimate

Preliminary results

Thanks to I. Oceano!

Regenerated photon detection

Exploiting two different techniques

LE=h.p DR ۵I f_1 TES Time resolution lell thermal v_{sig} **AB** link 100 mK Vout SQUID readout cold both HET $v_{LO} = v_{sig} + f_1$ **Frequency resolution**

TES

Transition Edge Sensor

- Using a superconducting Transition Edge Sensor (TES) operated at about 100 mK.
 A tungsten microchip provided by NIST and a
- Already have demonstrated:
 - Low-backgrounds (µHz)
 - Good energy resolution (~10%)
 - Long-term stability (~20 days)

A tungsten microchip provided by NIST and a SQUID readout by PTB ($25\mu m \times 25\mu m \times 20nm$) operated in the transition region (~ 140mK)

Thanks to I. Oceano!

TES data-taking requires a different optics setup.

Helioscopes & IAXO

CERN Solar Axion Telescope (CAST)

State-of-the-art Helioscope

- Sunrise & sunset system: sun tracking for 2 x 1.5 hours / day
- LHC magnet: ~9 T, ~10 m long and two 4.2 cm diameter bores: $B^2 L^2 A = ~21 T^2 m^4$
- First helioscope using X-ray focusing and low background techniques
- Data taking ended 2021 after 20 years of fruitful operation
 - → Still state-of-the-art limits on $g_{a\gamma\gamma}$ vs. m_a and other parameter space
 - Last years of experiment: IAXO pathfinder phase

Structure & Drive System

And Alignment

- Reusing parts of CTA/MST prototype from DESY Zeuthen
 - ➡ Duty cycle at least 50%
 - ➡ Pointing precision < 0.01°</p>
- Significant progress:
 - Design close to be finished
 - Extensive mech. simulations
 - External alignment: studied by CEFCA + DESY
 - Internal alignment: Complete MC study performed, manufacturing tolerances currently derived

Magnet Challenges and Progress

- Common coil racetrack design, cryocooler concept
- Magnet efforts have gained significant momentum:
- Redesign of cryogenic system
 - ➡ Design work by DESY & CERN teams progressing well
 - ➡ Company Elytt contracted: work on conceptual design
 - ➡ Funding by Zaragoza, Bonn and Mainz
 - ➡ CDR to be finished soon... in progress
- Al-stabilised SC cable (co-extrusion technique)
 - Became unavailable due to Russian invasion into Ukraine
 - ➡ CERN & KEK synergies: setup of co-extrusion facility?
 - ➡ Very promising cable samples from Chinese company
 - ➡ First part of Rutherford cable ordered

Optics Focusing X-Rays

- Two different X-ray focusing optics planned for BabyIAXO
- 1. XMM Newton flight spare from ESA
 - Two modules at MPI/PANTER to be recalibrated
 - Work towards finalisation of loan agreement ESA-DESY
- 2. Custom-made hybrid optics
 - ➡ First prototype of coronal optics module successfully tested at PANTER
 - Progress with preparations for inner core optics construction
 - ➡ Funding milestones: grants for both sub-systems (at INAF and Columbia U.)

X-Ray Detectors

Discovery Technologies

- Requirements: High detection efficiency (1-10 keV) and ultra-low background levels
- Baseline option: Micromegas (Micro-Mesh) TPC + shielding + veto systems
- Proven design (CAST) & extensive R&D:
 - ➡ 60-70% detection efficiency
 - Demonstrated BKG-level of
 < 10⁻⁶ counts keV⁻¹ cm⁻² s⁻¹ (32 photons per year)
 Goal: ~1 photon keV⁻¹ cm⁻² year⁻¹
 - ➡ Spatial resolution: ~100µm
 - ➡ Energy resolution: ~10% (FWHM, 5.9 keV ⁵⁷Fe)

X-Ray Detectors

Complementary Technologies

Discovery:

- Requirements: High detection efficiency (1-10 keV) and ultra-low background levels (~1 photon keV⁻¹ cm⁻² year⁻¹)
- Baseline option: Micromegas (Micro-Mesh) TPC + shielding + veto systems

Precision / post-discovery:

- Better energy resolution: few eV 100 eV
- Lower energy threshold: ~ 0.1 keV
 - ➡ Gridpix-TPC, SDD, MMC, TES
- Very active R&D ongoing: designs, materials, readout

GridPix (U. Bonn)

MMC: Metallic Magnetic Calorimeters (U. Heidelberg)

TES: Transition Edge Sensors (INMA-ICMAB CSIC)

X-Ray Detectors - Highlight

Towards Desired Background Levels

 May 2023: ~38 days of data taking with IAXO-D1 Micromegas prototype (Ar-Isobutane) in Canfranc underground laboratory (LSC)

> Achieved lowest background level ever with this type of detector!

Coherence Gas Buffer Technique

Pushing the Sensitivity to high Axion Masses

"Massless" case m_a < 20 meV

 $P_{a \to \gamma} = \frac{g_{a\gamma}^2 B^2 L^2}{4}$

Finite mass case m_a > 20 meV (BabyIAXO)

$$P_{a \to \gamma} = \frac{g_{a\gamma}^2 B^2 L^2}{4} \times \frac{2(1 - \cos(qL))}{(qL)^2}$$

Constant

Oscillates and rapidly drops with axion mass and L of conversion volume (Decoherence of axion and photon field) Transfered momentum $q = \frac{1}{2\omega}(m_a^2 - m_\gamma^2)$ Axion energy

- Counter-act: Introduce a buffer gas in the magnetic bores
 - \rightarrow Introducing n and therefore a change in m_{γ}
 - → Tune gas type & pressure: effective coherent conversion again for a specific m_a
- Scan with different pressure settings: extend m_a reach with high sensitivity to $g_{a\gamma\gamma}$
 - Successfully demonstrated in CAST and to be used in (Baby)IAXO as well
 - Limit: Condensation of gas in bore and X-ray absorption

Coherence Threshold

Examples

 $P_{a \to \gamma} = \frac{g_{a\gamma}^2 B^2 L^2}{\Lambda}$

Constant

Finite mass case $m_a > 20$ meV (BabyIAXO)

$$P_{a \to \gamma} = \frac{g_{a\gamma}^2 B^2 L^2}{4} \times \frac{2(1 - \cos(qL))}{(qL)^2}$$

Oscillates and rapidly drops with axion mass and L of conversion volume (Decoherence of axion and photon field)

Coherence condition approximation:

$$m_a \lesssim \sqrt{4\pi E_a/L}$$

With $\hbar = c = 1$ [L] = [1\E] $1m = 1/197 \text{ GeV}^{-1}$

BabyIAXO: Ea = 3keV and L = 10m ALPSII: Ea = 0.1 eV and L = 125m

$$m_a = \sim 25 \ meV$$
 $m_a = \sim 0.05 \ meV$

Simulation and Analysis Strategy

JCAP03(2019)039

IAXO Parameters

Parameter	Value
Magnetic field strength B	$2.8\mathrm{T}$
Length of conversion volume L	20 m
Cross-section of conversion volume ${\cal A}$	$2\mathrm{m}^2$
Figure of merit (B^2L^2A)	$6272 \mathrm{T}^2 \mathrm{m}^4 ~(\sim 300 \times \mathrm{CAST})$
Total tracking time t	$100\mathrm{days}$
Bandwidth	$(1{-}10)\mathrm{keV}$
Energy resolution $\Delta \nu$	$1{ m keV}$
Inverse absorption length Γ	0 (vacuum)
Efficiency of telescope Q	0.5
Background level	$10^{-7}{\rm keV^{-1}s^{-1}cm^{-2}}$
Detector area A_{detect}	$1{ m cm^2}$

Studied Experimental Setups

Optimising for 14.4 keV photons

Label	BabyIAXO				IAXO		IAXO+	
	Baseline BabyIAXO ₀	No optics BabyIAXO ₁	Optimized optics BabyIAXO ₂	High energy resolution BabyIAXO ₃	Low background IAXO _b	High energy resolution IAXO _r	Low background IAXO _b ⁺	High energy resolution IAXO ⁺
<i>B</i> [T]	2	2	2	2	2.5	2.5	3.5	3.5
<i>L</i> [m]	10	10	10	10	20	20	22	22
<i>A</i> [m ²]	0.77	0.38	0.38	0.38	2.3	2.3	3.9	3.9
t [year]	0.75	0.75	0.75	0.75	1.5	1.5	2.5	2.5
$b\left[\frac{1}{\text{keVcm}^2s}\right]$	10^{-7}	10^{-6}	10^{-7}	10^{-5}	10^{-8}	10^{-6}	10^{-9}	10^{-6}
ϵ_d	0.15	0.9	0.5	0.99	0.99	0.99	0.99	0.99
ϵ_0	0.013	1	0.3	0.3	0.3	0.3	0.3	0.3
$a [\mathrm{cm}^2]$	0.6	3800	0.3	0.3	1.2	1.2	1.2	1.2
$r_{\omega} = \frac{\Delta E_d}{14.4 \mathrm{keV}}$	0.12	0.12	0.12	0.02	0.02	$\frac{5}{14400}$	0.02	$\frac{5}{14400}$

Studied Experimental Setups

Optimised for 14.4 keV photons

Label	BabyIAXO	BabyIAXO				IAXO			IAXO+	
	Baseline BabyIAXO ₀	No optics BabyIAXO ₁	Optimized optics BabyIAXO ₂	High energy resolution BabyIAXO ₃	Low backgrou IAXO _b	ınd	High energy resolution IAXO _r	Low background IAXO ⁺	High energy resolution IAXO ⁺	
No optics, full coverage of magnetic bore with a Micromegas gas detectors (high pressure Xenon)		f s	Optimised optics and Cadmium-Zinc-Telluride semiconductor detector (Optimised to ~14.4 keV		e r V)	IAXO _b ⁽⁺⁾ : benchmark configuration parameters + fully optimised optics IAXO _r ⁽⁺⁾ : benchmark configuration parameters + fully optimised optics +				
Optimised optics (14.4 keV) and SDD					per-mille level energy resolving detectors (MMCs)				lving	

Results: Massive Case

Increasing Decoherence in Axion-Photon Conversion

Worst case scenario shown: increasing 10^{-15} -CAST decoherence with increasing m_a (no gas buffer technique) 10^{-16} BabyIAXO BabyIAXO Still BabyIAXO will explore new parameter $\left| g_{a\gamma} \right|^{10_{-12}} \left| g_{a\gamma} \right|^{10_{-13}} \left[{\rm GeV} \right]^{10_{-13}}$ 10^{-17} space and might see axions described by BabyIAXO₃ nucleophilic models BabyIAXO IAXO and IAXO+ will dig deeper in IAXOr IAXOb parameter space 10^{-19} . IAXO⁺ IAXO Primakoff decoherence 10^{-20} Nucleophilic model (n=3) 10^{-2} 10^{-3} 10^{-1} $m_a \, [eV]$

Eur. Phys. J. C 82, 120 (2022)

Hidden photons at IAXO

 10^{-8} Search for hidden photons, both solar 10^{-9} • 10^{-10} and DM. Same configuration as with Kinetic mixing 10-12 10-13 10-13 10-14 10-12 axions but without B-field. 10^{-12} 10^{-13} DAMIC 10^{-15} Frequency [GHz] 10^{-16} 10^{0} 10^{-} 10^{-17} $\times^{10^{-10}}$ $\times^{10^{-10}}$ 10^{-10} SHUKE' Dark photons as dark matter 10^{-18} 10-2 10 10 WISPDMX APP 10^{-12} ADMX-1 Dark E-field SQUAD ADMX-3

 10^{-5}

 $\rho_{\rm DM} = 0.45 \ {\rm GeV} \ {\rm cm}^{-3}$

keV 10^{-1} SENSEI SuperCDMS **XENON** 102 103 10^{3} 10, Dark photon mass [eV]

Computed by T. O'shea. Paper in preparation...

Computed by C. Cogollos. Paper in preparation...

Dark photon mass, m_X [eV]

BabyIAXO RADES ADMX-2

 10^{-6}

 10^{-12}

 10^{-1}

Backup: Dark Matter with Haloscopes

Haloscopes

Detecting Dark Matter Axions - In a Nutshell

- Assumption for haloscope: DM is mostly made of axions
 - → Axions non-relativistic: $m_a \rightarrow f_{a,\gamma}$
- Resonant "Sikivie" cavities
 - ➡ Axion-photon conversion in tunable resonant cavity
 - ➡ Typically in microwave ranges
- If cavity is tuned to axion frequency: Boost of conversion by resonant factor
 - Detection: excess in measured output power Ps

RADES

Helioscope as Haloscope Project

- During late years in the CAST experiment the RADES project emerged
 - Reuse the magnetic volumes of helioscope for haloscope searches by integrating resonant cavity

- Single frequency point measurement at 37 µeV in the CAST experiment
- Developments continued after CAST times
 - Optimising geometries of cavities
 - Improving coating for improving boost factor, etc.

BabyIAXO as Haloscope

Searching for DM Axions

- Main idea: Use BabyIAXO magnet for haloscope searches
 - BabyIAXO magnet bore: e.g. 4x 5m cavities to target 1-2 µeV range down to vanilla QCD axion band!
 - Multiple concepts under development and discussion

RADES-BabyIAXO Prototype

Strongly backed up by achievement of **ERC synergy grant** *DarkQuantum* by I. Irastorza et al.

Direct Dark Matter Searches at DESY & Collaboration

• Assumed construction place: HERA hall north to re-use parts of H1 infrastructure + new cryo-platform

Direct Dark Matter Searches at DESY & Collaboration

• Assumed construction place: HERA hall north to re-use parts of H1 infrastructure + new cryo-platform

- CPPM, France
- DESY Hamburg, Germany
- Néel Institute, Grenoble, France
- MPI für Physik, Munich, Germany
- MPI für Radioastronomie, Bonn, Germany
- RWTH Aachen, Germany
- University of Hamburg, Germany
- University of Tübingen, Germany
- University of Zaragoza, Spain

A Dielectric Haloscope

- Principle: boosted dish antenna, open dielectric resonator
 - Axion-induced EM wave from the E-field discontinuity at dielectric boundary in B-field
 - Multiple dielectric disks lead to "boost" factor: emissions sum constructively
 - Precise disk separation: boost factor tunable for specific mass ranges
- Design considerations:
 - ➡ Many 1.25 m disks in purpose-built 9 T magnet
 - ➡ Each disk (~6 kg) to be positioned with 10 µm accuracy
 - Cryogenic cooling to reduce BKG and improve sensitivity

R&D and Status

- Magnet: conceptual design + successful conductor tests (quench velocity) @ CEA / Saclay
- Enabling technologies:
 - ➡ Dielectric disk mounting and handling
 - ➡ Piezo motor tests (vacuum, B-field, cryogenics)
 - ➡ Successfully tested in UHV / 5.3 T / 5 K @ DESY/UHH E. Garutti *et al* 2023 *JINST* 18 P08011
- Booster understanding:
 - Series of prototype (open & closed) tests e.g. exploiting MORPUGO magnet at CERN, future tests: UHH
 - Complex calibration method by MPP Munich
- ➡ MADMAX potential ~2030 @ DESY?

Sensitivity Range of MADMAX

Direct Dark Matter Searches

How is MADMAX situated in the international context of Dark Matter searches (and beyond)?

.

*Haloscope bounds shown assume axion to be 100% of DM. In general, scale as $\sqrt{\rho_{\rm DM}/\rho_a}$