

Generate the samples

Thomas Kosc, DUNE-FR workshop
April 2023

kosc.thomas@gmail.com

 2

Simulation workflow

Event generator

● Single Generator

● Supernova (marley)

● Cosmics

● GENIE (beam,
atm…)

● ...

G4

● Larg4Main (handles
interface with G4)

● Energy deposition
(ion + scint.)

● Drift of electrons

DETSIM

● Signal simulation at
the strip level
(rawdigits)

● Noise model

RECO

● Coherent Noise
Removal

● Signal filtering,
deconvolution

● Hit Finder

● High level reco
(showers, tracks…)
& event classifier
(CVN)

My talk Thibaut and Laura’s talks

FHiCL files
➢ Fermilab Hierarchical Configuration Language. See introduction at (need fermilab

account) :
https://cdcvs.fnal.gov/redmine/documents/327

➢ I encourage people to read more at : https://cdcvs.fnal.gov/redmine/projects/art/wiki

➢ Text file to provide full configuration (i.e modules to call + associated variables) to run art
with command lar -c your_config.fcl -n 5

➢ Few things to know at the start :
 List of name-value with following syntax → name: value (separation \t, \n, ‘ ‘).
 #include ‘’dummy.fcl’’ directive makes your fhicl file inherits from all

configurations set in dummy.fcl (except if this config file contains
BEGIN_PROLOG at its beginning).

 When inheriting, one can modify the value of a name by accessing its full key.
 Last modification wins.

Number of events to generate or treat.

https://cdcvs.fnal.gov/redmine/documents/327
https://cdcvs.fnal.gov/redmine/projects/art/wiki

Dummy illustration
➢ Here’s a dummy configuration that basically has nothing in it. Only the four tables

defined will be in every confiuration file one will see when using the dunesw.

➢ art merely initializes few
things and then exits the job.

Very useful tips (at least to me...)
➢ Again : I didn’t invent anything. All available in this talk.

➢ Dump the full config file (unfolding all includes + variables called), but don’t show the
prologs and have a readable configuration file.

 fhicl-dump protodunevd_standardsingle_driftX.fcl > dump.fcl
 equivalent to : lar -c protodunevd_standardsingle_driftX.fcl –debug-config dump.fcl

Pretty useful for debugging

➢ Have the perl scripts searchfcl.pl and fcllookup.fcl :
 perl searchfcl.pl FHIL_FILE_PATH singles_dune.fcl
 perl fcllookup.pl protodunevd_minimal_simulation_services:

➢ Finds a fhicl file

➢ Looks for matching caracters in all fhicl
files in $FHICL_FILE_PATH

➢ I often add ‘ :’ at the end to find only the
definition place of a given variable, and
not everywhere it is called.

https://indico.fnal.gov/event/49414/contributions/217595/attachments/144555/183664/fife_workshop_june17_intro_to_art_trj.pdf

Gun Muon (I)
➢ Take protodunevd_standardsingle_driftX.fcl

➢ It contains several tables (or blocks)

➢ Table ‘services’ : define here list of
services modules (classes globally
visible within an art job, such as
Geometry).

➢ Table ‘source’ : file input type (empty,
art-root).

➢ Some includes (only of types
PROLOGS, i.e variable definitions).

https://github.com/DUNE/dunesw/tree/develop/fcl/protodunevd/gen

Gun muon (II) ➢ Table ‘physics’ to define what one
actually want to do.

 producers
 analyzers

➢ Table outputs : choose output filename
etc.

➢ Substitutes fully qualified keys with their
desired updated values.

Gun muon – parameters to tweak
➢ SingleGen_module.cc is here. It contains numerous variables initialized from reading of

the fhicl file. Tweakable from configuration file !

➢ Use fhicl-dump command to dump the full config file into a local myfcl.fcl, and then
tweak parameters wanted (search name ‘generator’).

https://github.com/LArSoft/larsim/tree/develop/larsim/EventGenerator

Angle parametrization
➢ Direction of generated particle is ruled by two angles : thetaXZ and thetaYZ

➢ From Laura’s talk.

➢ Not the most intuitive ones, a
reproducible method is to go
for Dx, Dy and Dz and find the
corresponance

https://indico.fnal.gov/event/54070/contributions/238932/attachments/153929/199865/larsoft_first_look_8422.pdf

Cosmics (I)
➢ Take gen_protodunevd_cosmics.fcl

➢ Services, source and outputs blocks are identical, except for physics.

➢ Only the physics block is different,
and calls and protoDUNE-DP
module cosmic generator (relies on
corsika).

https://github.com/DUNE/dunesw/tree/develop/fcl/protodunevd/gen

Cosmics (II)
➢ Parameters to tweak :

● ProjectToHeight : where to start the shower [cm]
● ShowerAreaExtension :
● BuffBox : extension of acceptance box (default = cryostat) [xlow ; xsup ; ylow ; ysup ;

zlow ; zsup] to capture more cosmics.
● RandomXZShift : shift of the beginning of the shower.

➢ Playing with buffer box to increase
generated particle acceptance.

➢ RandomXZShift : typical confusing
hardcoded variable HD orientated.

➢ Name of the module shown here,
so source code is :
CORSIKAGendp_module.cc

What do I have in my art output file (I) ?
➢ art-root output files are hardly readable with a simple browser in a root sessions. I

suggest two options :

➢ lar -c eventdump.fcl your_art_root_file.fcl
That command will display on screen the objects and their types that you have.

 Limited amount of information
 Relevant for having a large view on what’s going on.

➢ This chart gives you many useful infomartion : name of the process, labels of the art
objects (you need the to be able to retrieve them, see next slide), and the size.

➢ Later, one will have a look at high level stuff such as recob::Track. If the size of such an
object is 0, you already know you have 0 reconstructed track in this event.

What do I have in my art output file (II) ?
➢ To go further : one can have a script (use checkProd.cc) that one can launch in a root

session. This script will display more detailed information on the simb::MCTruth object.

➢ art objects are retrieved with this command taking in argument the tag of the objects.

Convention is ‘label :name’.

Keep it as a skeleton !
➢ Good to keep such a skeleton script in one’s home directory that one can then modify to

look at stuff related to his/her current work.

➢ I added most of the #include one would encounter.

Going to G4 !
➢ Next stage of the simulation workflow : simulating the particle propagation, ionization +

light in the detector.

➢ Thibaut now leads.

Fixing the seed
➢ Pretty useful to debug situations. The seed is fixed via the NuRandomService

➢ Match the names in the service to the ones in physics.simulate

➢ In this example (gun muon + g4 stage1),
I have a reproducible energy deposition
from one run to the other

Brown cake recipe (French)
➢ 250 g farine
➢ 125 g sucre roux (ou moins)
➢ 120 g d’eau
➢ 130 g de miel
➢ 1 œuf
➢ 1 cuiller à café de bicarbonate de soude
➢ 2 cuiller à café d’anis (ou plus).

Mélanger œuf + sucre, battre. Ajouter farine (ça fait un gros truc tout moche). Mélanger
eau + miel, faire tiédir, et ajouter au mélange. Battre.
Ajouter le bicarbonate de soude et l’anis, mélanger.

Cuisson : 150° (th. 5) ~1h30 pour un plat à cake (graisser légèrement au préalable, ou
utiliser papier cuisson).

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17

