Direct detection of Axion dark matter with MADMAX

Vijay Dabhi DMLab 3rd annual meeting 2023 16 November 2023

Strong CP Problem

- CP violation in strong sector
 - QCD Lagrangian has a CP violating term that is controlled by θ parameter ($-\pi < \theta < \pi$)
 - This term leads to a neutron electric dipole moment

 $d_n = (2.4 \pm 1.0) \,\theta \, \times 10^{-3} \,\mathrm{e\,fm}$

- Current experiments give upper bound of $|d_n| < 1.8 \times 10^{-13} \, {\rm e\,fm}$ leading to $|\theta| < 0.8 \times 10^{-10}$
- Strong CP problem = fine tuning problem: Why is a free parameter θ so small?
- Solution: Peccei Quinn mechanism provides a dynamic reason for the small value of θ by introducing a new U(1) symmetry that is spontaneously broken at a high energy scale f_a; generating a newlight neutral pseudo scalar boson that is called 'Axion'

Axion properties

- All properties of axions controlled by just one parameter: f_a
 - Models with $f_a \sim f_{EW}$ excluded a long time ago, new models (KSVZ and DFSZ) have f_a (O(10¹⁰) GeV) >> f_{EW}
 - Tiny mass $[\mathbf{m}_{a} \approx m_{p} f_{p} / \mathbf{f}_{a} \ll eV]$,
 - Very weakly interacting [suppressed by f_a]
 - $\tau_{axion} > t_{Universe}$
- Axion like particles (ALPS) = $m_a \times f_a$ not constant

QCD Axion = DM candidate motivated by particle physics since 40 years

How to see the axion ?

- Convert it to a photon in magnetic field (inverse primakoff effect)
 - Several experimental constraints

Axion search very rich in experimental challenges

Axion/ALP direct searches

6

Plot from https://cajohare.github.io/AxionLimits

Axion mass range

MADMAX goals:

- Probe the QCD axion mass: 40-180 μeV
- Tunable in frequency coverage: 10-45 GHz
- Traditional cavity experiments have many limitations to operate above 40 µeV, therefore new technologies are required to probe this range

Dielectric haloscope: principles

In an external magnetic field B_e the axion field a(t) sources an oscillating electric field E_a

 $E_a \cdot \epsilon \sim 10^{-12} \text{ V/}_{\text{m}}$ for $B_e = 10 \text{ T}$

 E_a is different in materials with different ε

At the surface, E_{\parallel} must be continuous \rightarrow Emission of electromagnetic waves

Dielectric haloscope: principles

• **Constructive interference** (and resonance) of coherent photon emission at dielectric layers surface (leaky resonators cavities)

• Axion mass scan : by positioning discs with μm precision at 4K under 10 T (50 MHz step)

The MADMAX collaboration

• Formed in 2017. 10 institutes: French (2), German (6), Spanish (1) and US (1) \rightarrow ~50 people

MADMAX prototypes

- Validate the new concept of dielectric haloscope using several prototypes
 - Construct the prototypes using sapphire (ϵ = 9.36) dielectric disks
 - Test the prototypes at CERN using 1.6 T Morpurgo dipole magnet during beam shutdown period
- Prototypes to probe the region:: $m_a \sim 80 \mu eV$, f $\sim 20 GHz$

CB100

P200

OB300 (upcoming)

Name	Setup	Goal	Available
CB100	3 fixed disks, ϕ = 100mm	RF studies + First physics	2021
P200	1 moveable disk, ϕ = 200 mm	Piezo-motor + mechanics	2021
OB300	3 moveable disks, ϕ = 300 mm	Scan ALPs	2024

I participated to CB100 data taking, P200 data analysis and OB300 simulations

CB100: First ALP search

• Goal: To understand the RF response of the system and perform an ALP search

CB100 booster prototype

Magnetic field availability was very stable - 95% during 21 days of data taking in 2023 (10 hours in 2022)

CB100: Stable Data monitoring 2023

CB100: Understanding the booster RF behaviour

- Simulate the LNA response (ADS) to reproduce the noise temperature data
- Simulate booster+taper system (COMSOL) and calibrate boost factor shape including systematics β² = O(1000) at ~19 GHz

Paper in preparation (to be completed end of the year)

P200: Disk positioning system

- Precise control of 200 mm diameter sapphire disk position with three piezo motors
 - Position error Δd = target position (controller) measured position (interferometer)

P200: Test results

- Motors tested in 2022 at room temperature (DESY), at cryogenic temperatures (CERN), and in magnetic field (CERN MORPURGO)
 - Motors/mechanics work at cold temperature (5K) and high magnetic field (1.6 T)
 - The accuracy of piezo motor positioning better than 10 μ m

Paper in preparation

OB300 booster

Goals of the study:

- 1) Measure the disk planarity,
- 2) Perform simulations of disk position and ordering to optimize boost factor,
- 3) Predict electric field and compare it with measurements.

OB300: Disk planarity measurements at CPPM

Planarity of 4 sapphire disks of 1 mm thickness measured with O(1) μ m precision

- ~ 500 points of measurement
- 52 μm RMS
- Bowl shape coming from the manufacturing process

300 mm

sapphire

disk

OB300: 3D Simulations

OB300: 3D simulations

- Simulation based on the theoretical paper: arXiv:1906.02677
 - Calculate β^2 by recursive Fourier propagation of EM fields
 - Use an optimizer to maximize the boost factor by varying the distances
 - First result obtained using ideal flat disks to serve as a benchmark
 - β^2 is similar to CB100, but P $\propto\beta^{2*}A$

Power boost factor:
$$\beta^2 = \frac{P_{\text{total}}}{P_{\text{mirror}}}$$

OB300: Boost factor optimization

- Among 192 configurations, some orientation and ordering are preferred
 - Best β^2 is 1000 compared to 2000 for flat disks

Conclusion

- Axions can solve the strong CP problem and the dark matter problem
- MADMAX dielectric haloscope to probe the axion mass range around 100 μeV that is favoured by post-inflationary scenarios
- MADMAX currently in the prototyping phase to validate the dielectric haloscope concept
 - CB100 two data taking completed in March 2022 and March 2023 at CERN (paper in preparation)
 - P200 disk positioning system shown to work at 5K temperature and 1.6 T magnetic field
 - OB300 final prototype to be assembled in the coming weeks
- I participated to CB100 data taking, P200 data analysis and OB300 simulations

Future plan

	Name setup		Goals		
	P200	1 moveable disk ϕ = 200 mm	Analysis ongoing, a	a paper in making	
	$\begin{array}{c} \text{CB100} & 3 \text{ fixed disks} \\ \phi = 100 \text{mm} \end{array}$		Experimental run at cold and in magnetic field at CERN 2024		
	CB200	4 fixed disks ϕ = 200 mm	Experimental run in mag	netic field at CERN 2024	
	OB300	3 moveable disks ϕ = 300 mm	Assembly and Calibration Dec 2023, experimental run at cold in 2025/2026		
202	1		2025	2028 —	
P C	roto boosters B 100, P200	We are here!!! ⁴ m	ide proto cryostat agnet (CERN)	Am	Final MADMAX booster inside 10 T magnet

Thank you

Magnet

- European Innovation partners: CEA Saclay and Bilfinger Noell
- FoM: B²A = **100 T²m²**

X [m]

480 MJ!

24

PQ mechanism

New field: $\Phi = R(t, \mathbf{x}) \exp[i\theta(t, \mathbf{x})]$

The potential favors θ = 0, thus solving the strong CP problem

Original PQ mechanism already disproved, two modified PQ mechanisms (KSVZ and DFSZ) are the object of interest for current experiments

Arxiv: 2308.16003

Neutron Electric dipole moment (nEDM)

$H = -\mathbf{d} \cdot \mathbf{E}$

 $\mathbf{d} = \mathbf{d}\mathbf{\sigma}$ is the electric dipole moment, E is electric field d is odd under CP, while E is even

The combined term leads to CP violation

Sources of axions

Axion scales

Disk interpolated measurements

All the disk faces similar to each other

Disk interpolated measurements

Déformation 3D grossit x500

Disk 4 face A shape visualized by multiplying the surface height by 500

Disk 1 faces has less deviations in the surface measurement (lower rms values) than disk 2

P200 tests

P200 in cryostat

OB calibration (1/2)

Boost factor determined using Bead Pull Method (non-resonant perturbation theory) + Lorentz reciprocity theorem J. Egge, JCAP 04 (2023) 064

OB calibration (2/2)

Measure boost factor (+ systematics)

[paper in preparation]