Light simulation and Analysis

Henrique Souza

APC - 19/04/2023

Motivation

• The LArTPC is characterized by the free drifted electrons signal and light emission

- The detection of scintillation light can provide the absolute time (T0) of events and internal triggering for non beam events
- Besides, light signals can improve position, time and energy resolution.
 Improve particle identification (PID) and improve background rejection by the proper fidualization of the detector.

Overview

- Liquid argon scintillation
 - Mechanism
 - Composition and time response
 - Propagation
- Detection
 - Description of DUNE's photon detectors: X-Arapuca
- Simulation
 - How is the light simulation implemented
- Analysis
 - Where to find data real data and its structure

Disclaimer: many of these slides were possible from past slides, specially <u>this</u> presentation from Andrzej Szelc and thanks to Laura Paulucci for sending support material.

Liquid argon scintillation

- Mechanism of light production
- Time components
- Scintillation yield
- Electric field
- Light propagation

Mechanism

Ph. Rev. B 56 (1997), 6975

5

Mechanism

Ph. Rev. B 56 (1997), 6975

Time components

Scintillation time and yield

Composition of fast/slow (singlet/triplet) depends on particle Linear Energy Ti

Muon/e⁻: 23 % (fast) and 77

10

Alphas: 77 % (fast) and 23

1.2

1.0

>

Relative scintillation yield 70 80 80 80

0.2

0.0

0.1

1

TABLE I. Decay times for the fast τ_S and the slow τ_T components of luminescence from liquid argon. The intensity ratios I_S/I_T of the fast component to the slow component are also shown. F.F. stands for fission fragments. All decay times are in nsec.

constar (LET)							
ransier (LET).	Particle	$ au_{S}$	$ au_T$	I_S/I_T	Reference		
7% (slow)	Electron	6.3 ±0.2 (5.0 ±0.2)	1020±60 (860±30)	0.083 (0.045)	Kubota <i>et al.</i> ^a $(E = 6 \text{ kV/cm})^a$		
		4.6 <u>4.18+0.2</u>	1540 1000±95	0.26	Carvalho and Klein ^b Keto <i>et al.</i> ^c Suemoto and Kanzaki ^d		
		6 ±2	1590 ± 100	0.3	This work		
% (slow)	α	~5 4.4 7.1\±1.0	1200 ± 100 1100 1660 ± 100	3.3 1.3	Kubota <i>et al.^e</i> Carvalho and Klein ^b This work		
Ne Fe Kr La Liq. Ar	F.F.	6.8±1.0	1550 ± 100	3	This work		
			Ph	. Rev. B 27	7 (1983), 5279		
∏∏ ∮ (alpha) ↓ Au	Scinti	llation yie	eld also d	lepend	on LET.		
(He)	Muon	/e⁻ ~ 0.8					
· · · · · · · · · · · · · · · · · · ·	Alpha	s ~ 0.7					

10³

10⁴

 10^{5}

Scintillation time and yield

TABLE I. Decay times for the fast τ_s and the slow τ_T components of luminescence from liquid argon. The intensity ratios I_s/I_T of the fast component to the slow component are also shown. F.F. stands for fission fragments. All decay times are in nsec.

Particle	$ au_S$	$ au_T$	I_S/I_T	Reference
Electron	6.3 ±0.2	1020±60	0.083	Kubota et al. ^a
	(5.0 ± 0.2)	(860 ± 30)	(0.045)	$(E = 6 \text{ kV/cm})^{a}$
	4.6	1540	0.26	Carvalho and Klein ^b
	4.18 ± 0.2	1000 ± 95		Keto et al. ^c
		1110 ± 50		Suemoto and Kanzaki
	6 ±2	1590 ± 100	0.3	This work
α	~5	1200 ± 100		Kubota et al. ^e
	4.4	1100	3.3	Carvalho and Klein ^b
	7.1±1.0	1660 ± 100	1.3	This work
F.F.	6.8 ± 1.0	1550 ± 100	3	This work

Ph. Rev. B 27 (1983), 5279

Scintillation yield also depend on LET.

Muon/e⁻ ~ 0.8

Alphas ~ 0.7

9

Electric field (simplified model)

Phys. Rev. B 20, 3486

At 500 V/cm we have about 60% of light. For muons, this corresponds to 24,000 photons/MeV

(See backup for estimating number of photons)

Light propagation

- Pure LAr is transparent to its own scintillation radiation
 - Attenuation is given by an exponential with decay length of ~20 m (3 ppm N_2)
- During propagation through LAr VUV photons may undergo elastic interactions on Ar atoms ⇒ Rayleigh scattering

Detection

- Photon detection system (PDS) motivation
- X-Arapuca working principle

Photon Detection system - PDS

Detecting 127 nm light is challenging. Besides, HD and VD requires that the photon detectors must have no more than 2 cm in thickness

X-Arapuca - Working principle

 The device makes use of a dichroic filter in combination with two wavelength shifters (WLS)

A.A. Machado and E. Segreto 2016 JINST 11 C02004

X-Arapuca - Working principle

 $PTP \rightarrow p$ -Terphenyl SiPM \rightarrow Silicon photomultiplier Charged particle liquid argon scintillation light 127 nm PTP 350 nm **Dichroic Filter** LAr SiPM 430 nm WLS plate LAr **Reflective surface**

15

X-Arapuca - Working principle

Photon Detection system - PDS

- The PDS is based on the X-Arapuca device
- A total of 2 x 80 Silicon Photomultipliers (SiPMs) per module
- 2x36 dichroic filters coated with pTP
- These devices are installed on the Cathode at -300 kV
 - Power supply and signal must be transmitted over non-conducting materials (not this talk)

Simulation

- What about the simulation?
- It takes into account everything said up to here:
 - Emission spectrum
 - Time response
 - Scintillation yield
 - Propagation
 - Detection

Simulation

- Different modes of simulation
 - Full optical simulation (extremely slow)
 - Requires definition of all optical properties
 - Fast optical simulation (faster, but less precise)
 - Still need to run full optical at least once
 - Majority of optical properties "burned in"
 - Semi-analytic and optical library
- Brief description of LArSoft output

Full optical light simulation

Rayleigh scattering: $<\lambda_{RS}> \approx 100$ cm

Fast optical model: Optical Library

- Resolution depends on voxel sizes:
 - granularity effects at short distances
- Optical library size scales with detector size and number of photon detectors
 - Difficult to get working in DUNE

From Andrzej Szelc presentation

- Given a dE/dx in a point (x, y, z) we want to predict the number of hits in our optical detector (x_i, y_i, z_i)
- Isotropic scintillation emission makes the problem "almost" geometric

$$N_{\Omega} = e^{-\frac{d}{\lambda_{\rm abs}}} \times \Delta E \times S_{\gamma}(\mathcal{E}) \times \frac{\Omega}{4\pi}$$

 λ_{abs} = LAr absorption

 $S_{\gamma}(\mathcal{E})$ = Scintillation Yield as function of electric field

 ΔE = Energy deposited

$$N_{\Omega} = e^{-\frac{d}{\lambda_{abs}}} \times \Delta E \times S_{\gamma}(\mathcal{E}) \times \frac{\Omega}{4\pi} \stackrel{S_{\gamma}(\mathcal{E})=\text{Scintillation Yield as function of electric field}}{\Delta E = \text{Energy deposited}}$$

- Implementation of Rayleigh scattering
 - Correction using Gean4 simulation
- Correction for detector size and geometry (not included here)

Gaisser–Hillas (GH) functions:

$$GH(d) = N_{\max} \left(\frac{d - d_0}{d_{\max} - d_0}\right)^{\frac{d_{\max} - d_0}{\Lambda}} e^{\frac{d_{\max} - d}{\Lambda}}$$

"where N_{max} is the maximum of the function located at a distance d_{max} , and d_0 and Λ are parameters describing the width of the distribution"

$$N_{\gamma} = N_{\Omega} \times GH'(d, \theta, d_T)/cos(\theta)$$

 $N_{\gamma} = N_{\Omega} \times GH'(d, \theta, d_T) / cos(\theta)$

Example of the distribution of direct photons arrival times due to only transport effects

• Empirically described by a Landau and exponential for all emission points

$$t_t(x) = \underbrace{N_1 \frac{1}{\xi} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{\lambda s + s \log s} ds}_{Landau} + \underbrace{N_2 e^{\kappa x}}_{Exponential}$$

"where $\lambda = x - \mu/\xi$, with μ and ξ commonly referred as the landau most probable value and width parameters respectively, κ is the slope of the exponential and N1 and N2 are normalisation constants."

- The final time response of the detector will take into account:
 - Emission time
 - Propagation time
 - Wavelength shifter delay
 - Detector time

29

Larsoft output

Courtesy of Laura Paulucci

Reconstruction

Hit finding:

searches for peaks on individual waveforms channel-by-channel, identifying the time and the total amount of PEs

Larsoft output

Reconstruction of events

Analysis

- Where you can find some actual data
- The structure of this data
- Some of the main analysis performed up to now

Some actual data

- Since Dec. 2021 we have been collecting data with the coldbox.
 - Unfortunately, one need to understand the setup by asking / tracing back old slides as the configuration changed quite often there
 - Besides, there was no simulation implemented for the coldbox and, at this point, Module-0 will soon enough collect data to be analyzed.
 - However if anyone interest, please let me know :D
 - Nevertheless, the data of past coldbox runs can be found in lxplus: /eos/experiment/neutplatform/protodune/experiments/ColdBoxVD
 - I will quickly show how the data was collected and the main analysis up to now (if there is time hehe)

• Future data of Module-0

- Where? Don't know
- Format? Probably binary in similar way of what I am going to show now

Some actual data

Data acquisition done with CAEN Digizer DT5730SB (2 Vpp 14 bits 250* MS/s):

- Data stored at lxplus:

/eos/experiment/neutplatform/protodune/experiments/ColdBoxVD/

To access data, please, register in the np-comp e-group:

https://e-groups.cern.ch/e-groups/EgroupsSearchForm.do

20220615_LED_calibration_cathode_off

Run folder with brief description (README file available)

20220615_LED_calibration_cathode_off

20220615_LED_calibration_cathode_off

X_waveY

X are subruns with 10k events each Y is the channel number

Example:

wave0: xArapuca A4ch2 (light blue fiber)wave1: xArapuca A1ch1 (white fiber)wave2: miniArapuca A4ch1 (green fiber)wave3: miniArapuca A1ch2 (blue fiber)

X_waveY

X are subruns with 10k events each Y is the channel number

February2023/README.org - Doom Emacs		
🗉 February2023/README.org × 🛛 💷 March2023run/README.org × +		
<i>10 #</i> +title: Data taking log		
8 💿 General description		
6 Digitizer: CAEN DT5730SB \\		
5 Sample rate: 250 MSamples/s (4 ns step) (unless specified) \\		
4 Samples: 5000 (20 us total) unless specified \\		
3 Digitizer: 2 Vpp 14 Bits (0.122 mV/ADC) \\		
<pre>2 DC offset: 10% \\</pre>		
1 Pretrigger: 50% or 30% \\		
15 Acquisition done with Wavedump.		
1 Each binary file has 10,000 events (unless specified). The data	are	
save with 6 headers and <u>nsamples</u> of data. 4 bytes per header and	2	
bytes per sample. Please, refer to the <u>wavedump</u> manual. \\		
4 CAEN ADC Device		
5 Ch0 miniArapuca 37V Argon2x2		
6 Ch1 miniArapuca 37V Argon4		
9 Ch4 XArapuca V4 Ch1		
10 Ch5 XArabuca V5 ch2		
15 NOTE: Channels label were swaped in the Koheron for vA and $v5$ T	10	
values labeled here are correct	10	
2.8k February2023/README.org 15:33 === 10 Top	Org	(+1)

Data is saved as binary (faster and lighter).

1 waveform consist of 6 headers and **n** samples

The HEADER is so composed (for all digitizer families except the 742 one):

- **4 bytes** <header0> Event Size (i.e. header + samples) 5000 samples, this number will be:
- 4 bytes <header1> Board ID
- 4 bytes <header2> Pattern (meaningful only for VME boards)
- 4 bytes <header3> Channel
- 4 bytes <header4> Event Counter
- 4 bytes <header5> Trigger Time Tag

N * 2 bytes <N samples>

Let me know if you need an example code to read the data with Root.

Headers = 24 bytes

Total = 10024 bytes

39

+ samples = 5000^{2}

Main analysis up to now

Single photo-electron (SPE): uses low intensity LED flashed of light to detect one or more photons. Which results in what we call `SPE spectrum`

Main analysis up to now

Linearity and dynamic range: uses LED to check linear behaviour of detector/electronics over the entire dynamic range of the device.

41

Main analysis up to now

Overall pulse shape: undershoot, overshoot, rise and fall time characterization of signals with LED and Cosmic (self-trigger data) data

If there is still time...

• Interesting past analysis with ProtoDUNE-SP

- Recover light that would be lost to nitrogen contamination
- Increase the wavelength of the photons:
 - Easier to detect
 - Higher Rayleigh scattering
- Possibly increase PID capability

If there is still time...

If there is still time...

Interesting past analysis with ProtoDUNE-SP

Thanks :D

• Estimating number of photons:

Number of ionized atoms is proportional to the energy deposited (E_0) by the particle divided by the average energy expected per ion pair ($W_1 = 23.6 \pm 0.3 \text{ eV}$):

$$N_i = E_0 / W_l$$

Assuming that all ionized and excited molecules will produce photons, we have:

$$N_{ph} = N_i + N_{ex} = N_i \cdot (1 + N_{ex}/N_i) = E_0/W_l \cdot (1 + N_{ex}/N_i)$$

And so:

$$N_{ph} = \frac{E_0}{W_{ph}^{\min}}$$
 with $W_{ph}^{\min} = \frac{W_l}{1 + N_{ex}/N_i} = 19.5 \pm 1.0 \text{ eV}$

So the maximum number of photons produced by MeV is simple $1 \text{MeV} / 19.5 \sim 50 \times 10^3$ photons/MeV If you consider 0.8 factor for muons and 0.6 factor for Electric field, wth have the usual 24×10^3 photons/MeV

- Noble gas: electropositive and dielectric (low electron absorbance and high voltage allowed)
- High density
- High radiation length (allows good discrimination between electrons and photons and make it easier to retrieve neutrino vertex)
- Abundant in nature

https://arxiv.org/abs/2112.02967

49

	Water	He	Ne	Ar	Kr	Хе
Boiling point [K] @ 1 atm	373	4.2	27.1	87.3	120	165
Density [g/cm ³]	1	0.125	1.2	1.4	2.4	3.0
Radiation length [cm]	36.1	755.2	24	14	4.9	2.8
Scintillation $[\gamma/\text{keV}]$	-	19	30	40	25	42
Scintillation λ [nm]	-	80	78	128	150	175
dE/dx [MeV/cm]	1.9	0.24	1.4	2.1	3.0	3.8
Abundance (Earth atm) [ppm]	25×10^{3}	5.2	18.2	9300	1.1	0.09
Electron mobility [cm ² /V·s]	-	< 0.3	< 0.01	~500	$\sim \! 1800$	~2200

	https://arxiv.org/abs/2112.02967
Mean energy loss (mip)	$\langle dE_{\rm mip}/dx \rangle = 1.519 {\rm MeV}/({\rm g/cm^2})^{[13]}$
Average energy for pair production (e^- , Ar^+)	$W_l = 23.6 \pm 0.3$ ^[45, 46]
Excited to ionized atoms ratio	$N_{ex}/N_i = 0.21$ ^[45, 48, 49]
γ emission spectrum	$\langle \lambda_{\rm scint} \rangle = 127 {\rm nm}; \sigma_{\rm scint} \approx 3 {\rm nm}^{ [57]}$
Decay time consntats	τ_S ~ 6 ns; τ_T ~ 1600 ns ^[37, 57]
Relative intensity	$A_S/A_T = 0.3$ for electrons and muons
	= 1.3 for alpha particles
	= 3.0 for neutrons ^[37, 59, 60]
Average energy for γ production	$W_{ph}^{\min} = 19.5 \pm 1.0 \text{ eV}^{[45, 48, 49]}$
Light Yield [$\epsilon = 0 \text{ V/cm}$] (ideal)	$Y_{ph}^{\text{ideal}} = 5.1 \times 10^4 \gamma/\text{MeV}$
$[\epsilon = 0 \text{ V/cm}] \text{ (mip)}$	$Y_{nh}^{mip} = 4.1 \times 10^4 \gamma / MeV$
$[\epsilon = 500 \text{ V/cm}] \text{ (mip)}$	$Y_{ph}^{\text{mip}} = 2.4 \times 10^4 \gamma/\text{MeV}^{[5, 48]}$
Rayleigh scattering length ($\lambda_{scint} = 127 \text{ nm}$)	$99.1 \pm 2.3 \text{ cm}^{[64]}$
Absorption length (for N_2 concentration < 5 ppm)	$L_A > 20 \text{ m}^{[65]}$
Refractive index	$n_{\rm LAr} = 1.38$ ^[62]

52

800 900 Q # photons

800 900 Q # photons

Courtesy of Laura Paulucci

1gp	rod_muminus_0.1-5.0GeV_isotropic_dune10ktvd_1x8x14_gen_g4_detsim_reco.root
	RootFileDB;1
-1	MetaData;1
	FileIndex;1
-1	Parentage;1
	EventHistory;1
	PEvents;1
	EventAuxiliary
	art::TriggerResults_TriggerResults_Reco.
	simb::MCTruths_generator_SinglesGen.
	recob::OpHits_ophit10ppm_Reco.
	sim::SimChannels_tpcrawdecoder_simpleSC_detsim.
	sim::OpDetBacktrackerRecords_PDFastSimArExternalG4.
	sim::SimEnergyDeposits_IonAndScintExternalG4.
	sim::OpDetBacktrackerRecords_PDFastSimXeExternalG4.
	art::RNGsnapshots_msdetsim.
	recob::Wires_wclsdatanfsp_wiener_Reco.
	sim::SimPhotonsLites_PDFastSimArG4.
	art::RNGsnapshots_msG4.
	raw::OpDetWaveforms_opdigi10ppm_detsim.
	art::RNGsnapshots_msSinglesGen.
	recob::OpFlashs_opflash10ppm_Reco.
	recob::OpFlashrecob::OpHitvoidart::Assns_opflash10ppm_Reco.
	sim::OpDetBacktrackerRecords_PDFastSimArG4.
	sim::SimEnergyDeposits_largeant_LArG4DetectorServicevolExternalActive_G4
	sim::OpDetDivRecs_sipmAr10ppm_detsim.
	simb::MCParticles_largeantG4.
	sim::SimEnergyDeposits_largeant_LArG4DetectorServicevoITPCActive_G4.
	sim::OpDetBacktrackerRecords_PDFastSimXeG4.
	sim::SimPhotonsLites_PDFastSimXeExternalG4.
	sim::SimPhotonsLites_PDFastSimArExternalG4.
	sim::SimPhotonsLites PDFastSimXe G4.

