Light simulation and Analysis

Henrique Souza

APC - 19/04/2023

Motivation

The LArTPC is characterized by the free drifted electrons signal and light emission

- The detection of scintillation light can provide the absolute time (T0) of events and internal triggering for non beam events
- **Besides, light signals can improve** position, time and energy resolution. Improve particle identification (PID) and improve background rejection by the proper fidualization of the detector.

Overview

- Liquid argon scintillation
	- Mechanism
	- Composition and time response
	- Propagation
- Detection
	- Description of DUNE's photon detectors: X-Arapuca
- **●** Simulation
	- How is the light simulation implemented
- **Analysis**
	- Where to find data real data and its structure

Disclaimer: many of these slides were possible from past slides, specially [this](https://indico.ph.ed.ac.uk/event/130/timetable/#20221109.detailed) presentation from Andrzej Szelc and thanks to Laura Paulucci for sending support material.

Liquid argon scintillation

- Mechanism of light production
- Time components
- Scintillation yield
- Electric field
- Light propagation

Mechanism

Ph. Rev. B 56 (1997), 6975

5

Mechanism

Ph. Rev. B 56 (1997), 6975

Time components

 $time(nsec)$

Scintillation time and yield

Composition of fast/slow (singlet/triplet) depends on particle Linear Energy

 10^2
LET (MeV/g/cm²)

10

 $10³$

 $10⁴$

 10^{5}

Muon/e: 23 % (fast) and 77% (slow)

HH

 \mathbf{e}

 1.2

 1.0

 0.8

 0.6

 0.4

 0.2

 0.0

 0.1

Relative scintillation yield Y

TABLE I. Decay times for the fast τ_s and the slow τ_r components of luminescence from liquid argon. The intensity ratios I_s/I_T of the fast component to the slow component are also shown. F.F. stands for fission fragments. All decay times are in nsec.

Scintillation time and yield

TABLE I. Decay times for the fast τ_s and the slow τ_r components of luminescence from liquid argon. The intensity ratios I_s/I_T of the fast component to the slow component are also shown. F.F. stands for fission fragments. All decay times are in nsec.

Ph. Rev. B 27 (1983), 5279

Scintillation yield also depend on LET.

Muon/ e^- ~ 0.8

Alphas ~ 0.7

9

Electric field (simplified model)

Phys. Rev. B 20, 3486

At 500 V/cm we have about 60% of light. For muons, this corresponds to 24,000 photons/MeV

(See backup for estimating number of photons)

Light propagation

- Pure LAr is transparent to its own scintillation radiation
	- \circ Attenuation is given by an exponential with decay length of ~20 m (3 ppm N₂)
- During propagation through LAr VUV photons may undergo elastic interactions on Ar atoms ⇒ **Rayleigh scattering**

Detection

- Photon detection system (PDS) motivation
- X-Arapuca working principle

Photon Detection system - PDS

• Detecting 127 nm light is challenging. Besides, HD and VD requires that the photon detectors must have no more than 2 cm in thickness

X-Arapuca - Working principle

● The device makes use of a dichroic filter in combination with two wavelength shifters (WLS)

A.A. Machado and E. Segreto 2016 *JINST* **11** C02004

X-Arapuca - Working principle

 $PTP \rightarrow p$ -Terphenyl $SIPM \rightarrow Silicon photomultiplier$
Charged particle liquid argon scintillation light 127 nm **PTP** 350 nm Dichroic Filter LAr **SiPM** 430 nm **WLS** plate LAr Reflective surface

X-Arapuca - Working principle

16

Photon Detection system - PDS

- The PDS is based on the X-Arapuca device
- A total of 2 x 80 Silicon Photomultipliers (SiPMs) per module
- 2x36 dichroic filters coated with pTP
- These devices are installed on the Cathode at -300 kV
	- Power supply and signal must be transmitted over non-conducting materials (not this talk)

Simulation

- What about the simulation?
- It takes into account everything said up to here:
	- Emission spectrum
	- Time response
	- Scintillation yield
	- Propagation
	- Detection

Simulation

- Different modes of simulation
	- Full optical simulation (extremely slow)
		- Requires definition of all optical properties
	- Fast optical simulation (faster, but less precise)
		- Still need to run full optical at least once
		- Majority of optical properties "burned in"
		- Semi-analytic and optical library
- **Brief description of LArSoft output**

Full optical light simulation

 L_{abs} = 20 m

Bulk absorption

Fast optical model: Optical Library

- Resolution depends on voxel sizes:
	- granularity effects at short distances
- Optical library size scales with detector size and number of photon detectors
	- Difficult to get working in DUNE

Disco dS \overline{S} Eje de simetría

 $\Omega = h \int_0^{2\pi} \int_0^b \frac{r}{[h^2 + r^2 + d^2 - 2rd \cos(\varphi_o - \varphi)]^{3/2}} dr d\varphi$ Eur. Phys. J. C 81, 349 (2021)

From Andrzej Szelc presentation

- Given a dE/dx in a point (x, y, z) we want to predict the number of hits in our optical detector $(x_{i}^{{\vphantom{\dagger}}},~y_{i}^{{\vphantom{\dagger}}},~z_{i}^{{\vphantom{\dagger}}})$
- Isotropic scintillation emission makes the problem "almost" geometric

$$
N_{\Omega} = e^{-\frac{d}{\lambda_{\text{abs}}}} \times \Delta E \times S_{\gamma}(\mathcal{E}) \times \frac{\Omega}{4\pi}
$$

 $\lambda_{\rm abs}$ = LAr absorption

 $S_{\gamma}(\mathcal{E})$ Scintillation Yield as function of electric field

 ΔE = Energy deposited

 $N_{\Omega} = e^{-\frac{d}{\lambda_{\text{abs}}}} \times \Delta E \times S_{\gamma}(\mathcal{E}) \times \frac{\Omega}{4}$ $S_{\gamma}(\mathcal{E})$ Scintillation Yield as function of electric field ΔE = Energy deposited 4π 23

- Implementation of Rayleigh scattering
	- Correction using Gean4 simulation
- Correction for detector size and geometry (not included here)

Gaisser–Hillas (GH) functions:

$$
GH(d) = N_{\text{max}} \left(\frac{d - d_0}{d_{\text{max}} - d_0} \right)^{\frac{d_{\text{max}} - d_0}{A}} e^{\frac{d_{\text{max}} - d}{A}}
$$

"where N_{max} is the maximum of the function located at a distance d_{max}, and d₀ and Λ are parameters describing the width of the distribution"

$$
N_{\gamma} = N_{\Omega} \times GH'(d, \theta, d_T)/cos(\theta)
$$

 $N_{\gamma} = N_{\Omega} \times GH'(d, \theta, d_T)/cos(\theta)$

Example of the distribution of direct photons arrival

Empirically described by a Landau and exponential for all emission points

$$
t_t(x) = N_1 \underbrace{\frac{1}{\xi} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{\lambda s + s \log s} ds}_{Landau} + \underbrace{N_2 e^{\kappa x}}_{Exponential}
$$

"where λ = x−μ/ξ , with μ and ξ commonly referred as the landau most probable value and width parameters respectively, κ is the slope of the exponential and N1 and N2 are normalisation constants."

- The final time response of the detector will take into account:
	- Emission time
	- Propagation time
	- Wavelength shifter delay

○ Detector time

29

Larsoft output

Courtesy of Laura Paulucci

Reconstruction

Hit finding:

searches for peaks on individual waveforms channel-by-channel, identifying the time and the total amount of PEs

Larsoft output

Reconstruction of events

Analysis

- Where you can find some actual data
- The structure of this data
- Some of the main analysis performed up to now

Some actual data

- Since Dec. 2021 we have been collecting data with the coldbox.
	- Unfortunately, one need to understand the setup by asking / tracing back old slides as the configuration changed quite often there
	- Besides, there was no simulation implemented for the coldbox and, at this point, Module-0 will soon enough collect data to be analyzed.
		- However if anyone interest, please let me know :D
	- Nevertheless, the data of past coldbox runs can be found in lxplus: /eos/experiment/neutplatform/protodune/experiments/ColdBoxVD
	- \circ I will quickly show how the data was collected and the main analysis up to now (if there is time hehe)
- Future data of Module-0
	- Where? Don't know
	- Format? Probably binary in similar way of what I am going to show now

Some actual data

Data acquisition done with CAEN Digizer DT5730SB (2 Vpp 14 bits 250^{*} MS/s):

- Data stored at lxplus:

/eos/experiment/neutplatform/protodune/experiments/ColdBoxVD/

To access data, please, register in the np-comp e-group:

<https://e-groups.cern.ch/e-groups/EgroupsSearchForm.do>

20220615 LED calibration cathode off

Run folder with brief description (README file available)

20220615 LED calibration cathode off

\n
$$
\frac{1}{2} \text{ min} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{275 \text{ nm}}{20 \text{ ns}} \cdot \frac{1}{2} \cdot \frac{1}{2
$$

Run number, it refers to the order in which data were taken Some block of information relevant for that specific run. A README file helps to understand this block of information

0 wave3 v4 275nm 20ns 4V7.dat 0 wave4 v4 275nm 20ns 4V7.dat 1 wave3 v4 275nm 20ns 4V7.dat 1 wave4 v4 275nm 20ns 4V7.dat

20220615 LED calibration cathode off

X_waveY

X are subruns with 10k events each Y is the channel number

Example:

wave0: xArapuca A4ch2 (light blue fiber) **wave1:** xArapuca A1ch1 (white fiber) **wave2:** miniArapuca A4ch1 (green fiber) **wave3:** miniArapuca A1ch2 (blue fiber)

X_waveY

X are subruns with 10k events each Y is the channel number

Data is saved as binary (faster and lighter).

1 waveform consist of 6 headers and **n** samples

The HEADER is so composed (for all digitizer families except the 742 one):

- This number is given in bytes. So if we have <header0> Event Size (i.e. header + samples) **4 bytes** 5000 samples, this number will be:
- **4 bytes** <header1> Board ID
- **4 bytes** <header2> Pattern (meaningful only for VME boards) Total = 10024 bytes
- **4 bytes** <header3> Channel
- **4 bytes** <header4> Event Counter
- **4 bytes** <header5>Trigger Time Tag

N * 2 bytes <N samples>

Let me know if you need an example code to read the data with Root.

 Headers = 24 bytes + samples = 5000*2

Main analysis up to now

Single photo-electron (SPE): uses low intensity LED flashed of light to detect one or more photons. Which results in what we call `SPE spectrum`

Main analysis up to now

Linearity and dynamic range: uses LED to check linear behaviour of detector/electronics over the entire dynamic range of the device.

Main analysis up to now

Overall pulse shape: undershoot, overshoot, rise and fall time characterization of signals with LED and Cosmic (self-trigger data) data

If there is still time…

Interesting past analysis with ProtoDUNE-SP

- Recover light that would be lost to nitrogen contamination
- Increase the wavelength of the photons:
	- Easier to detect
	- Higher Rayleigh scattering
- Possibly increase PID capability

If there is still time...

If there is still time…

● Interesting past analysis with ProtoDUNE-SP

Thanks :D

Estimating number of photons:

Number of ionized atoms is proportional to the energy deposited (E₀) by the particle divided by the average energy expected per ion pair (W_l = 23.6 \pm 0.3 eV):

$$
N_i = E_0/W_l
$$

Assuming that all ionized and excited molecules will produce photons, we have:

$$
N_{ph} = N_i + N_{ex} = N_i \cdot (1 + N_{ex}/N_i) = E_0/W_i \cdot (1 + N_{ex}/N_i)
$$

And so:

$$
N_{ph} = \frac{E_0}{W_{ph}^{\text{min}}}
$$
 with $W_{ph}^{\text{min}} = \frac{W_l}{1 + N_{ex}/N_i} = 19.5 \pm 1.0 \text{ eV}$

So the maximum number of photons produced by MeV is simple 1 MeV / $19.5 \sim 50 \times 10^3$ photons/MeV If you consider 0.8 factor for muons and 0.6 factor for Electric field, wth have the usual 24x10³ photons/MeV

- Noble gas: electropositive and dielectric (low electron absorbance and high voltage allowed)
- High density
- High radiation length (allows good discrimination between electrons and photons and make it easier to retrieve neutrino vertex)
- Abundant in nature

https://arxiv.org/abs/2112.02967

49

52

 $\begin{array}{c|c}\n & 800 & 900 \\
\hline\nQ \# photons\n\end{array}$

 $\begin{array}{c}\n 800 \qquad 900 \\
 \text{Q # photons}\n \end{array}$

600

MC output

600

 700

700

Courtesy of Laura Paulucci

