

A seesaw model for large neutrino mass consistent with cosmology

DMLab meeting, KIT, 16 Nov. 2023

w. Miguel Escudero, Jorge Terol-Calvo, 2211.01729 (JHEP)

Neutrino masses

Neutrino oscillations: • $|m_3^2 - m_1^2| \approx (2.5 \pm 0.03) \times 10^{-3} \,\mathrm{eV}^2$ • $m_2^2 - m_1^2 = (7.42 \pm 0.21) \times 10^{-5} \,\mathrm{eV}^2$

Absolute mass determinations:

- beta-decay spectrum(KATRIN)
- neutrinoless double-beta decay (assuming Majorana neutrinos)
- cosmology

$$m_{\beta} = \sqrt{\sum_{i} |U_{ei}|^2 m_i^2} < 0.8 \text{ eV}$$
$$m_{\beta\beta} = \left|\sum_{i} U_{ei}^2 m_i\right| \lesssim 0.07 \text{ eV}$$
$$\sum_{i} m_i \lesssim 0.1 \text{ eV}$$

Complementarity between mass determinations from heaven and earth

fig. by I. Esteban based on NuFit 5.0

neutrinoless double beta decay

Complementarity between mass determinations from heaven and earth

fig. by I. Esteban based on NuFit 5.0

neutrinoless double beta decay

future 0:
$$\Sigma m_{\nu} < 0.02 \,\mathrm{eV}(1\sigma)$$
 if 6

- What if cosmology does not see finite neutrino mass and upper bounds become tighter than the minimal value predicted by neutrino oscillation?
- Can we relax cosmological bounds such that neutrino mass can be in reach for terrestrial experiments?

Cosmology bounds can be relaxed in non-standard scenarios

- neutrino decay into dark radiation Chacko et al. 1909.05275; 2002.08401; Escudero et al., 2007.04994; Barenboim et al.,2011.01502; Chacko et al. 2112.13862: $\sum m_{\nu} < 0.42 \, \text{eV}$
- time dependent neutrino mass Lorenz et al. 1811.01991; 2102.13618; Esteban, Salvado, 2101.05804
- modified momentum distribution Cuoco et al., astro-ph/0502465; Barenboim et al., 1901.04352; Alvey, Sabti, Escudero, 2111.14870
- reduced neutrino density + dark radiation Beacom, Bell, Dodelson, 04; Farzan, Hannestad, 1510.02201; Renk, Stöcker et al., 2009.03286; Escudero, TS, Terol-Calvo, 2211.01729

Cosmology bounds can be relaxed in non-standard scenarios

- neutrino decay into dark radiation Chacko et al. 1909.05275; 2002.08401; Escudero et al., 2007.04994; Barenboim et al.,2011.01502; Chacko et al. 2112.13862: $\sum m_{\nu} < 0.42 \, \text{eV}$
- time dependent neutrino mass Lorenz et al. 1811.01991; 2102.13618; Esteban, Salvado, 2101.05804
- modified momentum distribution Cuoco et al., astro-ph/0502465; Barenboim et al., 1901.04352; Alvey, Sabti, Escudero, 2111.14870
- reduced neutrino density + dark radiation Beacom, Bell, Dodelson, 04; Farzan, Hannestad, 1510.02201; Renk, Stöcker et al., 2009.03286; Escudero, TS, Terol-Calvo, 2211.01729

Relaxing the neutrino mass bound from cosmology

Cosmology is sensitive to:

energy density in non-relativistic neutrinos (late times)

 $\rho_{\nu}^{\text{non.rel.}} \approx n_{\nu} \sum m_{\nu} < 14 \,\text{eV}\,\text{cm}^{-3}$

energy density in relativistic neutrinos (early times, BBN, CMB)

 $N_{-fc}^{\text{relat.}} = 2.99 \pm 0.17$ 'eff

Relaxing the neutrino mass bound from cosmology

Cosmology is sensitive to:

energy density in non-relativistic neutrinos (late times)

 $\rho_{\nu}^{\text{non.rel.}} \approx n_{\nu} \sum m_{\nu} < 14 \,\text{eV}\,\text{cm}^{-3}$

energy density in relativistic neutrinos (early times, BBN, CMB)

 $N_{-cc}^{\text{relat.}} = 2.99 \pm 0.17$ 'eff

relax bound on m_{ν} by reducing neutrino number density

$$\sum m_{\nu} < 0.12 \,\mathrm{eV} \left(\frac{n_{\nu}^{\mathrm{SM}}}{n_{\nu}}\right)$$

introduce "dark radiation" to keep $N_{\rm eff}^{\rm relat.} \approx 3$

$$N_{\rm eff}^{\rm relat.} = N_{\rm eff}^{\nu} + N_{\rm eff}^{\rm DR} \approx 3$$

- after BBN but before CMB decoupling

Relaxed bound from cosmology

relaxing the present bound by converting neutrinos into N_{χ} generations of massless fermions with g_{χ} internal degrees of freedom:

$$\sum m_{\nu} < 0.12 \,\mathrm{eV} \,(1 + g_{\chi} N_{\chi}/6)$$

need $\gtrsim 10$ massless species for $m_{\nu} \sim 1 \text{ eV}$

Farzan, Hannestad, 1510.02201 Escudero, TS, Terol-Calvo, 2211.01729

- 3 heavy right-handed neutrinos (seesaw)
- new abelian symmetry $U(1)_X$ local or global
- a scalar Φ charged under $U(1)_X$
- \bullet a set of $N_{\!\gamma}$ massless fermions charged under $U(1)_X$

Escudero, TS, Terol-Calvo, 2211.01729

- 3 heavy right-handed neutrinos (seesaw)
- new abelian symmetry $U(1)_X$ local or global
- a scalar Φ charged under $U(1)_X$
- a set of N_{γ} massless fermions charged under $U(1)_X$

$$-\mathcal{L} = \overline{N_R} Y_{\nu} \ell_L \widetilde{H}^{\dagger} + \frac{1}{2} \overline{N_R} M_R N_R^c + \overline{N_R} Y_{\delta}$$

$$\mathcal{M}_n = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & M_R & \Lambda \\ 0 & \Lambda^T & 0 \end{pmatrix} \qquad \Lambda \ll m_D \ll M_R$$

Escudero, TS, Terol-Calvo, 2211.01729

$$m_D = \frac{v_{\rm EW}}{\sqrt{2}} Y_{\nu}, \quad \Lambda = \frac{v_{\Phi}}{\sqrt{2}} Y_{\nu}$$

 $\int_{\Phi} \chi_L \Phi + \text{h.c.}$

 $m_{\rm heavy} \approx M_R$ $m_{\rm active} \approx m_D^2 / M_R$ $m_{\gamma} = 0, \quad \theta_{\nu\gamma} \approx \Lambda/m_D$

- 3 heavy right-handed neutrinos (seesaw)
- new abelian symmetry $U(1)_X \rightarrow gauged$
- a scalar Φ charged under $U(1)_X$
- a set of N_{γ} massless fermions charged under $U(1)_X$ $\lambda_{\tau'}^{\chi\chi} = g_X$ $\int_{\Phi} \chi_L \Phi + \text{h.c.}$ $\lambda_{\tau'}^{\chi\nu} = g_X \theta_{\nu\chi}$ $m_{Z'}$ v_{Φ} $\lambda_{\tau'}^{\nu\nu} = g_X \theta_{\nu\gamma}^2$ couplings to neutrinos induced by mixing: $Z' \leftrightarrow \nu \nu l \nu \chi l \chi \chi$

$$-\mathcal{L} = \overline{N_R} Y_{\nu} \ell_L \widetilde{H}^{\dagger} + \frac{1}{2} \overline{N_R} M_R N_R^c + \overline{N_R} Y_{\nu}$$
$$\mathscr{L}_{\text{int}} = g_X Z'_{\mu} \overline{\chi} \gamma^{\mu} \chi \qquad g_X = -$$

Escudero, TS, Terol-Calvo, 2211.01729

- 3 heavy right-handed neutrinos (seesaw)
- new abelian symmetry $U(1)_X \rightarrow gauged$
- a scalar Φ charged under $U(1)_X$
- a set of N_{γ} massless fermions charged under $U(1)_X$

$$-\mathcal{L} = \overline{N_R} Y_{\nu} \ell_L \widetilde{H}^{\dagger} + \frac{1}{2} \overline{N_R} M_R N_R^c + \overline{N_R} Y_{\Phi} \chi_L \Phi + \text{h.c.}$$

$$\mathscr{L}_{\text{int}} = g_X Z'_{\mu} \overline{\chi} \gamma^{\mu} \chi \qquad g_X = -$$

Escudero, TS, Terol-Calvo, 2211.01729

indep. params for pheno:

$$m_{\nu}, M_R, \theta_{\nu\chi}$$

$$v_{\Phi}, m_{Z'}$$

$$m_{Z'}$$

 v_{Φ}

• thermalization of the dark sector:

 $\Rightarrow \left< \Gamma(\nu\nu \to Z') \right> \gtrsim H(T = m_{Z'}/3)$

• thermalization of the dark sector:

$$\Rightarrow \langle \Gamma(\nu\nu \to Z') \rangle \gtrsim H(T = m_{Z'}/3)$$

• avoid thermalization of the dark sector before BBN: $\langle \Gamma(\nu\nu \rightarrow Z') \rangle < H(T = 0.7 \,\text{MeV})$

• thermalization of the dark sector:

$$\Rightarrow \langle \Gamma(\nu\nu \to Z') \rangle \gtrsim H(T = m_{Z'}/3)$$

- avoid thermalization of the dark sector before BBN: $\langle \Gamma(\nu\nu \rightarrow Z') \rangle < H(T = 0.7 \,\text{MeV})$
- free-streaming of neutrinos & dark radiation before/around recombination $\langle \Gamma \rangle < H$ for $z < 10^5$ Taule, Escudero, Garny, 2207.04062

• avoid thermalization of χ prior neutrino decoupling due to oscillations

$$|\theta_{\nu\chi}| \lesssim 10^{-3} \sqrt{\frac{10}{N_{\chi}}} \sqrt{\frac{0.2 \,\mathrm{eV}}{m_{\nu}}}$$

too small to be tested in SBL oscillation experiments

• constraints on heavy RH neutrinos:

$$M_R \lesssim 10^{10} - 10^{14} \,\mathrm{GeV}$$

• perturbativity of Yukawa $Y_{\Phi} N_R \chi_L \Phi$

• loop-induced Higgs portal $\lambda_{\Phi H} |\Phi|^2 H^{\dagger} H$ remains small enough to avoid thermalization of Φ prior BBN

• constraints on heavy RH neutrinos:

$$M_R \lesssim 10^{10} - 10^{14} \,\mathrm{GeV}$$

• perturbativity of Yukawa $Y_{\Phi} \overline{N}_R \chi_L \Phi$

- loop-induced Higgs portal $\lambda_{\Phi H} |\Phi|^2 H^{\dagger} H$ remains small enough to avoid thermalization of Φ prior BBN
- standard thermal leptogensis works if $N \to HL$ dominates over $N \to \chi \Phi$
- otherwise χ would thermalize and conflict with $N_{\rm eff}$ during BBN \Rightarrow require $T_{RH} < M_R$ (allows still for $T_{RH} \gg T_{EW}$)

Further signatures of the model

SN cooling arguments for SN1987A exclude

$$3 \times 10^{-7} \frac{\text{keV}}{m_{Z'}} \lesssim \lambda_{Z'}^{\nu\nu} \lesssim 10^{-4} \frac{\text{keV}}{m_{Z'}} \frac{\text{Fig.}}{22}$$

weaker than BBN constraint $\lambda_{Z'}^{\nu\nu} \lesssim 10^{-7} (\text{keV}/m_{Z'})$

Future galactic SN at 10 kpc detected by HyperK: sensitivity down to

$$\lambda_{Z'}^{\nu\nu} \sim 10^{-9} (\text{keV}/m_{Z'})$$
 Akita, Im, Masud, 2

2206.06852

Summary

- Exciting interplay of cosmology and terrestrial neutrino mass determinations
- Cosmological bounds reaching minimal values required by oscillations
- Relaxing cosmo bound requires new physics
- Presented simple seesaw model:
 - large number of massless sterile neutrinos ($N_{\gamma} \gtrsim 10 30$)
 - dark U(1) symmetry with breaking scale between 10 MeV and 10 GeV
 - weakly coupled Z' with mass 1 100 keV with $\lambda_{7'}^{\nu\nu} \sim 10^{-9}$

Summary

- Exciting interplay of cosmology and terrestrial neutrino mass determinations
- Cosmological bounds reaching minimal values required by oscillations
- Relaxing cosmo bound requires new physics
- Presented simple seesaw model:
 - large number of massless sterile neutrinos ($N_{\gamma} \gtrsim 10 30$)
 - dark U(1) symmetry with breaking scale between 10 MeV and 10 GeV
 - weakly coupled Z' with mass 1 100 keV with $\lambda_{Z'}^{\nu\nu} \sim 10^{-9}$

