

Institut national de physique nucléaire cnrs et de physique des particules

The Einstein Telescope Project @ CNRS

186

DMLab Annual Workshop

Karlsruhe, November 17th, 2023 Patrice Verdier (IP2I Lyon – IN2P3) - patrice.verdier@in2p3.fr

Introduction

Institut national de physique nucléaire et de physique des particules

100 years after their prediction as part of Einstein's theory of general relativity, the discovery of gravitational waves opens a new way to explore and study the Universe!

Nobel Prize in Physics 2017

Intoduction

Institut national de physique nucléaire et de physique des particules

Black hole of 15 M_{\odot}

Neutron star 1.4 M_{\odot}

Current 2G Interferometers

Institut national de physique nucléaire et de physique des particules

LIGO Livingston

KAGRA

Einstein Telescope

Depth:

200m

Institut national de physique nucléaire et de physique des particules

CNIS

≥ 10km

ET pioneered the idea of 3rd generation GW observatory:

- New infrastructure capable of hosting future upgrades for decades without limiting observing capabilities
- Sensitivity at least 10 times better than current (nominal) detectors over a large part of the frequency band
 - A dramatic improvement in sensitivity in the low frequency range (a few Hz to 10 Hz)
- High reliability and improved observation capability

GW detection with 3rd gen. interferometers

Institut national de physique nucléaire et de physique des particules

40 km and 20 km L-shaped surface observatories 10x sensitivity of today's observatories (Advanced LIGO+) Global network together with Einstein Telescope

Cosmic Explorer in the US

Introduction

Institut national de physique nucléaire et de physique des particules

GW science programme

ASTROPHYSICS

Black hole properties origin (stellar vs. primordial) evolution, demography

Neutron star properties

interior structure, equation of state & properties of dense matter, demography

Multi-band and –messenger astronomy

joint GW/EM observations (GRB, kilonova,...) multiband GW detection (LISA) neutrinos

Detection of new astrophysical sources

core collapse supernovae isolated neutron stars (Radio, X, g and GW, FRB, ...) stochastic background of astrophysical origin

FUNDAMENTAL PHYSICS AND COSMOLOGY

The nature of compact objects

near-horizon physics, tests of no-hair theorem exotic compact objects, phase transition in dense matter

Tests of General Relativity post-Newtonian expansion, strong field regime

Dark matter primordial BHs axions, dark matter accreting on compact objects

Dark energy and modifications of gravity on cosmological scales dark energy equation of state, modified GW propagation

Stochastic backgrounds of cosmological origin inflation, phase transitions, cosmic strings

The "unexpected" ?

ET sensitivity

~1 detection

every 30s

Institut national de physique nucléaire et de physique des particules

BINARY NEUTRON-STAR MERGERS

- 10⁵-10⁶ BBH detections per year
- 10⁴-10⁵ BNS detections per year among which ~10-100 with EM counterparts
- High SNR events
- Overlapping events
- ET 1st Mock Data challenge in progress
- 40 papers since 2022 summer on ET science

BINARY BLACK-HOLE MERGERS

ET sensitivity

CNIS

- BNS detection with EM counterparts and localization precision
 < 20 deg² : o(10-100) per year
- Overlap with many BBH signals
- Potentially, very long signals
- ET will be able to provide alerts few hours before the merger

• And with ~500 BNS-EM detection, we can reach Planck resolution on H_0 measurement

The genesis of the Einstein Telescope

The genesis of the Einstein Telescope

Institut national de physique nucléaire et de physique des particules

ET Collaboration

Institut national de physique nucléaire et de physique des particules

<u>1500 collaborators from 217 institutes in</u> <u>24 countries worldwide</u>

Birth of the ET Collaboration in June 2022 in Budapest

ET France

Einstein Telescope France

126 French collaborators Officially joined the ET Collaboration

Mailing list ET-France:

ET-FRANCE-L@IN2P3.FR

ET-France web site: <u>https://et-france.in2p3.fr</u>

Research Unit (RU)	Laboratories	
Artemis	ARTEMIS	
Astroparticule et Cosmologie (APC)	APC	
	IAS	
	SUBATECH	
IF-ILM	IF	
	ILM	
	MSME	
IJCLab	IJCLab	
	LKB Paris	
IP2I - LMA	IP2I Lyon - IN2P3	
	LMA - IN2P3	
IPHC-L2IT	ІРНС	
	L2IT	
LAPP	LAPP	
Paris - Caen	Observatoire de Paris (GEPI, LUTH, SYRTE)	
	GANIL / LPC Caen	
	IAP	

+ CC-IN2P3

Underground infrastructure

Institut national de physique nucléaire et de physique des particules

Xylophone: 2 sensitive interferometers at different frequencies

Triangle configuration to have 3 detectors in the same infrastructure

EMy IMy PRM BS IMx EMx Squeezer PD Filter cavity 1 PD Filter cavity 1 PD Squeezer			
Optical element, Fused Silica, room temperature Optical element, Silicon, cryogenic Laser beam 1550nm Laser beam 1064nm Saguezed light beam			
Parameter	ET-HF	ET-LF	
Arm length	10 km	10 km	
Input power (after IMC)	500 W	3 W	
Arm power	3 MW	18 kW	
Temperature	290 K	10-20 K	
Mirror material	fused silica	silicon	
Mirror diameter / thickness	62 cm / 30 cm	45 cm/ 57 cm	
Mirror masses	200 kg	211 kg	
Laser wavelength	1064 nm	1550 nm	
SR-phase (rad)	tuned (0.0)	detuned (0.6)	
SR transmittance	10 %	20 %	
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.	
Filter cavities	$1 \times 300 \text{ m}$	$2 \times 1.0 \mathrm{km}$	
Squeezing level	10 dB (effective)	10 dB (effective)	
Beam shape	TEM ₀₀	TEM_{00}	
Beam radius	12.0 cm	9 cm	
Scatter loss per surface	37 ppm	37 ppm	
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall	
Seismic (for $f > 1$ Hz)	$5 \cdot 10^{-10} \mathrm{m}/f^2$	$5 \cdot 10^{-10} \mathrm{m}/f^2$	
Gravity gradient subtraction	none	factor of a few	

ET Sensitivity

17

11.

Site candidates

Institut national de physique nucléaire et de physique des particules

A ti an ti c Ocean Ocean United Uni

There are currently two sites in Europe that are candidates to host ET:

- The Sardinia site, near the Sos Enattos mine
- The EU Regio Rhine-Meuse site, close to the NL-B-D border [A third option in Saxony in the future ?]

The sites are studied through

- Seismic noise measurements at surface, in boreholes and mines (Sardinia)
- Magnetic and ambient noise measurements

Consortium formation Einstein Telescope EMR

Geophysical and geotechnical characterizations

Significant funds are required to develop and submit a site application

· Yesterday, Sept 26, 2023

June 6th announcement

Press conference in Roma for official governmental support

- Prime Minister Giorgia Meloni
- Minister of Foreign Affairs Antonio Tajani
- · Minister of University and Research Anna Maria Bernini
- · Minister of Labour and Social Policies Marina Elvira Calderone
- President of Sardinia Region Christian Solinas

Voleyo offrire con la nia presenza l'attenzione, la volont la dedizione che il erno intende i ulla condidatu dell'Italia a ospita Finstein Telescon simbolo dell'Italia ci nole quardare ver l'alto. C'è un'Italia che antare in grande, ma sso quello che ci è mancato è la consaneunlezz Giorgia Meloni

Board of Governmental Representatives - September 27, 2023

Highlight 2023

arXiv:2303.15923 - JCAP 07 (2023) 068

Mar 2023

28

[gr-qc]

arXiv:2303.15923v1

Science with the Einstein Telescope: a comparison of different designs

Marica Branchesi,^{1,2} Michele Maggiore,^{3,4} David Alonso,⁵ Charles Badger,⁶ Biswajit Banerjee,^{1,2} Freija Beirnaert,⁷ Swetha Bhagwat.^{8,9} Guillaume Boileau,^{10,11} Ssohrab Borhanian,¹² Daniel David Brown,¹³ Man Leong Chan,¹⁴ Giulia Cusin,^{15,3,4} Stefan L. Danilishin,^{16,17} Jerome Degallaix,¹⁸ Valerio De Luca,¹⁹ Arnab Dhani,²⁰ Tim Dietrich,^{21,22} Ulyana Dupletsa,^{1,2} Stefano Foffa,^{3,4} Gabriele Franciolini,⁸ Andreas Freise,^{23,16} Gianluca Gemme,²⁴ Boris Goncharov,^{1,2} Archisman Ghosh,⁷ Francesca Gulminelli,²⁵ Ish Gupta,²⁰ Pawan Kumar Gupta,^{16,26} Jan Harms,^{1,2} Nandini Hazra,^{1,2,27} Stefan Hild,^{16,17} Tanja Hinderer,²⁸ lk Siong Heng,²⁹ Francesco Iacovelli,^{3,4} Justin Janquart,^{16,26} Kamiel Janssens.^{10,11} Alexander C. Jenkins,³⁰ Chinmay Kalaghatgi,^{16,26,31} Xhesika Koroveshi, 32,33 Tjonnie G. F. Li, 34,35 Yufeng Li, 36 Eleonora Loffredo,^{1,2} Elisa Maggio,²² Michele Mancarella,^{3,4,37,38} Michela Mapelli,^{39,40,41} Katarina Martinovic,⁶ Andrea Maselli,^{1,2} Patrick Meyers,⁴² Andrew L. Miller,^{43,16,26} Chiranjib Mondal,²⁵ Niccolò Muttoni,^{3,4} Harsh Narola,^{16,26} Micaela Oertel,⁴⁴ Gor Oganesyan,^{1,2} Costantino Pacilio.^{8,37,38} Cristiano Palomba,⁴⁵ Paolo Pani,⁸ Antonio Pasqualetti,⁴⁶ Albino Perego,^{47,48} Carole Périgois,^{39,40,41} Mauro Pieroni, 49,50 Ornella Juliana Piccinni, 51 Anna Puecher, 16,26 Paola Puppo,⁴⁵ Angelo Ricciardone,^{52,39,40} Antonio Riotto,^{3,4} Samuele Ronchini,^{1,2} Mairi Sakellariadou,⁶ Anuradha Samajdar,²¹ Filippo Santoliquido, 39,40,41 B.S. Sathyaprakash, 20,53,54 Jessica Steinlechner, 16,17 Sebastian Steinlechner, 16,17 Andrei Utina, 16,17 Chris Van Den Broeck,^{16,26} and Teng Zhang^{9,17}

Highlights 2023

"COBA" (Cost-Benefit Analysis) conducted by a sub-group of the OSB:

- Impact of the geometry on the physics potential
- Essential inputs from ISB
- ETRAC risk analysis

The result of these analyses put strong emphasis on the comparison between the configurations: "1 Δ 10km" and "2L 15km"

Physics potential with "2L 15 km" is generally better (45° orientation) and less risky: Detailed analysis of the costs to be carried out

Timeline remains unchanged: Preliminary/Preparatory Phase 2022-2026

- Writing the Science Book
- Preparation of the TDR and computing model for 2025-2026: ET-PP deliverables
- And site selection in 2025-2026

Timeline : 2G and 3G

Institut national de physique nucléaire et de physique des particules

Frequency (Hz)

Schedule

R&Ds – ongoing and in preparation

Several studies and research axes underway at the CNRS for the needs of ET or for the improvements of the current detectors – Advanced Virgo+ and Virgo_nEXT – which will be used for ET (non-exhaustive list):

Vacuum Tubes

- Approx. 120-130 km of ~1m diameter vacuum tubes
- o 120,000 m³ of vacuum (2000 m3 LHC at CERN for comparison) ~100 vacuum revolutions
- Expected pressure < 10⁻¹⁰ mbar
- Many associated components: pumps, sensors, valves, etc
- Creation of a vacuum tube prototype LAPP/IJCLab

Squeezing/Quantum Technology

- Quantum noise reduction through high-frequency squeezing -> Virgo/LIGO 3dB for 03, improvement in progress for 04
- 10dB expected for and Developments, Demonstrations, Improvements of Frequency-Dependent Vacuum Squeezing Sources – APC/IJCLab

Mirrors: Coatings and Substrates

- o Large mirrors with extreme optical properties
- o Thin-film coatings with low optical and mechanical losses
- Lack of diffusion and absorption points
- New Technology: Crystalline Coatings
- Improvement of amorphous coatings LMA/ILM
- Studies and development of new crystalline coatings LAPP/LMA
- Sapphire substrate studies ILM/IP2I

Photo: AEI/GEO600

R&Ds – ongoing and in preparation

High Power Laser

- Two wavelengths: 1064 nm and 1550 nm
- Ultra-stable continuous lasers amplified up to ~ hundred W
- Bandwidth <1 kHz and stabilization at ~mHz
- Low noise of RIN intensity
- Low phase noise
 - High-power, ultra-stable laser R&D developments ARTEMIS

Auxiliary optics: telescopes, mode-cleaner

- o Telescopes, mode-cleaner (among others) ultra-stable optics, motorized mounts
- Associated Opto-Mechanics
- Adaptive Optics
- Thermal compensation
 - o Optical and mechanical developments, simulations, design, realization APC/L2IT/LAPP
 - $\circ~$ Development of a suspended bench for optical and mechanical tests LAPP

Electronics – real-time

- \circ $\,$ Several thousand sensors, actuators, controllers
- $\circ \ \ \, \text{Need for electronic developments}$
 - Real-time electronics specific developments LAPP/IP2I
 - White Rabbit Upgrade IJCLab

R&Ds – ongoing and in preparation

Stray Light

- Limiting Factor of Gravitational Wave Detectors
 - o Development of tools for more accurate calculations measurements and control Institut Fresnel/APC

Optical Simulations

- o Need to understand, control and improve gravitational wave detectors
- o Implement reliable and robust simulation tools
- o Linear simulations: studying linear effects, opto-mechanical effects, the impact of high power
- o Time-domain simulations to study control noise
 - o 3D simulation
 - \circ The French community is being set up in this area APC/L2IT/LMA/LAPP

Other aspects under study:

- Sizing of Cryogenic Ultra Vacuum Towers (IJCLab)
- Calibration (LAPP/IPHC)
- Acoustics (LAUM)

New developments not studied for Virgo (Virgo _nEXT) or LIGO, to be prepared for ET:

- Cryogenics R&Ds in preparation (IJCLab/APC)
- o 1550 nm
- Machine Learning / AI / High Parallel Computing

Extension of the LMA in Lyon

Institut national de physique nucléaire et de physique des particules

An investment for:

- the extension of the LMA building ٠
- the construction of a new coater allowing ٠ the deposition of thin films on very large substrates: Ø 1.6 m, 600 kg
- associated optical and metrology tools ٠

LMA is a research infrastructure unique in the world

Developing technologies for future experiments (e.g. Einstein Telescope)

ET Infrastructure and ET Collaboration

Institut national de physique nucléaire et de physique des particules

The EU supports the creation of the ET infrastructure (ETO) through the financing of an Infradev project:

Einstein Telescope Preparatory Phase (ET-PP)

Since the summer of 2022, the ET structures are being put in place

E-Infrastructure

ET will use a **distributed computing infrastructure** in Europe, based largely on existing infrastructures such as CC-IN2P3 in France (ET = \sim 10% of an LHC exp. at CERN).

Increasing use of **high-performance parallel computing** (HPC) vs HTC computing.

Use of tools and services developed in the framework of the **European Open Science Cloud** and European projects such as ESCAPE for **multi-messenger physics**

CNIS

Einstein Telescope is a very ambitious project for the late 2030s

In France, preparing 3G experiments for ground-based GW detection has been identified as a priority in the <u>Strategic Plan for French Nuclear, Particle and Astroparticle physics in the 2030 Horizon</u>

There are important synergies between Einstein Telescope, existing 2G detectors (LIGO-Virgo-KAGRA) and future detectors (Cosmic Explorer)

- Expertise acquired on EGO-Virgo and in LVK is an important asset
- French participation to ET is at this stage well controlled regarding the challenges of 2G detectors for the next ~15 years

Several subjects of collaboration on GW physics between Helmholtz and IN2P3 labs have been identified : from physics studies (analysis, multimessenger, ...) to technological developments (cryogeny, mirrors, computing ...). It is now the right time to develop new collaborations on these subjects

RESERVE

GW spectrum

CNIS

Physical phenomenon, Search techniques

CE Timeline

Institut national de physique nucléaire et de physique des particules

cnrs

ET technologies

Institut national de physique nucléaire et de physique des particules

Technologies and challenges for ET

Institut national de physique nucléaire conrs et de physique des particules

- Extrapolation of current or planned technologies for Virgo and LIGO
 - Squeezing (quantum states of light)
 - High power lasers
 - Bigger mirrors
 - New thin films for mirrors
 - Thermal compensation techniques
 - Seismic suspension systems
- Technologies not tested in Virgo and LIGO (prototypes and/or R&D in progress)
 - Cryogenics (=> KAGRA)
 - New cryogenic materials
 - New laser wavelengths
- ⇒ Implementation of R&D programs

Vacuum pipe system

Vacuum systems planned for 3G detectors are likely to be the largest UHV systems built

- The beam tube is its most important component (~1/2 of the cost of the system)
- 120 km of UHV tubes of 1 m diameter, total volume $\sim 10^5$ m3
- Vacuum requirements: factor > 5 stricter than Virgo:
- 10^{-10} mbar for H2, 10^{-11} mbar for N2, $< 10^{-14}$ mbar for hydrocarbons
- Lifespan: 50 years Preliminary estimated cost ~560 M€

Joint development with CERN involving Einstein Telescope and Cosmic Explorer (US Project)

WP1: Design and engineering of the vacuum chamber [CNRS coordination]

Four designs are being considered:

- Baseline: Virgo-like solution adapted to ET tunnel
- Corrugated wall: 1.3-mm thick wall with regular corrugations
- Double wall chamber with thermal insulator between the two walls
- Pipeline

For the first two, we have a detailed:

- thermal-structural analysis;
- vibration modal analysis;
- design of different support systems (rigid and suspended);
- positioning in the tunnel.

Infrastructures

Institut national de physique nucléaire et de physique des particules

expander telescope

ET-LF beam expander telescope

ET-LF filter cavities

Infrastructure

- el. Peratória ----
 - stratégie pour la construction des tunnels et cavernes
 - gestion infrastructure souterraine
 - intégration dans l'environnement local

+ Studies for the characterization of candidate sites in progress: drilling, ambient noise (seismic, wind turbine, magnetic ...)

Taille, forme des cavernes ?

Méthode d'excavation ?

Installations existantes ?

ET-PP

HORIZON-INFRA-2021-DEV-02: « Developing and consolidating the European research infrastructures landscape, maintaining global leadership » - and therefore, accompanying EU to the assembly of newly registered IR ESFRI EFRI ROADMAR

Einstein Tescope Preparatory Phase (ET-PP): 4 years project (2022-2026)

Coordination: Mario Martinez (Espagne, IFAE) **Countries of participating institutes & laboratories:**

Germany, Austira, Belgium, Spain, France, Hungary, Italy, Netherlands, Poland, UK, Switzerland

EU Budget: 3,45 M€ **Total Budget :** 13,9 M€ i.e. in-kind of 10,45 M€ (salairies of permanent staff involved)

ET-PP will provide a detailed implementation plan for the ET infrastructure:

- the expansion of the ET consortium
- the legal framework, governance regimes and financial regulations to build and operate
- detailed technical design and costing of the ET observatory
- preparing the site selection
- costs of the site's infrastructure, socio-economic and environmental impacts
- technology transfer, procurement and industry involvement programs in engineering design and construction
- the required link with the scientific communities concerned regarding the detailed definition of the scientific programme
- User services and data access mode

ET-PP

WP1: Spanish responsibility in close connection with INFN and Nikhef

WP2-3-4: essentially INFN & Nikhef

WP6 & WP8: Responsibilities for collaboration scientific AND that is being set up => essentially in-kind

Essential IN2P3 contributions to ET-PP in order to prepare ETO

Site candidates in Europe

Institut national de physique nucléaire et de physique des particules

cnrs

Sardinia – Italy

Euregio Meuse-Rhin Netherland

Saxe – Germany

€50 million for R&D and preparatory work

€42 million for R&D and preparatory work

New DZA laboratory (2022) 170 M€/year over 10 years

ETIC in Italy

Einstein Telescope Infrastructure Consortium "Multi-100 M€" financing to support ET's site in Sardinia

ET-Pathfinder in Maastricht

"Multi-100 M€" financing if the ET site is in Euregio Meuse-Rhine

3 pillars: astrophysics, data science, technology

Construction costs

Institut national de physique nucléaire et de physique des particules

²⁰²¹